Characterization, Chemical Compounds and Biological Activities of Marrubium vulgare L. Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Plant Sample
2.3. Essential Oil Extraction
2.4. Extraction Kinetics
2.5. GC-MS Characterization
2.6. Physicochemical Indices of Essential Oils
2.6.1. Index of Refraction
2.6.2. Evaluation of Miscibility with Ethanol
2.6.3. An Acid Index (AI)
2.6.4. Ester Index (EI)
2.6.5. Peroxide Index (PI)
2.6.6. Saponification Index (SI)
2.7. Antioxidant Activity
2.7.1. DPPH (1,1-Diphenyl-2-picrylhydrazyl) Assay
2.7.2. FRAP (Ferric Reducing Antioxidant Power) Assay
2.8. Evaluation of the Antifungal Activity
2.8.1. Fungal Material
2.8.2. Antifungal Effects of the Essential Oil
2.8.3. Effect of Essential Oil on Spore Germination
3. Results and Discussion
3.1. Extraction Yield and Organoleptic Characteristics
3.2. Extraction Kinetics
3.3. Physicochemical Characteristics of the Essential Oil
3.3.1. Physical Properties
- Refractive index at 20°: The refractive index of the M. vulgare essential oil is equal to 1.343. It is lower than those of T. vulgaris, T. fontanesii and M. pulegium, which have refractive indices of 1.491 to 1.510; 1.499; and 1.480 to 1.490, respectively. In general, for essential oils, the refractive index is high. It is superior to water at 20 °C, which is 1.335.
- Relative density: The value density of our oil is 0.940. It is higher than that obtained from T. fontanesii (0.921) and is in the range given for T. vulgaris (0.9–0.955) and M. pulegium (0.930 to 0.944).
- Ethanol miscibility: Our essential oil is miscible with 1 volume of ethanol, which corresponds to a much lower result than those obtained in previous works for T. vulgaris and M. pulegium, but it is higher than that given for T. fontanesii.
3.3.2. Chemical Properties
- Peroxide index: The index is a quality indicator showing the freshness and age of the oil. A lower index means that the oil is fresh. The peroxide value of our essential oil is 8000, similar to that of T. fontanesii.
- Acid Index: The AI value for M. vulgare essential oil is 0.561. This result is inferior to those determined for T. vulgaris (8.4) and T. fontanesii (1.458). This is due to the fact that the oil is placed in a tinted glass bottle, because light has been shown to alter the structure of the oil and cause acids to proliferate. In fact, the oil oxidizes, degrades rapidly, and causes an increase in the acid index. If the index is less than two, the oil is well-preserved, which is the case for our essential oil.
- Ester index: The ester index of our essential oil is 14.020; it is lower than those recorded for T. vulgaris and T. fontanesii. The greater the amount of ester in the oil, the higher its quality.
- Saponification index: The saponification number indicates the fatty acid content (esterified and free) of the oil. In our case, Marrubium vulgare L. oil has a saponification number of 14.581, which means that to saponify one gram of oil, 14.581 g of soda must be used.
