Appendix A
Table A1.
Ordinary least squares (OLS) proxy function of BEL derived under 150–443 in the adaptive algorithm with the final coefficients. Furthermore, Akaike information criterion (AIC) scores and out-of-sample mean absolute errors (MAEs) in % after each iteration.
Table A1.
Ordinary least squares (OLS) proxy function of BEL derived under 150–443 in the adaptive algorithm with the final coefficients. Furthermore, Akaike information criterion (AIC) scores and out-of-sample mean absolute errors (MAEs) in % after each iteration.
k | | | | | | | | | | | | | | | | | AIC | v.mae | ns.mae | cr.mae |
---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14,718.24 | 437,251 | 4.557 | 3.231 | 4.027 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7850.17 | 386,722 | 2.474 | 0.845 | 0.913 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −269.33 | 375,144 | 2.065 | 2.139 | 1.831 |
3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 145.21 | 366,567 | 1.656 | 0.444 | 0.496 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −5.36 | 358,894 | 1.647 | 1.006 | 0.556 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 434.04 | 355,732 | 1.635 | 0.853 | 0.469 |
6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1753.4 | 354,318 | 1.679 | 0.956 | 0.374 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 19,145.78 | 349,759 | 1.234 | 0.491 | 0.628 |
8 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33.33 | 347,796 | 0.999 | 0.34 | 0.594 |
9 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 868.25 | 346,444 | 0.912 | 0.357 | 0.602 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 30.59 | 345,045 | 0.839 | 0.389 | 0.650 |
11 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1.65 | 341,083 | 0.759 | 0.398 | 0.465 |
12 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 86.79 | 339,360 | 0.718 | 0.394 | 0.390 |
13 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 33.35 | 337,731 | 0.574 | 0.653 | 0.512 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 49.59 | 336,843 | 0.589 | 0.658 | 0.518 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 71.25 | 335,980 | 0.628 | 0.678 | 0.512 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2667.92 | 335,351 | 0.609 | 0.671 | 0.503 |
17 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 96.43 | 334,876 | 0.579 | 0.701 | 0.545 |
18 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −6.31 | 334,413 | 0.593 | 0.72 | 0.531 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −47.09 | 333,904 | 0.562 | 0.621 | 0.474 |
20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 48.93 | 333,447 | 0.565 | 0.597 | 0.454 |
21 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −3,412.68 | 333,116 | 0.553 | 0.543 | 0.407 |
22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.02 | 332,806 | 0.562 | 0.478 | 0.358 |
23 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.12 | 332,547 | 0.55 | 0.45 | 0.381 |
24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 43.77 | 332,294 | 0.545 | 0.468 | 0.378 |
25 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 118.94 | 332,042 | 0.53 | 0.464 | 0.362 |
26 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1288.45 | 331,687 | 0.522 | 0.453 | 0.355 |
27 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −44.72 | 331,405 | 0.525 | 0.444 | 0.343 |
28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −24,908.99 | 331,136 | 0.499 | 0.405 | 0.327 |
29 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −86.88 | 330,562 | 0.504 | 0.348 | 0.268 |
30 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.55 | 330,361 | 0.518 | 0.418 | 0.264 |
31 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 77.26 | 330,163 | 0.512 | 0.443 | 0.272 |
32 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 24.78 | 329,988 | 0.508 | 0.443 | 0.264 |
33 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14.33 | 329,834 | 0.477 | 0.491 | 0.286 |
34 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.39 | 329,688 | 0.477 | 0.5 | 0.290 |
35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 28.36 | 329,550 | 0.476 | 0.502 | 0.291 |
36 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −370.92 | 329,442 | 0.472 | 0.499 | 0.288 |
37 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −17.9 | 329,147 | 0.462 | 0.505 | 0.301 |
38 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8574.53 | 329,043 | 0.472 | 0.518 | 0.3 |
39 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −2.17 | 328,935 | 0.474 | 0.51 | 0.295 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 223.91 | 328,832 | 0.475 | 0.509 | 0.291 |
41 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1801.73 | 328,733 | 0.455 | 0.445 | 0.248 |
42 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −102.1 | 327,927 | 0.372 | 0.345 | 0.237 |
43 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.7 | 327,858 | 0.368 | 0.353 | 0.235 |
44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.56 | 327,792 | 0.366 | 0.352 | 0.233 |
45 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −3034.32 | 327,729 | 0.365 | 0.356 | 0.228 |
46 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −13,127.81 | 327,659 | 0.368 | 0.364 | 0.227 |
