Impact of Information and Communication Technology Diffusion on HIV and Tuberculosis Health Outcomes among African Health Systems
Abstract
:1. Introduction
2. Methods
2.1. Data Source
2.2. Econometric Analysis
3. Results
4. Discussion
4.1. HIV Prevalence
4.2. Access to Antiretroviral Medications
4.3. Tuberculosis Incidence
4.4. Tuberculosis Mortality Rate
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Bank. ICT and MDGs. A World Bank Group Perspective (27877); The World Bank: Washington, DC, USA, 2003. [Google Scholar]
- Chinn, M.D.; Fairlie, R.W. ICT use in the developing world: An analysis of differences in computer and internet penetration. Rev. Int. Econ. 2010, 18, 1153–1167. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. The Health of the People: What Works: The African Regional Health Report 2014. Available online: http://apps.who.int/iris/handle/10665/137377 (accessed on 18 November 2019).
- Shehata, A.H. Mobile phone and child mortality: The case of developing countries. Rev. Bus. Manag. 2016, 7, 3. [Google Scholar]
- Lee, M.; Liu, P.; Lio, M. The impact of the diffusion of information and communication technology on health: A cross-country study. Appl. Res. Qual. Life 2016, 11, 471–491. [Google Scholar] [CrossRef]
- World Health Organization. Global Tuberculosis Program. Available online: www.who.int/tb/publications/GTBcorporate_factsheet.pdf (accessed on 16 December 2019).
- Siika, A.M.; Rotich, J.K.; Simiyu, C.J.; Kigotho, E.M.; Smith, F.E.; Sidle, J.E.; Wools-Kaloustian, K.; Kimaiyo, S.N.; Nyandiko, W.M.; Hannan, T.J.; et al. An electronic medical record system for ambulatory care of HIV-infected patients in Kenya. Int. J. Med. Inform. 2005, 74, 345–355. [Google Scholar] [CrossRef]
- World Health Organization. Treatment of Tuberculosis: Guidelines. Available online: http://apps.who.int/iris/bitstream/handle/10665/44165/9789241547833_eng.pdf?sequence=1 (accessed on 12 November 2019).
- Kahn, T. Mobile Phones Keep Track of HIV Treatments. Available online: http://www.scidev.net/global/health/news/mobile-phones-keep-track-of-hiv-treatments.html (accessed on 11 October 2019).
- Choun, K.; Achanta, S.; Naik, B.; Tripathy, J.P.; Thai, S.; Lorent, N.; Khun, K.E.; Griensven, J.V.; Kumar, A.M.V.; Zachariah, R. Using mobile phones to ensure that referred tuberculosis patients reach their treatment facilities: A call that makes a difference. Health Serv. Res. 2017, 17, 575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lester, R.; Karanja, S. Mobile phones: Exceptional tools for HIV/AIDS, health, and crisis management. Lancet Infect. Dis. 2008, 8, 738–739. [Google Scholar] [CrossRef]
- Barnighausen, T.; Chaiyachati, K.; Chimbindi, N.; Peoples, A.; Haberer, J.; Newell, M.L. Interventions to increase antiretroviral adherence in sub-Saharan Africa: A systematic review of evaluation studies. Lancet Infect. Dis. 2011, 11, 942–951. [Google Scholar] [CrossRef] [Green Version]
- Day, A. Getting the blues: The existence, diffusion and influence of pornography on young peoples’ sexual health in Sierra Leone. Cult. Health Sex. 2014, 16, 178–189. [Google Scholar] [CrossRef]
- Haenssgen, M.J.; Ariana, P. The social implications of technology diffusion: Uncovering the unintended consequences of people’s health-related mobile phone use in rural India and China. World Dev. 2017, 94, 286–304. [Google Scholar] [CrossRef]
- Haenssgen, M.J. The struggle for digital inclusion: Phones, healthcare, and marginalization in rural India. World Dev. 2018, 104, 358–374. [Google Scholar] [CrossRef] [Green Version]
- Glik, D.; Massey, P.; Gipson, J.; Dieng, T.; Rideau, A.; Prelup, M. Health-related media use among youth audiences in Senegal. Health Promot. Int. 2016, 31, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. WHO Guideline: Recommendations on Digital Interventions for Health System Strengthening. Available online: www.who.int/reproductivehealth/publications/digital-interventions-health-system-strengthening/en/ (accessed on 1 April 2020).
