Phytochemical Screening, Antioxidative, Antiobesity, Antidiabetic and Antimicrobial Investigations of Artemisia scoparia Grown in Palestine
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Collection and Preparing
2.2. The Exhaustive Extraction Method
2.3. Preliminary Phytochemical Assessment
2.4. Antioxidant Activity
2.5. Porcine Pancreatic Lipase Inhibition Assay
2.6. α-Amylase Inhibitory Assay
2.7. α-Glucosidase Inhibitory Assay
2.8. Antimicrobial Activity
2.9. Statistical Analysis
3. Results and Discussion
3.1. Qualitative Phytochemical Tests
3.2. Antioxidant Activity
3.3. Anti-lipase Activity
3.4. Anti-α-Amylase Activity
3.5. α-Glucosidase Inhibitory Activity
3.6. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kuchta, K.; Cameron, S. Tradition to Pathogenesis: A Novel Hypothesis for Elucidating the Pathogenesis of Diseases Based on the Traditional Use of Medicinal Plants. Front. Pharmacol. 2021, 12, 705077. [Google Scholar] [CrossRef]
- Vallès, J.; Garcia, S.; Hidalgo, O.; Martín, J.; Pellicer, J.; Sanz, M.; Garnatje, T. Biology, genome evolution, biotechnological issues and research including applied perspectives in Artemisia (Asteraceae). Adv. Bot. Res. 2011, 60, 349–419. [Google Scholar]
- Ding, J.; Wang, L.; He, C.; Zhao, J.; Si, L.; Huang, H. Artemisia scoparia: Traditional uses, active constituents and pharmacological effects. J. Ethnopharmacol. 2021, 273, 113960. [Google Scholar] [CrossRef]
- Cha, J.-D.; Jeong, M.-R.; Jeong, S.-I.; Moon, S.-E.; Kim, J.-Y.; Kil, B.-S.; Song, Y.-H. Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris. Planta Med. 2005, 71, 186–190. [Google Scholar] [CrossRef] [PubMed]
- Wright, C.W. Artemisia (Medicinal and Aromatic Plants-Industrial Profiles). Chapter 2002, 1, 10–22. [Google Scholar]
- Collaborators, G.; Ärnlöv, J. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar]
- Cecchini, M. Use of healthcare services and expenditure in the US in 2025: The effect of obesity and morbid obesity. PLoS ONE 2018, 13, e0206703. [Google Scholar] [CrossRef] [PubMed]
- Wolfenstetter, S.B.; Menn, P.; Holle, R.; Mielck, A.; Meisinger, C.; von Lengerke, T. Body weight changes and outpatient medical care utilisation: Results of the MONICA/KORA cohorts S3/F3 and S4/F4. GMS Psycho-Soc. Med. 2012, 9, Doc09. [Google Scholar] [CrossRef]
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, X.; Brown, J.; Vistisen, D.; Sicree, R.; Shaw, J.; Nichols, G. Global healthcare expenditure on diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 293–301. [Google Scholar] [CrossRef] [PubMed]
- Micoli, F.; Bagnoli, F.; Rappuoli, R.; Serruto, D. The role of vaccines in combatting antimicrobial resistance. Nat. Rev. Microbiol. 2021, 19, 287–302. [Google Scholar] [CrossRef]
- Daryabor, G.; Atashzar, M.R.; Kabelitz, D.; Meri, S.; Kalantar, K. The effects of type 2 diabetes mellitus on organ metabolism and the immune system. Front. Immunol. 2020, 11, 1582. [Google Scholar] [CrossRef]
- Michel, C.; El-sherei, M.; Islam, W.; Sleem, A.; Ahmed, S. Bioactivity-guided fractionation of the stem bark extract of Pterocarpus dalbergioides Roxb. ex Dc growing in Egypt. Bull. Fac. Pharm. Cairo Univ. 2013, 51, 1–5. [Google Scholar] [CrossRef]
- Trease, G.; Evans, W. Pharmacognosy; Baillier Tindall: London, UK, 1983; pp. 256–257. [Google Scholar]
- Cartwright, A.C. The British Pharmacopoeia, 1864 To 2014: Medicines, International Standards and the State; Routledge: London, UK, 2016. [Google Scholar]