47 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −17.54 | 327,603 | 0.368 | 0.366 | 0.226 |
48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −187.07 | 327,537 | 0.374 | 0.367 | 0.226 |
49 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −300.54 | 327,483 | 0.369 | 0.367 | 0.230 |
50 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.09 | 327,432 | 0.368 | 0.391 | 0.221 |
51 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −60.84 | 327,382 | 0.359 | 0.39 | 0.228 |
52 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −20.91 | 327,331 | 0.352 | 0.39 | 0.225 |
53 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | −0.0 | 327,287 | 0.346 | 0.377 | 0.206 |
54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | −0.09 | 327,149 | 0.339 | 0.357 | 0.185 |
55 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.44 | 327,105 | 0.315 | 0.321 | 0.173 |
56 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.5 | 327,064 | 0.315 | 0.322 | 0.173 |
57 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | −6.06 | 327,025 | 0.322 | 0.317 | 0.175 |
58 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −6,600.49 | 326,986 | 0.317 | 0.31 | 0.172 |
59 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −407.57 | 326,823 | 0.308 | 0.302 | 0.183 |
60 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3378.82 | 326,787 | 0.306 | 0.301 | 0.183 |
61 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 205.28 | 326,733 | 0.304 | 0.299 | 0.183 |
62 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | −18.73 | 326,700 | 0.306 | 0.299 | 0.182 |
63 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 175.39 | 326,668 | 0.304 | 0.296 | 0.182 |
64 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | −0.2 | 326,638 | 0.304 | 0.298 | 0.181 |
65 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2.45 | 326,610 | 0.301 | 0.296 | 0.183 |
66 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.11 | 326,572 | 0.297 | 0.299 | 0.180 |
67 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −13.02 | 326,545 | 0.292 | 0.286 | 0.169 |
68 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 93.69 | 326,519 | 0.292 | 0.287 | 0.172 |
69 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 891.58 | 326,478 | 0.294 | 0.282 | 0.173 |
70 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −6.21 | 326,453 | 0.291 | 0.281 | 0.175 |
71 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | −112.56 | 326,428 | 0.289 | 0.281 | 0.176 |
72 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | −5.27 | 326,398 | 0.284 | 0.282 | 0.173 |
73 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1129.77 | 326,374 | 0.276 | 0.264 | 0.162 |
74 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.29 | 326,352 | 0.272 | 0.266 | 0.158 |
75 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | −56.54 | 326,331 | 0.269 | 0.266 | 0.157 |
76 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | −3.02 | 326,313 | 0.271 | 0.266 | 0.155 |
77 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −10.59 | 326,295 | 0.264 | 0.27 | 0.151 |
78 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −6.99 | 326,278 | 0.264 | 0.275 | 0.153 |
79 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −2.25 | 326,261 | 0.252 | 0.285 | 0.154 |
80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | −14.77 | 326,245 | 0.263 | 0.309 | 0.157 |
81 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.95 | 326,229 | 0.267 | 0.306 | 0.155 |
82 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2248.54 | 326,214 | 0.266 | 0.307 | 0.156 |
83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −111.77 | 326,201 | 0.263 | 0.302 | 0.158 |
84 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | −0.11 | 326,187 | 0.262 | 0.302 | 0.157 |
85 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | −0.18 | 326,174 | 0.263 | 0.305 | 0.156 |
86 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 45.58 | 326,161 | 0.265 | 0.303 | 0.157 |
87 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −83,291.89 | 326,149 | 0.267 | 0.308 | 0.156 |
88 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −56.2 | 326,137 | 0.267 | 0.308 | 0.156 |
89 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | −5.32 | 326,126 | 0.267 | 0.31 | 0.156 |
90 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −10.87 | 326,116 | 0.267 | 0.313 | 0.158 |
91 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −32.75 | 326,106 | 0.265 | 0.317 | 0.158 |
92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | −0.09 | 326,097 | 0.265 | 0.308 | 0.151 |
93 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 10.87 | 326,089 | 0.265 | 0.308 | 0.151 |
94 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −48.93 | 326,081 | 0.264 | 0.306 | 0.148 |
95 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 69.57 | 326,073 | 0.256 | 0.288 | 0.141 |
96 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −542,688.19 | 326,066 | 0.256 | 0.289 | 0.141 |
97 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 10.44 | 326,058 | 0.248 | 0.275 | 0.136 |
98 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | −1.08 | 326,051 | 0.248 | 0.276 | 0.136 |
99 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 419.05 | 326,045 | 0.249 | 0.275 | 0.136 |
