Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models
Abstract
:1. Introduction and Aims
2. Finite Mixture of Regression Models
2.1. Finite Mixture of Poisson Regressions
2.2. Finite Mixture of Negative Binomial Regressions
2.3. Other Models
2.4. Estimation via EM Algorithm
- M1
- Update the mixing proportions using
- M2
- Update the regression coefficients and the component-specific parameters by fitting a single regression model for the j-th component with response , covariates using a weighted likelihood approach with weights .
2.5. Computational Details
3. Data and Results
3.1. Data Description
3.2. Fitted Models
3.3. Usage of FM Models for Actuarial Purposes
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Aitkin, Murray. 1999. A general maximum likelihood analysis of variance components in generalized linear models. Biometrics 55: 117–28. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, Lluís. 2009. A priori ratemaking using bivariate Poisson regression models. Insurance: Mathematics and Economics 44: 135–41. [Google Scholar] [CrossRef] [Green Version]
- Bermúdez, Lluís, and Dimitris Karlis. 2012. A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking. Computational Statistics & Data Analysis 56: 3988–99. [Google Scholar]
- Bolancé, Catalina, Montserrat Guillén, and Jean Pinquet. 2003. Time-varying credibility for frequency risk models: Estimation and tests for autoregressive specifications on the random effects. Insurance: Mathematics and Economics 33: 273–82. [Google Scholar] [CrossRef]
- Bolancé, Catalina, Montserrat Guillén, and Jean Pinquet. 2008. On the link between credibility and frequency premium. Insurance: Mathematics and Economics 43: 209–13. [Google Scholar] [CrossRef] [Green Version]
- Boucher, Jean-Philippe, and Michel Denuit. 2008. Credibility premiums for the zero inflated Poisson model and new hunger for bonus interpretation. Insurance: Mathematics and Economics 42: 727–35. [Google Scholar] [CrossRef]
- Boucher, Jean-Philippe, Michel Denuit, and Montserrat Guillén. 2007. Risk classification for claim counts: A comparative analysis of various zero-inflated mixed Poisson and hurdle models. North American Actuarial Journal 11: 110–31. [Google Scholar] [CrossRef] [Green Version]
- Boucher, Jean-Philippe, Michel Denuit, and Montserrat Guillén. 2009. Number of accidents or number of claims? an approach with zero-inflated Poisson models for panel data. Journal of Risk and Insurance 76: 821–46. [Google Scholar] [CrossRef] [Green Version]
- Breslow, Norman E. 1984. Extra-Poisson variation in log-linear models. Applied Statistics 33: 38–44. [Google Scholar] [CrossRef]
- Brouhns, Natacha, Montserrat Guillén, Michael Denuit, and Jean Pinquet. 2003. Bonus-malus scales in segmented tariffs with stochastic migration between segments. Journal of Risk and Insurance 70: 577–99. [Google Scholar] [CrossRef]
- Byung-Jung, Park, Dominique Lord, and Chungwon Lee. 2014. Finite mixture modeling for vehicle crash data with application to hotspot identification. Accident Analysis & Prevention 71: 319–26. [Google Scholar]
- Dean, Charmaine, Jerald Lawless, and Gordon Willmot. 1989. A mixed Poisson-inverse-gaussian regression model. Canadian Journal of Statistics 17: 171–81. [Google Scholar] [CrossRef]