- Jaradat, N.; Adwan, L.; K’aibni, S.; Shraim, N.; Zaid, A.N. Chemical composition, anthelmintic, antibacterial and antioxidant effects of Thymus bovei essential oil. BMC Complement. Altern. Med. 2016, 16, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Bustanji, Y.; Issa, A.; Mohammad, M.; Hudaib, M.; Tawah, K.; Alkhatib, H.; Almasri, I.; Al-Khalidi, B. Inhibition of hormone sensitive lipase and pancreatic lipase by Rosmarinus officinalis extract and selected phenolic constituents. J. Med. Plants Res. 2010, 4, 2235–2242. [Google Scholar]
- McCue, P.P.; Shetty, K. Inhibitory effects of rosmarinic acid extracts on porcine pancreatic amylase in vitro. Asia. Pac. J. Clin. Nutr. 2004, 13, 12–20. [Google Scholar]
- Kim, J.-S.; Kwon, C.-S.; SoN, K.H. Inhibition of alpha-glucosidase and amylase by luteolin, a flavonoid. Biosci. Biotechnol. Biochem. 2000, 64, 2458–2461. [Google Scholar] [CrossRef]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaradat, N.A.; Zaid, A.N.; Abuzant, A.; Khalaf, S.; Abu-Hassan, N. Phytochemical and biological properties of four Astragalus species commonly used in traditional Palestinian medicine. Eur. J. Integr. Med. 2017, 9, 1–8. [Google Scholar] [CrossRef]
- Mazumder, K.; Nabila, A.; Aktar, A.; Farahnaky, A. Bioactive variability and in vitro and in vivo antioxidant activity of unprocessed and processed flour of nine cultivars of Australian lupin species: A comprehensive substantiation. Antioxidants 2020, 9, 282. [Google Scholar] [CrossRef] [Green Version]
- Singh, H.P.; Mittal, S.; Kaur, S.; Batish, D.R.; Kohli, R.K. Chemical composition and antioxidant activity of essential oil from residues of Artemisia scoparia. Food Chem. 2009, 114, 642–645. [Google Scholar] [CrossRef]
- Khan, K.; Fatima, H.; Taqi, M.M.; Zia, M.; Mirza, B. Phytochemical and in vitro biological evaluation of Artemisia scoparia Waldst. & Kit for enhanced extraction of commercially significant bioactive compounds. J. Appl. Res. Med. Aromat. Plants 2015, 2, 77–86. [Google Scholar]
- Kumar, A.; Mazumder, A.; Saravanan, V. Antihyperlipidemic activity of Camellia sinensis leaves in Triton WR-1339 induced albino rats. Pharmacogn. Mag. 2008, 4, 60. [Google Scholar]
- Stanton, A.M.; Vaduganathan, M.; Chang, L.-S.; Turchin, A.; Januzzi, J.L.; Aroda, V.R. Asymptomatic diabetic cardiomyopathy: An underrecognized entity in Type 2 diabetes. Curr. Diabetes Rep. 2021, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Dong, R.; Hu, X.; Ren, C.; Li, Y. Oat-Based Foods: Chemical Constituents, Glycemic Index, and the Effect of Processing. Foods 2021, 10, 1304. [Google Scholar] [CrossRef] [PubMed]
- La Anh, H.; Xuan, T.D.; Thuy, D.; Thi, N.; Quan, N.V.; Trang, L.T. Antioxidant and α-amylase Inhibitory Activities and Phytocompounds of Clausena indica Fruits. Medicines 2020, 7, 10. [Google Scholar]
- Aati, H.Y.; Perveen, S.; Orfali, R.; Al-Taweel, A.M.; Aati, S.; Wanner, J.; Khan, A.; Mehmood, R. Chemical composition and antimicrobial activity of the essential oils of Artemisia absinthium, Artemisia scoparia, and Artemisia sieberi grown in Saudi Arabia. Arab. J. Chem. 2020, 13, 8209–8217. [Google Scholar] [CrossRef]
- Ramezani, M.; Fazli-Bazzaz, B.; Saghafi-Khadem, F.; Dabaghian, A. Antimicrobial activity of four Artemisia species of Iran. Fitoterapia 2004, 75, 201–203. [Google Scholar] [CrossRef]
- Yarnell, E.; Abascal, K. Plant coumarins: Myths and realities. Altern. Complement. Ther. 2009, 15, 24–30. [Google Scholar] [CrossRef]
- Boudreau, A.; Richard, A.J.; Harvey, I.; Stephens, J.M. Artemisia scoparia and Metabolic Health: Untapped Potential of an Ancient Remedy for Modern Use. Front. Oncol. 2022, 12, 727061. [Google Scholar] [CrossRef] [PubMed]