100 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12.8 | 326,038 | 0.25 | 0.276 | 0.136 |
101 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | −3.94 | 326,033 | 0.25 | 0.276 | 0.136 |
102 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −10.12 | 326,027 | 0.248 | 0.281 | 0.138 |
103 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.36 | 326,017 | 0.244 | 0.283 | 0.135 |
104 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1.74 | 326,012 | 0.244 | 0.282 | 0.136 |
105 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | −0.0 | 326,006 | 0.242 | 0.268 | 0.132 |
106 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −7.09 | 326,001 | 0.238 | 0.265 | 0.131 |
107 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −109.46 | 325,982 | 0.238 | 0.263 | 0.129 |
108 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | −0.1 | 325,977 | 0.237 | 0.263 | 0.128 |
109 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 5.76 | 325,972 | 0.235 | 0.263 | 0.129 |
110 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 54.51 | 325,968 | 0.237 | 0.264 | 0.129 |
111 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1386.73 | 325,963 | 0.235 | 0.264 | 0.129 |
112 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | −0.0 | 325,959 | 0.237 | 0.265 | 0.13 |
113 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.11 | 325,955 | 0.235 | 0.265 | 0.13 |
114 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.05 | 325,951 | 0.234 | 0.266 | 0.13 |
115 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4.3 | 325,948 | 0.236 | 0.265 | 0.127 |
116 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −19.81 | 325,944 | 0.237 | 0.262 | 0.126 |
117 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −0.87 | 325,938 | 0.241 | 0.267 | 0.124 |
118 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.36 | 325,935 | 0.241 | 0.267 | 0.124 |
119 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −80.29 | 325,931 | 0.241 | 0.267 | 0.125 |
120 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | −6.95 | 325,928 | 0.241 | 0.267 | 0.124 |
121 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | −0.0 | 325,925 | 0.243 | 0.259 | 0.121 |
122 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 436.56 | 325,923 | 0.241 | 0.259 | 0.121 |
123 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.03 | 325,920 | 0.243 | 0.263 | 0.121 |
124 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2.99 | 325,918 | 0.242 | 0.263 | 0.12 |
125 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.59 | 325,916 | 0.241 | 0.261 | 0.119 |
126 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.02 | 325,908 | 0.247 | 0.265 | 0.124 |
127 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −4.66 | 325,902 | 0.249 | 0.279 | 0.123 |
128 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −8179.68 | 325,900 | 0.249 | 0.28 | 0.124 |
129 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 691.4 | 325,898 | 0.249 | 0.28 | 0.123 |
130 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0.04 | 325,896 | 0.25 | 0.281 | 0.122 |
131 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 7.04 | 325,894 | 0.246 | 0.264 | 0.12 |
132 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | −27.72 | 325,892 | 0.247 | 0.264 | 0.119 |
133 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1.26 | 325,891 | 0.247 | 0.264 | 0.119 |
134 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −2.67 | 325,889 | 0.249 | 0.265 | 0.118 |
135 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1.53 | 325,887 | 0.25 | 0.266 | 0.119 |
136 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | −0.07 | 325,885 | 0.25 | 0.265 | 0.12 |
137 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 40.44 | 325,884 | 0.251 | 0.265 | 0.119 |
138 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 434.5 | 325,878 | 0.249 | 0.264 | 0.119 |
139 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | −5.99 | 325,877 | 0.248 | 0.264 | 0.119 |
140 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 14.64 | 325,873 | 0.246 | 0.263 | 0.12 |
141 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −119.42 | 325,871 | 0.247 | 0.27 | 0.121 |
142 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0.0 | 325,870 | 0.248 | 0.271 | 0.121 |
143 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0.07 | 325,868 | 0.248 | 0.271 | 0.121 |
144 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1.06 | 325,861 | 0.246 | 0.271 | 0.121 |
145 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.74 | 325,859 | 0.247 | 0.271 | 0.121 |
146 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | −5.61 | 325,858 | 0.246 | 0.271 | 0.121 |
147 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | −0.08 | 325,857 | 0.247 | 0.27 | 0.121 |
148 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | −37.16 | 325,855 | 0.247 | 0.271 | 0.122 |
149 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0.41 | 325,851 | 0.247 | 0.271 | 0.122 |
150 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −7290.99 | 325,850 | 0.247 | 0.271 | 0.122 |
Table A2.
OLS proxy function of available capital (AC) derived under 150–443 in the adaptive algorithm with the final coefficients. Furthermore, AIC scores and out-of-sample MAEs in % after each iteration.