3.4. GC/MS Analysis
3.5. Antioxidant Activity
3.6. Evaluation of the Antifungal Activity
Effect of Essential Oil on Spore Production
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Létard, J.-C.; Canard, J.-M.; Costil, V.; Dalbiès, P.; Grunberg, B.; Lapuelle, J. Commissions nutrition et thérapies complémentaires du CREGG Phytothérapie—Principes généraux. Hegel 2015, 1, 29–35. [Google Scholar] [CrossRef]
- Mehrzi, A.; Sebai, I.; Saadi, W.; Abdesslem, H.; Chatti, H.; Tanazefti, H.; Brahim, A.B.; Yahyoui, R.; Ouneissa, K.; Amrouche, C. Le Profil Clinique Des Usagers Tunisiens de La Phytothérapie Dans Un Service de Diabétologie. In Annales d’Endocrinologie; Elsevier Masson: Paris, France, 2021; Volume 82, p. 500. [Google Scholar]
- Ajjoun, M.; Kharchoufa, L.; Merrouni, I.A.; Elachouri, M. Moroccan Medicinal Plants Traditionally Used for the Treatment of Skin Diseases: From Ethnobotany to Clinical Trials. J. Ethnopharmacol. 2022, 297, 115532. [Google Scholar] [CrossRef] [PubMed]
- Lahsissene, H.; Kahouadji, A. Analyse Ethnobotanique Des Plantes Médicinales et Aromatiques de La Flore Marocaine: Cas de La Région de Zaër. Phytothérapie 2010, 8, 202–209. [Google Scholar] [CrossRef]
- Rezgui, M.; Majdoub, N.; Mabrouk, B.; Baldisserotto, A.; Bino, A.; Kaab, L.B.; Manfredini, S. Antioxidant and Antifungal Activities of Marrubiin, Extracts and Essential Oil from Marrubium Vulgare L. against Pathogenic Dermatophyte Strains. J. Mycol. Med. 2020, 30, 100927. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Ramirez, L.A.; Rodriguez-Garcia, I.; Leyva, J.M.; Cruz-Valenzuela, M.R.; Silva-Espinoza, B.A.; Gonzalez-Aguilar, G.A.; Siddiqui, W.; Ayala-Zavala, J.F. Potential of Medicinal Plants as Antimicrobial and Antioxidant Agents in Food Industry: A Hypothesis. J. Food Sci. 2014, 79, 129–137. [Google Scholar] [CrossRef]
- Fakchich, J.; Elachouri, M. An Overview on Ethnobotanico-Pharmacological Studies Carried out in Morocco, from 1991 to 2015: Systematic Review (Part 1). J. Ethnopharmacol. 2021, 267, 113200. [Google Scholar] [CrossRef]
- Hamedeyazdan, S.; Fathiazad, F.; Sharifi, S.; Nazemiyeh, H. Antiproliferative Activity of Marrubium Persicum Extract in the MCF-7 Human Breast Cancer Cell Line. Asian Pac. J. Cancer Prev. 2012, 13, 5843–5848. [Google Scholar] [CrossRef]
- Belkacem, N.; Azzi, R.; Djaziri, R. Phytochemical Screening, Total Phenolics Contents and in Vitro Antioxidant Activity of Salvia Officinalis, Satureja Calamintha, Mentha Pulegium and Marrubium Vulgare. Phytothérapie 2022, 20, 23–28. [Google Scholar] [CrossRef]
- Ghedadba, N.; Hambaba, L.; Ayachi, A.; Aberkane, M.C.; Bousselsela, H.; Oueld-Mokhtar, S.M. Polyphénols totaux, activités antioxydante et antimicrobienne des extraits des feuilles de Marrubium deserti de Noé. Phytothérapie 2015, 13, 118–129. [Google Scholar] [CrossRef]