- Ryu, K.; Yoou, M.; Seo, Y.; Yoon, K.; Kim, H.; Jeong, H. Therapeutic effects of Artemisia scoparia Waldst. et Kitaib in a murine model of atopic dermatitis. Clin. Exp. Dermatol. 2018, 43, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Nam, S.-Y.; Han, N.-R.; Rah, S.-Y.; Seo, Y.; Kim, H.-M.; Jeong, H.-J. Anti-inflammatory effects of Artemisia scoparia and its active constituent, 3, 5-dicaffeoyl-epi-quinic acid against activated mast cells. Immunopharmacol. Immunotoxicol. 2018, 40, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Şimşek, M.; Duman, R. Investigation of effect of 1, 8-cineole on antimicrobial activity of chlorhexidine gluconate. Pharmacogn. Res. 2017, 9, 234. [Google Scholar] [CrossRef] [Green Version]
- Damjanović-Vratnica, B.; Đakov, T.; Suković, D.; Damjanović, J. Antimicrobial effect of essential oil isolated from Eucalyptus globulus Labill. from Montenegro. Czech J. Food Sci. 2011, 29, 277–284. [Google Scholar] [CrossRef]
- Rahman, F.; Priya, V.; Gayathri, R.; Geetha, R. In vitro antibacterial activity of camphor oil against oral microbes. Int. J. Pharm. Sci. Rev. Res. 2016, 39, 119–121. [Google Scholar]
IC50 Values (µg/mL), ±SD | ||||
---|---|---|---|---|
Extracts | DPPH | Lipase | α-Amylase | α-Glucosidase |
Hexane | 630.9 ± 0.97 | 112 × 103 ± 0.54 | 31 × 103 ± 1.24 | 430.42 ± 2.12 |
Acetone | 21.87 ± 0.71 | 794 ± 0.11 | 1258 ± 1.51 | 149.75 ± 1.33 |
Ethanol | 158.48 ± 1.0 | 389 ± 0.19 | 251 ± 1.34 | 306.30 ± 1.43 |
Aqueous | 794.32 ± 3.28 | 102 ± 0.27 | 398 ± 3.44 | 515.48 ± 1.57 |
Positive controls | 6.02 ± 0.5 a | 12.8 ± 0.94 b | 31.6 ± 1.22 c | 44.81 ± 1.32 c |
Gram-Positive | Gram-Negative | Yeast | |||||
---|---|---|---|---|---|---|---|
ATCC Number | Clinical Strain | ATCC 25923 | ATCC 25922 | ATCC 13883 | ATCC 8427 | ATCC 9027 | ATCC 90028 |
A. scoparia/Microbes | MRSA | S. aureus | E. coli | K. pneumoniae | P. vulgaris | P. aeruginosa | C. albicans |
Hexane | 0.78 ± 0.01 | 0.39 ± 0.01 | R | R | 0.78 ± 0.01 | 1.56 ± 0.22 | 1.56 ± 0.22 |
Acetone | 1.56 ± 0.15 | 0.78 ± 0.01 | R | R | 0.78 ± 0.02 | 3.125 ± 0.07 | 1.56 ± 0.22 |
Ethanol | R | R | R | R | R | R | R |
Water | R | R | R | R | R | R | R |
Ciprofloxacin | 12.5 ± 0.91 | 0.78 ± 0.01 | 1.56 ± 0.01 | 0.13 ± 0.01 | 15 ± 1.21 | 3.12 ± 0.06 | - |
Ampicillin | R | 25 ± 1.11 | 3.12 ± 0.11 | 1.25 ± 0.03 | 18 ± 1.66 | R | - |
Fluconazole | - | - | - | - | - | - | 1.56 ± 0.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahhal, B.M.; Jaradat, N.; Hawash, M.; Qadi, M.; Issa, L.; Yahya, A.; Sanyora, S.; Saed, M.; Al-Rimawi, F. Phytochemical Screening, Antioxidative, Antiobesity, Antidiabetic and Antimicrobial Investigations of Artemisia scoparia Grown in Palestine. Processes 2022, 10, 2050. https://doi.org/10.3390/pr10102050
Rahhal BM, Jaradat N, Hawash M, Qadi M, Issa L, Yahya A, Sanyora S, Saed M, Al-Rimawi F. Phytochemical Screening, Antioxidative, Antiobesity, Antidiabetic and Antimicrobial Investigations of Artemisia scoparia Grown in Palestine. Processes. 2022; 10(10):2050. https://doi.org/10.3390/pr10102050
Chicago/Turabian StyleRahhal, Belal M., Nidal Jaradat, Mohammed Hawash, Mohammad Qadi, Linda Issa, Aya Yahya, Sabreen Sanyora, Muhammad Saed, and Fuad Al-Rimawi. 2022. "Phytochemical Screening, Antioxidative, Antiobesity, Antidiabetic and Antimicrobial Investigations of Artemisia scoparia Grown in Palestine" Processes 10, no. 10: 2050. https://doi.org/10.3390/pr10102050
APA StyleRahhal, B. M., Jaradat, N., Hawash, M., Qadi, M., Issa, L., Yahya, A., Sanyora, S., Saed, M., & Al-Rimawi, F. (2022). Phytochemical Screening, Antioxidative, Antiobesity, Antidiabetic and Antimicrobial Investigations of Artemisia scoparia Grown in Palestine. Processes, 10(10), 2050. https://doi.org/10.3390/pr10102050