Table A2.
OLS proxy function of available capital (AC) derived under 150–443 in the adaptive algorithm with the final coefficients. Furthermore, AIC scores and out-of-sample MAEs in % after each iteration.
k | | | | | | | | | | | | | | | | | AIC | v.mae | ns.mae | cr.mae |
---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 745.35 | 391,375 | 60.62 | 97.518 | 257.762 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5766.61 | 382,610 | 50.402 | 99.306 | 256.789 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 272.75 | 367,667 | 35.285 | 38.124 | 99.902 |
3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 5.46 | 359,997 | 30.739 | 18.21 | 72.719 |
4 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 128.41 | 356,705 | 30.119 | 25.088 | 29.357 |
5 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1750.72 | 355,354 | 30.867 | 28.173 | 21.870 |
6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −19,127.27 | 351,002 | 22.942 | 14.948 | 44.668 |
7 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −33.25 | 349,147 | 19.03 | 12.142 | 42.535 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 307.32 | 347,777 | 18.221 | 10.928 | 35.420 |
9 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −868.05 | 346,423 | 16.662 | 11.527 | 35.941 |
10 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −87.54 | 345,025 | 15.987 | 10.264 | 31.461 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −30.51 | 343,570 | 14.858 | 11.187 | 34.502 |
12 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −1.66 | 339,282 | 13.092 | 12.669 | 23.174 |
13 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −33.33 | 337,648 | 10.427 | 20.976 | 30.402 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −70.63 | 336,840 | 11.087 | 21.598 | 29.972 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | −41.37 | 336,120 | 11.436 | 21.764 | 30.408 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −2666.44 | 335,495 | 11.088 | 21.543 | 29.890 |
17 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −96.48 | 335,022 | 10.545 | 22.479 | 32.334 |
18 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6.3 | 334,563 | 10.804 | 23.095 | 31.519 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 47.02 | 334,058 | 10.232 | 19.913 | 28.128 |
20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | −48.77 | 333,610 | 10.292 | 19.163 | 26.995 |
21 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3412.54 | 333,281 | 10.083 | 17.438 | 24.190 |
22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | −0.02 | 332,970 | 10.246 | 15.328 | 21.326 |
23 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.12 | 332,714 | 10.02 | 14.436 | 22.671 |
24 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −120.68 | 332,457 | 9.834 | 14.283 | 21.608 |
25 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1287.63 | 332,108 | 9.725 | 13.969 | 21.273 |
26 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 44.71 | 331,832 | 9.755 | 13.661 | 20.501 |
27 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24,899.66 | 331,569 | 9.275 | 12.462 | 19.873 |
28 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 87.04 | 331,004 | 9.292 | 10.757 | 17.022 |
29 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | −43.38 | 330,742 | 9.171 | 11.183 | 16.023 |
30 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.55 | 330,543 | 9.444 | 13.409 | 15.766 |
31 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −77.35 | 330,345 | 9.324 | 14.207 | 16.192 |
32 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | −25.2 | 330,161 | 9.246 | 14.203 | 15.692 |
33 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −14.37 | 330,007 | 8.672 | 15.764 | 16.964 |
34 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.39 | 329,859 | 8.682 | 16.031 | 17.223 |
35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | −27.8 | 329,728 | 8.665 | 16.11 | 17.264 |
36 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −8757.49 | 329,619 | 8.871 | 16.53 | 17.005 |
37 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2.17 | 329,513 | 8.937 | 16.276 | 16.790 |
38 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 369.16 | 329,408 | 8.842 | 16.169 | 16.738 |
39 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 17.97 | 329,109 | 8.637 | 16.387 | 17.527 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | −222.55 | 329,008 | 8.656 | 16.359 | 17.271 |
41 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1791.7 | 328,910 | 8.297 | 14.282 | 14.748 |
42 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 101.23 | 328,111 | 6.783 | 11.112 | 14.144 |
43 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.7 | 328,041 | 6.713 | 11.355 | 14.013 |
44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | −0.57 | 327,972 | 6.683 | 11.325 | 13.867 |
45 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3083.05 | 327,905 | 6.654 | 11.456 | 13.595 |
46 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12,863.79 | 327,837 | 6.7 | 11.721 | 13.5 |
47 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 17.78 | 327,780 | 6.71 | 11.777 | 13.450 |
48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 190.46 | 327,711 | 6.824 | 11.818 | 13.468 |
49 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 300.76 | 327,657 | 6.724 | 11.793 | 13.716 |