- Ghedadba, N.; Hambaba, L.; Aberkane, M.C.; Oueld-mokhtar, S.M.; Fercha, N.; Bousselsela, H. Évaluation de l’activité hémostatique in vitro de l’extrait aqueux des feuilles de Marrubium vulgare L. Algerian J. Nat. Prod. 2014, 2, 64–74. [Google Scholar]
- Aćimović, M.; Jeremić, K.; Salaj, N.; Gavarić, N.; Kiprovski, B.; Sikora, V.; Zeremski, T. Marrubium Vulgare L.: A Phytochemical and Pharmacological Overview. Molecules 2020, 25, 2898. [Google Scholar] [CrossRef] [PubMed]
- Bousselsela, H.; Ghedadba, N.; Hambaba, L.; Hachemi, M.; Dassamiour, S.; Mouffouk, C. In Vivo Anti-Inflammatory Activities of Marrubium Vulgare L. and Marrubium Deserti de Noé Species Growing in Algeria. Phytothérapie 2021. [Google Scholar] [CrossRef]
- Hayat, S.; Ahmad, A.; Ahmad, H.; Hayat, K.; Khan, M.A.; Runan, T. Garlic, from Medicinal Herb to Possible Plant Bioprotectant: A Review. Sci. Hortic. 2022, 304, 111296. [Google Scholar] [CrossRef]
- Aćimović, M.G.; Tešević, V.V.; Smiljanić, K.T.; Cvetković, M.T.; Stanković, J.M.; Kiprovski, B.M.; Sikora, V.S. Hydrolates: By-Products of Essential Oil Distillation: Chemical Composition, Biological Activity and Potential Uses. Adv. Technol. 2020, 9, 54–70. [Google Scholar] [CrossRef]
- Bahammou, Y.; Tagnamas, Z.; Lamharrar, A.; Idlimam, A. Thin-Layer Solar Drying Characteristics of Moroccan Horehound Leaves (Marrubium Vulgare L.) under Natural and Forced Convection Solar Drying. Sol. Energy 2019, 188, 958–969. [Google Scholar] [CrossRef]
- Kant, R.; Kumar, A. Review on essential oil extraction from aromatic and medicinal plants: Techniques, performance and economic analysis. Sustain. Chem. Pharm. 2022, 30, 100829. [Google Scholar] [CrossRef]
- Hilan, C.; Sfeir, R.; Jawish, D.; Aitour, S. Essential oils of some Lebanese medicinal plants of the Lamiaceae family. Leban. Sci. J. 2006, 7, 13–22. [Google Scholar]
- Skalli, S.; Hassikou, R.; Arahou, M. An Ethnobotanical Survey of Medicinal Plants Used for Diabetes Treatment in Rabat, Morocco. Heliyon 2019, 5, e01421. [Google Scholar] [CrossRef]
- Touaibia, M.M. Phytochemical characterization and evaluation of some biological activities of felty germander essential oil: Teucrium polium L. (LAMIACEAE). RHAZES Green Appl. Chem. 2021, 11, 97–107. [Google Scholar] [CrossRef]
- Meziane, I.A.A.; Bali, N.; Belblidia, N.-B.; Abatzoglou, N.; Benyoussef, E.-H. The First-Order Model in the Simulation of Essential Oil Extraction Kinetics. J. Appl. Res. Med. Aromat. Plants 2019, 15, 100226. [Google Scholar]
- NM ISO (Moroccan Standard ISO). Determination of Physicochemical Indices of Essential Oils; Institut Marocain de Normalisation: Rabat, Morocco, 2008.
- Haddouchi, F.; Chaouche, T.; Lazouni, H.A.; Benmansour, A. Physicochemical Study Essential Oils of Thymus Fontanesii According to Its Conservation|Abstract. Der Phar. Chem. 2011, 3, 404–410. [Google Scholar]