- Kim, Y.; Park, J.Y.; Kim, S.B.; Jung, I.K.; Lim, Y.S.; Kim, J.H. The effects of internet addiction on the lifestyle and dietary behavior of Korean adolescents. J. Nutr. Res. Pract. 2010, 4, 341–353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghupathi, V.; Raghupathi, W. Exploring the relationship between ICTs and public health at country level: A health analytic approach. Int. J. Inf. 2013, 8, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Gostin, L.O. Public Health Law; Power, Duty, Restraint, 2nd ed.; University of California Press, Ltd.: London, UK, 2008. [Google Scholar]
- International Telecommunication Union. The World in 2017: ICT Facts and Figures. Available online: https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx (accessed on 29 August 2019).
- Holtz-Eakin, D.; Newey, W.; Rosen, H. Estimating vector autoregressions with panel data. J. Econ. 1988, 56, 1371–1395. [Google Scholar] [CrossRef]
- Blundell, R.; Bond, S. Initial conditions and moment restrictions in dynamic panel data models. J. Econ. 1998, 87, 115–143. [Google Scholar] [CrossRef] [Green Version]
- Arellano, M.; Bond, S. Some tests of specifications for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud. 1991, 58, 277–297. [Google Scholar] [CrossRef] [Green Version]
- Roodman, D. How to do xtabond2; an introduction to difference and system GMM in Stata. STATA J. 2009, 9, 86–136. [Google Scholar] [CrossRef] [Green Version]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 4, 387–515. [Google Scholar] [CrossRef]
- Keller, S.N.; Labelle, H.; Karimi, N.; Gupta, S. STD/HIV prevention for teenagers: A look at the internet universe. J. Health Commun. 2002, 7, 341–353. [Google Scholar] [CrossRef]
- Rana, R.H.; Alam, K.; Gow, J. Health outcome and expenditure in low-income countries: Does increasing diffusion of information and communication technology matter? Inf. Technol. Dev. 2019. [Google Scholar] [CrossRef]
- Kaplan, W.A. Can the ubiquitous power of mobile phones be used to improve health outcomes in developing countries? J. Glob. Health 2006, 2, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Verhoeven, M.; Tiongson, E.R. Public spending on health care and the poor. J. Health Econ. 2003, 12, 685–696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cegielski, J.; McMurray, D.N. The relationship between malnutrition and tuberculosis: Evidence from studies in human and experimental animals. Int. J. Tuberc. Lung Dis. 2004, 8, 286–298. [Google Scholar] [PubMed]
Variables | Definition | Mean | Std. Dev | Min | Max |
---|---|---|---|---|---|
ICT Variables | |||||
internet | Percentage of individuals using the Internet | 8.38 | 11.75 | 0.01 | 58.27 |
mobile phone | Mobile-cellular telephone subscriptions per 100 inhabitants | 41.44 | 41.07 | 0.00 | 176.69 |
fixedtele | Fixed-telephone subscriptions per 100 inhabitants | 3.62 | 5.92 | 0.00 | 31.07 |