- Denuit, Michael, Xavier Marechal, Sandra Pitrebois, and Jean-François Walhin. 2007. Actuarial Modelling of Claim Counts: Risk Classification, Credibility and Bonus-Malus Systems. New York: Wiley. [Google Scholar]
- Dionne, George, and Charles Vanasse. 1989. A generalization of actuarial automobile insurance rating models: The negative binomial distribution with a regression component. ASTIN Bulletin 19: 199–212. [Google Scholar] [CrossRef]
- Dionne, George, and Charles Vanasse. 1992. Automobile insurance ratemaking in the presence of asymmetrical information. Journal of Applied Econometrics 7: 149–65. [Google Scholar] [CrossRef]
- Grun, Bettina, and Friedrich Leisch. 2007. Fitting finite mixtures of generalized linear regressions in R. Computational Statistics and Data Analysis 51: 5247–52. [Google Scholar] [CrossRef]
- Grun, Bettina, and Friedrich Leisch. 2008. Flexmix version 2: Finite mixtures with concomitant variables and varying and constant parameters. Journal of Statistical Software 28: 1–35. [Google Scholar] [CrossRef]
- Guillén, Montserrat, Jens Perch Nielsen, Mercedes Ayuso, and Ana Pérez-Marín. 2019. The use of telematics devices to improve automobile insurance rates. Risk Analysis 39: 662–72. [Google Scholar] [CrossRef]
- Hennig, Christian. 2000. Identifiablity of models for clusterwise linear regression. Journal of Classification 17: 273–96. [Google Scholar] [CrossRef]
- Lambert, Diane. 1992. Zero-inflated Poisson regression, with an application to defects in manufacturing. Technometrics 34: 1–14. [Google Scholar] [CrossRef]
- Lord, Dominique, Simon Washington, and John N. Ivan. 2007. Further notes on the application of zero-inflated models in highway safety. Accident Analysis & Prevention 39: 53–57. [Google Scholar]
- Mullahy, John. 1986. Specification and testing of some modified count data models. Journal of Econometrics 33: 341–65. [Google Scholar] [CrossRef]
- Papastamoulis, Panagiotis, Marie-Laure Martin-Magniette, and Cathy Maugis-Rabusseau. 2016. On the estimation of mixtures of Poisson regression models with large number of components. Computational Statistics & Data Analysis 93: 97–106. [Google Scholar]
- Park, Byung-Jung, and Dominique Lord. 2009. Application of finite mixture models for vehicle crash data analysis. Accident Analysis and Prevention 41: 683–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinquet, Jean, Montserrat Guillén, and Catalina Bolancé. 2001. Long-range contagion in automobile insurance data: Estimation and implications for experience rating. ASTIN Bulletin 31: 337–48. [Google Scholar] [CrossRef] [Green Version]
- Wang, Peiming, Martin L. Puterman, Iain Cockburn, and Nhu Le. 1996. Mixed Poisson regression models with covariate dependent rates. Biometrics 52: 381–400. [Google Scholar] [CrossRef]
- Winkelmann, Rainer. 2008. Econometric Analysis of Count Data, 4th ed. New York: Springer. [Google Scholar]
- Zou, Yajie, Yunlong Zhang, and Dominique Lord. 2013. Application of finite mixture of negative binomial regression models with varying weight parameters for vehicle crash data analysis. Accident Analysis & Prevention 50: 1042–51. [Google Scholar]
Variable | Definition | Mean | St. dev. |
---|---|---|---|
N | total number of claims reported by policyholders | 0.1833 | 0.5873 |
(0: 71,087; 1: 6,744; 2: 2,067; 3: 690; 4: 248; 5: 95; 6: 34; >6: 29) | |||