- Haida, S.; Bakkouche, K.; Kribii, A.R.; Kribii, A. Chemical Composition of Essential Oil, Phenolic Compounds Content, and Antioxidant Activity of Cistus monspeliensis from Northern Morocco. Biochem. Res. Int. 2021, 2021, e6669877. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.Z.; Alhebsi, M.S.; Ghnimi, S.; Kamal-Eldin, A. Inability of Total Antioxidant Activity Assays to Accurately Assess the Phenolic Compounds of Date Palm Fruit (Phoenix dactylifera L.). NFS J. 2021, 22, 32–40. [Google Scholar] [CrossRef]
- Ez-Zriouli, R.; El Yacoubi, H.; Mouhssine, F.; Zadni, F.Z.; Ouaritini, Z.B.; Rochdi, A. Chemical Composition of Essential Oil of Eucalyptus camaldulensis Collected from Forest Moroccan And Determination Their Antifungal Activity on Two Phytopathogenic Fungi. Plant Cell Biotechnol. Mol. Biol. 2019, 777, 2019. [Google Scholar]
- Zawislak, G. Cropping Evaluation of White Horehound (Marrubium vulgare L.), Grown from Sowing and Seeding. Herba Pol. 2009, 55, 63–68. [Google Scholar]
- El-Leithy, A.; El-Hanafy, S.; Omer, E.; Elsayed, A. Effect of Nitrogen and Potassium Biofertilization on Growth, Yield and Essential Oil Production of White Horehound, Marrubium vulgare L. Plant. J. Hortic. Sci. Ornam. Plants 2013, 5, 46–59. [Google Scholar] [CrossRef]
- Khanavi, M.; Ghasemian, L.; Motlagh, E.; Hadjiakhoondi, A. Chemical Composition of the Essential Oils of Marrubium parvorum Fisch. & C. A. Mey. And Marrubium vulgare L. from Iran. Flavour Fragr. J. 2004, 20, 324–326. [Google Scholar] [CrossRef]
- Elyemni, M.; Louaste, B.; Nechad, I.; Elkamli, T.; Bouia, A.; Taleb, M.; Chaouch, M.; Eloutassi, N. Extraction of Essential Oils of Rosmarinus officinalis L. by Two Different Methods: Hydrodistillation and Microwave Assisted Hydrodistillation. Sci. World J. 2019, 2019, 3659432. [Google Scholar] [CrossRef]
- Fadil, M.; Farah, A.; Ihssane, B.; Haloui, T.; Rachiq, S. Optimisation Des Paramètres Influençant l’hydrodistillation de Rosmarinus officinalis L. Par La Méthodologie de Surface de Réponse Optimization of Parameters Influencing the Hydrodistillation of Rosmarinus officinalis L. by Response Surface Methodology. J. Mater. Environ. Sci. 2015, 6, 2346–2357. [Google Scholar]
- ISO 3714:1980; Essential Oil of Spearmint 1990. International Organization for Standardization: London, UK, 1980. Available online: Standards.iteh.ai (accessed on 13 September 2022).
- Haddouchi, F.; Lazouni, H.A.; Meziane, A.; Benmansour, A. Etude Physicochimique et Microbiologique de l’huile Essentielle de Thymus fontanesii Boiss & Reut. Afrique Sci. Rev. Int. Sci. Technol. 2009, 5, 246–259. [Google Scholar] [CrossRef]
- Bayir, B.; Gündüz, H.; Usta, T.; Şahin, E.; Özdemir, Z.; Kayır, Ö.; Sen, Ö.; Akşit, H.; Elmastaş, M.; Erenler, R. Chemical composition of essential oil from Marrubium vulgare L. leaves. J. New Results Sci. 2014, 3, 44–50. [Google Scholar]