ictfac | ICT common factor score representing overall diffusion of ICT | 0.00 | 1.47 | −1.37 | 6.11 |
Control Variables | |||||
TB_inc | Incidence of tuberculosis (per 100,000 people) | 289.73 | 262.84 | 7.50 | 1354.00 |
MortalityTB | TB death rate (per 100,000 people) | 35.02 | 27.44 | 0.00 | 157.00 |
ART_acc | ART access rate (% of people living with HIV) | 14.34 | 16.51 | 0.00 | 77.00 |
HIVPrev | Prevalence of HIV, total (% of population aged 15–49) | 5.44 | 6.93 | 0.10 | 28.80 |
Healthexp | Health expenditure, total (% of GDP). | 5.58 | 2.15 | 0.26 | 14.39 |
Popldens | Country Population, total | 15.82 | 1.58 | 11.30 | 19.04 |
Educ | School enrollment, primary (% net) | 75.10 | 18.19 | 0.06 | 99.63 |
Undernourish | Prevalence of undernourishment (% of population) | 22.03 | 13.45 | 5.00 | 60.60 |
Ext_aids | Net official development assistance and official aid received (current US$) | 19.57 | 1.40 | 13.16 | 23.16 |
Variables | Model 1 | Model 2 | Model 3 | Model 4 |
---|---|---|---|---|
DPM (p-Value) | DPM (p-Value) | DPM (p-Value) | DPM (p-Value) | |
HIVPre (t − 1) | 0.84 (0.00) *** | 0.84 (0.00) *** | 0.85 (0.00) *** | 0.84 (0.00) *** |
ICT Common factor score | −0.01 (0.57) | |||
Mobile phone | −0.01 (0.03) ** | |||
Internet | 0.01 (0.51) | |||
Fixed telephone | −0.01 (0.50) | |||
External aids (log) | −0.04 (0.00) *** | −0.03 (0.00) *** | −0.04 (0.00) *** | −0.03 (0.00) *** |
Health expenditure | −0.04 (0.00) *** | −0.03 (0.00) *** | −0.03 (0.00) *** | −0.04 (0.00) *** |
Undernourishment | −0.01 (0.01) *** | −0.01 (0.01) *** | −0.01 (0.02) ** | −0.01 (0.00) *** |
Population density (log) | −0.43 (0.00) *** | −0.27 (0.02) ** | −0.49 (0.00) *** | −0.49 (0.00) *** |
AR(2) test | z = 3.03 | z = 2.92 | z = 3.07 | z = 3.01 |
Hansen test | chi2(90) = 962 | chi2(90) = 1006 | chi2(90) = 992 | chi2(90) = 1013 |
Variables | Model 5 | Model 6 | Model 7 | Model 8 |
---|---|---|---|---|
DPM (p-Value) | DPM (p-Value) | DPM (p-Value) | DPM (p-Value) | |
ART_acc (t − 1) | 0.90 (0.00) *** | 0.92 (0.00) *** | 0.90 (0.00) *** | 0.92 (0.00) *** |
ICT common Factor score | 0.35 (0.31) | |||
Mobile phone | 0.01 (0.997) | |||
Internet | 0.03 (0.21) | |||
Fixed telephone | 0.09 (0.57) | |||
External aids (log) | 0.01 (0.987) | 0.05 (0.84) | 0.02 (0.93) | 0.06 (0.83) |
Health Expenditure | −0.05 (0.76) | 0.01 (0.94) | −0.04 (0.83) | 0.01 (0.97) |
Undernourishment | 0.01 (0.82) | 0.02 (0.77) | 0.02 (0.77) | 0.02 (0.69) |
Population Density (log) | 19.18 (0.00) *** | 19.06 (0.00) *** | 19.25 (0.00) *** | 18.98 (0.00) *** |
AR(2) test | z = 1.02 | z = 1.01 | Z = 1.05 | Z = 0.99 |
Hansen test | chi2(77) = 128 | chi2(77) = 129 | chi2(77) = 130 | chi2(77) = 128 |
Variables | Model 9 N = 312 | Model 10 N = 318 | Model 11 N = 316 | Model 12 N = 314 |
---|---|---|---|---|
DPM β(p-Value) | DPM β(p-Value) | DPM β(p-Value) | DPM β(p-Value) | |