GEN | equals 1 for women and 0 for men | 0.1600 | 0.3666 |
URB | equals 1 when driving in urban area, 0 otherwise | 0.6690 | 0.4706 |
ZON | equals 1 when driving in Madrid, Catalonia or northern Spain, 0 otherwise | 0.4326 | 0.4954 |
LIC | equals 1 if the driving license is 4 or more years old, 0 otherwise | 0.9766 | 0.1511 |
LOY | equals 1 if the client is in the company for more than 5 years, 0 otherwise | 0.1441 | 0.3512 |
COV | equals 1 if includes comprehensive and collision coverage, 0 otherwise | 0.5087 | 0.4999 |
POW | equals 1 if horsepower is greater than or equal to 5500cc, 0 otherwise | 0.8058 | 0.3955 |
Model | Log-Likelihood | Parameters | AIC | BIC |
---|---|---|---|---|
Poisson | −42,585.08 | 8 | 85,186.15 | 85,260.57 |
Negative binomial | −38,453.13 | 9 | 76,924.27 | 77,007.98 |
Zero-inflated Poisson | −38,836.59 | 9 | 77,691.19 | 77,774.91 |
Zero-inflated negative binomial | −38,453.13 | 10 | 76,926.27 | 77,019.28 |
2-Finite Poisson mixture | −38,449.61 | 17 | 76,933.21 | 77,091.36 |
2-Finite negative binomial mixture | −38,347.81 | 19 | 76,733.62 | 76,910.36 |
2FMNB | Negative Binomial | ||||||
---|---|---|---|---|---|---|---|
1st comp. | 2nd comp. | p-Value | Estimate | p-Value | |||
Intercept | −6.1420 | −1.1364 | <0.0001 | Intercept | −2.4144 | <0.0001 | |
GEN | 0.2633 | 0.0086 | 0.0124 | GEN | 0.0774 | 0.0103 | |
URB | 0.3407 | −0.0762 | 0.0017 | URB | 0.0165 | 0.4870 | |
ZON | 0.3745 | 0.0564 | <0.0001 | ZON | 0.1324 | <0.0001 | |
LIC | 0.2413 | −0.2423 | 0.0448 | LIC | −0.1610 | 0.0230 | |
LOY | 0.3707 | 0.1289 | <0.0001 | LOY | 0.2019 | <0.0001 | |
COV | 3.1438 | 0.6373 | <0.0001 | COV | 1.0024 | <0.0001 | |
POW | 0.2502 | 0.1148 | <0.0001 | POW | 0.1440 | <0.0001 | |
0.2321 | 0.6051 | 0.2527 | |||||
0.6686 | 0.3314 |
Profile Name | GEN | URB | ZON | LIC | LOY | COV | POW |
---|---|---|---|---|---|---|---|
Best | 0 | 1 | 0 | 1 | 0 | 0 | 0 |
Good | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
Average | 0 | 0 | 0 | 1 | 0 | 1 | 0 |
Bad | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
Worst | 1 | 1 | 1 | 0 | 1 | 1 | 1 |
Profile | Mean | Variance | |||||||
---|---|---|---|---|---|---|---|---|---|
NB | 2FMNB | 2FMNB-1 | 2FMNB-2 | NB | 2FMNB | 2FMNB-1 | 2FMNB-2 | ||
Best | 0.077 | 0.080 | 0.004 | 0.233 | 0.101 | 0.183 | 0.004 | 0.323 | |
Good | 0.113 | 0.115 | 0.005 | 0.336 | 0.164 | 0.279 | 0.005 | 0.524 | |
Average | 0.207 | 0.200 | 0.063 | 0.476 | 0.378 | 0.496 | 0.081 | 0.852 | |
Bad | 0.309 | 0.289 | 0.117 | 0.636 | 0.688 | 0.756 | 0.176 | 1.306 | |
Worst | 0.432 | 0.419 | 0.247 | 0.766 | 1.170 | 1.159 | 0.509 | 1.735 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bermúdez, L.; Karlis, D.; Morillo, I. Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models. Risks 2020, 8, 10. https://doi.org/10.3390/risks8010010
Bermúdez L, Karlis D, Morillo I. Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models. Risks. 2020; 8(1):10. https://doi.org/10.3390/risks8010010
Chicago/Turabian StyleBermúdez, Lluís, Dimitris Karlis, and Isabel Morillo. 2020. "Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models" Risks 8, no. 1: 10. https://doi.org/10.3390/risks8010010
APA StyleBermúdez, L., Karlis, D., & Morillo, I. (2020). Modelling Unobserved Heterogeneity in Claim Counts Using Finite Mixture Models. Risks, 8(1), 10. https://doi.org/10.3390/risks8010010