- Mkaddem, M.G.; Zrig, A.; Ben Abdallah, M.; Romdhane, M.; Okla, M.K.; Al-Hashimi, A.; Alwase, Y.A.; Hegab, M.Y.; Madany, M.M.Y.; Hassan, A.H.A.; et al. Variation of the Chemical Composition of Essential Oils and Total Phenols Content in Natural Populations of Marrubium vulgare L. Plants 2022, 11, 612. [Google Scholar] [CrossRef]
- Foss, K.; Przybyłowicz, K.E.; Sawicki, T. Antioxidant Activity and Profile of Phenolic Compounds in Selected Herbal Plants. Plant Foods Hum. Nutr. 2022, 77, 383–389. [Google Scholar] [CrossRef]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant Flavonoids: Classification, Distribution, Biosynthesis, and Antioxidant Activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Salinas, F.L.; Perez-Gonzalez, A.; Acosta-Casique, A.; Ix-Ballote, A.; Diaz, A.; Treviño, S.; Rosas-Murrieta, N.H.; Millán-Perez-Peña, L.; Maycotte, P. Reactive Oxygen Species: Role in Carcinogenesis, Cancer Cell Signaling and Tumor Progresion. Life Sci. 2021, 284, 119942. [Google Scholar] [CrossRef] [PubMed]
- Baudin, B. Stress oxydant et protections antioxydantes. Rev. Francoph. Lab. 2020, 522, 22–30. [Google Scholar] [CrossRef]
- Haida, S.; Kribii, A.; Kribii, A. Chemical Composition, Phenolic Content and Antioxidant Capacity of Haloxylon scoparium Extracts. S. Afr. J. Bot. 2020, 131, 151–160. [Google Scholar] [CrossRef]
- López-Hernández, A.A.; Ortega-Villarreal, A.S.; Rodríguez, J.A.V.; Lomelí, M.L.-C.; González-Martínez, B.E. Application of Different Cooking Methods to Improve Nutritional Quality of Broccoli (Brassica oleracea Var. Italica) Regarding Its Compounds Content with Antioxidant Activity. Int. J. Gastron. Food Sci. 2022, 28, 100510. [Google Scholar] [CrossRef]
- Adida, H.; Benariba, N.; Bechiri, A.; Chekroun, E.; Djaziri, R. Étude phytochimique et évaluation du pouvoir antiradicalaire des extraits de Pituranthos scoparius. Phytothérapie 2016, 14, 207–212. [Google Scholar] [CrossRef]
- Dridi, R.; Essghaier, B.; Hannachi, H.; Khedher, G.B.; Chaffei, C.; Zid, M.F. Biosynthesized Silver Nanoparticles Using Anagallis monelli: Evaluation of Antioxidant Activity, Antibacterial and Antifungal Effects. J. Mol. Struct. 2022, 1251, 132076. [Google Scholar] [CrossRef]
- Bentabet, N.; Boucherit-Otmani, Z.; Boucherit, K. Composition chimique et activité antioxydante d’extraits organiques des racines de Fredolia aretioides de la région de Béchar en Algérie. Phytothérapie 2014, 12, 364–371. [Google Scholar] [CrossRef]
- Kazan, K.; Gardiner, D.M. Fusarium Crown Rot Caused by Fusarium pseudograminearum in Cereal Crops: Recent Progress and Future Prospects. Mol. Plant Pathol. 2018, 19, 1547–1562. [Google Scholar] [CrossRef] [PubMed]
- Tiendrebeogo, A.; Ouedraogo, I.; Bonzi, S.; Kassankogno, A.I. Antifungal Activity of the Cymbopogon citratus (DC.) Stap, Elipta alba L., Lippia multiflora M. and Agave sisalana P. Int. J. Biolo. Chem. Sci. 2017, 11, 1202–1211. [Google Scholar] [CrossRef]