TB_Inc (t − 1) | 0.85 (0.00) *** | 0.85 (0.00) *** | 0.84 (0.00) *** | 0.87 (0.00) *** |
ICT common factor score | −11.08 (0.00) *** | |||
Internet | −0.83 (0.00) *** | |||
Mobile phone | −0.37(0.00) *** | |||
Fixed telephone | 0.25 (0.89) | |||
Healthcare expenditure | −9.01 (0.00) *** | −9.88 (0.00) *** | −8.12 (0.00) *** | −10.12 (0.00) *** |
Education | −0.39 (0.23) | −0.48 (0.13) | −0.34 (0.28) | −0.74 (0.02) ** |
External aids (log) | −11.78 (0.00) *** | −13.12 (0.00) *** | −9.92 (0.00) *** | −14.53 (0.00) *** |
Undernourishment | −2.45 (0.00) *** | −2.30 (0.00) *** | −2.54 (0.00) *** | −2.11 (0.00) *** |
AR(2) test | z = 0.27 | z = 0.27 | z = 0.28 | z = 0.33 |
Hansen test | chi2(90) = 283 | chi2(90) = 289 | chi2(90) = 275 | chi2(90) = 289 |
Variables | Model 13 N = 312 | Model 14 N = 318 | Model 15 N = 316 | Model 16 N = 314 |
---|---|---|---|---|
DPM β(p-Value) | DPM β(p-Value) | DPM β(p-Value) | DPM β(p-Value) | |
Mort_TB (t − 1) | 0.54 (0.00) *** | 0.64 (0.00) *** | 0.64 (0.00) *** | 0.55 (0.00) *** |
ICT common factor score | −0.18 (0.72) | |||
Internet | −0.03 (0.59) | |||
Mobile phone | −0.01 (0.72) | |||
Fixed telephone | 0.61 (0.09) * | |||
Healthcare expenditure | −0.20 (0.53) | −0.05 (0.89) *** | 0.01 (0.98) | −0.22 (0.48) |
Education | −0.17 (0.01) ** | −0.21 (0.01) *** | −0.19 (0.01) ** | −0.19 (0.01) *** |
External aids (log) | −1.30 (0.03) ** | −1.43 (0.02) ** | −1.35 (0.03) ** | −1.33 (0.02) ** |
Under nourishment | 0.19 (0.12) | 0.21 (0.11) | 0.18 (0.18) | 0.22 (0.08) * |
AR(2) test | z = 0.08 | z = 0.09 | z = 0.08 | Z = 0.09 |
Hansen test | chi2(90) = 181 | chi2(90) = 167 | chi2(90) = 166 | chi2(90) = 178 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ibeneme, S.; Revere, F.L.; Hwang, L.-Y.; Rajan, S.; Okeibunor, J.; Muneene, D.; Langabeer, J. Impact of Information and Communication Technology Diffusion on HIV and Tuberculosis Health Outcomes among African Health Systems. Informatics 2020, 7, 11. https://doi.org/10.3390/informatics7020011
Ibeneme S, Revere FL, Hwang L-Y, Rajan S, Okeibunor J, Muneene D, Langabeer J. Impact of Information and Communication Technology Diffusion on HIV and Tuberculosis Health Outcomes among African Health Systems. Informatics. 2020; 7(2):11. https://doi.org/10.3390/informatics7020011
Chicago/Turabian StyleIbeneme, Sunny, Frances Lee Revere, Lu-Yu Hwang, Suja Rajan, Joseph Okeibunor, Derrick Muneene, and James Langabeer. 2020. "Impact of Information and Communication Technology Diffusion on HIV and Tuberculosis Health Outcomes among African Health Systems" Informatics 7, no. 2: 11. https://doi.org/10.3390/informatics7020011
APA StyleIbeneme, S., Revere, F. L., Hwang, L. -Y., Rajan, S., Okeibunor, J., Muneene, D., & Langabeer, J. (2020). Impact of Information and Communication Technology Diffusion on HIV and Tuberculosis Health Outcomes among African Health Systems. Informatics, 7(2), 11. https://doi.org/10.3390/informatics7020011