- Tia, E.V.; Adima, A.A.; Menut, C. Étude des caractéristiques physicochimiques et de l’activité antifongique des huiles essentielles d’Erigeron floribundus (Kunth.) Sch. Bip. Phytothérapie 2021. [Google Scholar] [CrossRef]
Physicochemical Characteristics | Values Compared with | |||
---|---|---|---|---|
Marrubium vulgare L. | Thymus vulgaris | Thymus fontanesii | Mentha pulegium L. | |
Physical character | ||||
Refractive index at 20 °C | 1.343 ± 0.0006 | 1.491–1.510 | 1.499 | 1.480–1.490 |
Relative density | 0.940 ± 0.0006 | 0.9–0.955 | 0.921 | 0.930–0.944 |
Ethanol miscibility | 1V/1V ± 0.0000 | 2V/1V–3V/1V | 0.6V/1V | 3V/1V |
Chemical character | ||||
Peroxide index | 8000 ± 0.0044 | ND | 8000 | ND |
Acid index | 0.561 ± 0.0011 | 8.4 | 1.458 | ND |
Ester index | 14.020 ± 0.0053 | 18.2 | 16.83 | ND |
Saponification index (mg KOH/g of essential oil) | 14.581 ± 0.0042 | ND | ND | ND |
No. | Compounds | Retention Time (min) | m/z by MS (%) | Peak Area % | Formula |
---|---|---|---|---|---|
1 | 3-Octanol | 5.596 | 59 (100), 55 (70), 83 (50), 57 (14), 101 (12) | 0.526 | C8H18O |
2 | Benzenemethanol | 6.122 | 79 (100), 77 (75), 108 (58), 107 (38), 51 (29) | 0.976 | C7H8O |
3 | Benzeneacetaldehyde | 6.254 | 91 (100), 65 (31), | 2.509 | C8H8O |
4 | β-linalol | 6.966 | 71 (100), 93 (80), 55 (78), 69 (48), 80 (33) | 0.629 | C10H18O |
5 | Nonanal | 7.023 | 57 (100), 59 (70), 55 (69), 56 (60), 74 (50) | 0.320 | C9H18O |
6 | Benzeneethanol | 7.165 | 91 (100), 92 (57), 65 (27), 122 (17), 71 (10) | 1.564 | C8H10O |
7 | Ketoisophorone | 7.559 | 68 (100), 96 (100), 59 (20), 74 (15), 152 (13) | 0.278 | C9H12O 2 |
8 | Lilac aldehyde | 7.621 | 55 (100), 59 (95), 67 (62), 74 (55), 71 (44) | 1.867 | C11H18O2 |
9 | Menthone | 7.740 | 69 (100), 55 (89), 112 (83), 70 (51), 97 (40) | 2.02 | C10H18O |
10 | α-Pinene oxide | 7.982 | 67 (100), 93 (65), 109 (63), 123 (44), 68 (43) | 1.274 | C10H16O |
11 | α- Terpineol | 8.228 | 59 (100), 93 (56), 81 (35), 121 (29), 67 (27) | 1.718 | C 10H18O |
12 | Camphene | 8.287 | 93 (100), 121 (82), 55 (75), 59 (60), 79 (50) | 0.433 | C 10H16 |
13 | 4-Vinyphenol | 8.470 | 120 (100), 91 (98), 59 (86), 74 (52), 65 (47) | 0.173 | C8H8O |
14 | Cyclohexanone, 2-isopropyl-2,5-dimethyl- | 8.517 | 69 (100), 97 (62), 55 (52), 83 (38), 81 (30) | 1.484 | C11H20O |
15 | 3-Thujanone | 8.773 | 81 (100), 67 (98), 152 (48), 109 (42), 82 (34) | 39.922 | C 10H16O |
16 | p-Menth-4-en-3-one | 8.872 | 67 (100), 109 (95), 59 (87), 81 (85), 55 (76) | 0.192 | C10H16O |
17 | Piperitone | 9.951 | 69 (100), 59 (86), 70 (75), 55 (72), 112 (70) | 1.401 | C10H16O |
18 | Eugenol | 10.064 | 164 (100), 77 (80), 91 (64), 103 (62), 55 (52) | 12.225 | C10H12O2 |
19 | Isocaryophyllene | 10.903 | 59 (100), 91 (90), 69 (82), 79 (78), 93 (70) | 0.165 | C15H24 |
20 | Geranylacetone | 11.065 | 69 (100), 59 (32), 67 (34), 74 (26), 107 (26) | 0.195 | C13H22O |
21 | β-Ionone | 11.457 | 177 (100), 91 (42), 59 (33), 77 (32), 79 (32) | 0.251 | C13H20O |
22 | Topanol | 11.684 | 205 (100), 57 (50), 220 (25), 91 (18), 105 (16) | 2.017 | C15H24O |
23 | β-Bisabolène | 11.746 | 69 (100), 93 (75), 67 (53), 91 (47), 79 (44) | 0.445 | C15H24 |
24 | Ethyl 2-Cyclohexyl-2-oxoacetate | 11.779 | 83 (100), 55 (56), 111 (31), 111 (22), 53 (11) | 0.485 | C10H16O3 |
25 | Dihydroactinidiolide | 12.037 | 111 (100), 67 (75), 109 (58), 137 (42), 79 (27), | 0.369 | C11H16O2 |
26 | Tabanone | 12.281 | 59 (100), 91 (75), 74 (58), 69 (53), 55 (51) | 0.658 | C13H18O |
27 | Humulene | 12.357 | 93 (100), 91 (42), 79 (36), 59 (33), 77 (30) | 0.325 | C15 H24 |
28 | Methyl stearidonate | 12.599 | 79 (100), 91 (80), 55 (75), 59 (70), 93 (64) | 0.250 | C19H30O 2 |
29 | β-selinene | 14.355 | 91 (100), 55 (96), 59 (96), 79 (96), 74 (83) | 0.188 | C15H24 |
30 | Hexadecanoic acid | 15.803 | 73 (100), 55 (84), 60 (80), 57 (77), 69 (41) | 1.448 | C16H 32O 2 |
Extract | DPPH | FRAP | ||||
---|---|---|---|---|---|---|
IC50 (mg/mL) | Equation | R2 | IC50 (mg/mL) | Equation | R2 | |
M. vulgare EO | 1.136 ± 0.0008 | y = 58.683x − 5.823 | 0.989 | 2.998 ± 0.0004 | y = 0.1659x + 0.002 | 0.997 |
Ascorbic acid | 0.086 ± 0.0002 | y = 521.66x + 4.323 | 0.993 | 0.086 ± 0.0002 | y = 5.2173x + 0.047 | 0.997 |
Mold Tested | Number of Spores (spore/mL) Essential Oil Concentration (µL/mL) | ||||||
---|---|---|---|---|---|---|---|
Control Sample | 0.08 | 0.25 | 0.5 | 2.5 | 5 | 12.5 | |
Fusarium moniliforme | 1.59 × 106 ± 0.0001 | 9 × 104 ± 0.0002 | 3 × 104 ± 0.0042 | 0 | 0 | 0 | 0 |
Fusarium pseudograminearum | 3.6 × 106 ± 0.001 | 3 × 104 ± 0.0053 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rached, S.; Imtara, H.; Habsaoui, A.; Mzioud, K.; Haida, S.; Saleh, A.; Al kamaly, O.; Alahdab, A.; Parvez, M.K.; Ourras, S.; et al. Characterization, Chemical Compounds and Biological Activities of Marrubium vulgare L. Essential Oil. Processes 2022, 10, 2110. https://doi.org/10.3390/pr10102110
Rached S, Imtara H, Habsaoui A, Mzioud K, Haida S, Saleh A, Al kamaly O, Alahdab A, Parvez MK, Ourras S, et al. Characterization, Chemical Compounds and Biological Activities of Marrubium vulgare L. Essential Oil. Processes. 2022; 10(10):2110. https://doi.org/10.3390/pr10102110
Chicago/Turabian StyleRached, Sara, Hamada Imtara, Amar Habsaoui, Khaoula Mzioud, Sara Haida, Asmaa Saleh, Omkulthom Al kamaly, Ahmad Alahdab, Mohammad Khalid Parvez, Samah Ourras, and et al. 2022. "Characterization, Chemical Compounds and Biological Activities of Marrubium vulgare L. Essential Oil" Processes 10, no. 10: 2110. https://doi.org/10.3390/pr10102110
APA StyleRached, S., Imtara, H., Habsaoui, A., Mzioud, K., Haida, S., Saleh, A., Al kamaly, O., Alahdab, A., Parvez, M. K., Ourras, S., & El Fartah, S. (2022). Characterization, Chemical Compounds and Biological Activities of Marrubium vulgare L. Essential Oil. Processes, 10(10), 2110. https://doi.org/10.3390/pr10102110