50 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.09 | 327,607 | 6.718 | 12.565 | 13.182 |
51 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 60.83 | 327,557 | 6.543 | 12.533 | 13.558 |
52 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20.91 | 327,507 | 6.415 | 12.53 | 13.394 |
53 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.0 | 327,463 | 6.314 | 12.118 | 12.252 |
54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.08 | 327,327 | 6.176 | 11.486 | 11.049 |
55 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1.46 | 327,284 | 5.751 | 10.339 | 10.295 |
56 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.5 | 327,242 | 5.746 | 10.367 | 10.287 |
57 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 6.08 | 327,203 | 5.871 | 10.211 | 10.450 |
58 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6593.98 | 327,165 | 5.78 | 9.973 | 10.274 |
59 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 406.73 | 327,003 | 5.618 | 9.722 | 10.897 |
60 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −3,364.02 | 326,968 | 5.581 | 9.671 | 10.904 |
61 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −204.12 | 326,914 | 5.542 | 9.626 | 10.921 |
62 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 18.9 | 326,881 | 5.588 | 9.611 | 10.837 |
63 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −175.17 | 326,849 | 5.546 | 9.514 | 10.817 |
64 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0.21 | 326,818 | 5.54 | 9.597 | 10.799 |
65 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −2.44 | 326,791 | 5.494 | 9.532 | 10.896 |
66 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.11 | 326,753 | 5.413 | 9.616 | 10.708 |
67 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 12.99 | 326,726 | 5.317 | 9.215 | 10.046 |
68 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −93.57 | 326,700 | 5.329 | 9.255 | 10.231 |
69 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −890.62 | 326,660 | 5.355 | 9.09 | 10.326 |
70 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 113.04 | 326,635 | 5.313 | 9.095 | 10.357 |
71 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 5.23 | 326,605 | 5.231 | 9.101 | 10.164 |
72 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 6.2 | 326,581 | 5.186 | 9.068 | 10.265 |
73 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1,133.83 | 326,556 | 5.034 | 8.488 | 9.647 |
74 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.29 | 326,534 | 4.95 | 8.58 | 9.374 |
75 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 56.56 | 326,513 | 4.908 | 8.559 | 9.323 |
76 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3.02 | 326,495 | 4.936 | 8.573 | 9.223 |
77 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.61 | 326,477 | 4.824 | 8.705 | 8.996 |
78 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6.97 | 326,461 | 4.821 | 8.849 | 9.071 |
79 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.25 | 326,444 | 4.602 | 9.17 | 9.162 |
80 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1.94 | 326,429 | 4.688 | 9.069 | 8.997 |
81 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −2,257.4 | 326,414 | 4.676 | 9.099 | 9.070 |
82 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 14.06 | 326,399 | 4.853 | 9.831 | 9.278 |
83 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.11 | 326,385 | 4.844 | 9.851 | 9.203 |
84 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0.18 | 326,372 | 4.861 | 9.935 | 9.174 |
85 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 111.58 | 326,358 | 4.796 | 9.769 | 9.270 |
86 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −45.11 | 326,346 | 4.826 | 9.724 | 9.330 |
87 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 82,935.66 | 326,334 | 4.871 | 9.865 | 9.284 |
88 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 56.0 | 326,322 | 4.867 | 9.862 | 9.267 |
89 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 5.35 | 326,311 | 4.857 | 9.938 | 9.258 |
90 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 10.88 | 326,301 | 4.87 | 10.043 | 9.414 |
91 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 32.81 | 326,291 | 4.833 | 10.156 | 9.394 |
92 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 48.96 | 326,283 | 4.812 | 10.085 | 9.185 |
93 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | −10.9 | 326,274 | 4.801 | 10.083 | 9.210 |
94 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.09 | 326,266 | 4.803 | 9.818 | 8.787 |
95 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −69.45 | 326,258 | 4.659 | 9.25 | 8.413 |
96 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 543,840.26 | 326,251 | 4.663 | 9.269 | 8.393 |
97 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | −10.31 | 326,244 | 4.51 | 8.841 | 8.101 |
98 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1.07 | 326,237 | 4.523 | 8.847 | 8.091 |
99 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −417.88 | 326,231 | 4.531 | 8.84 | 8.101 |
100 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −12.92 | 326,224 | 4.546 | 8.847 | 8.081 |
101 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 3.94 | 326,219 | 4.558 | 8.866 | 8.072 |
102 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 10.1 | 326,213 | 4.513 | 9.012 | 8.203 |
103 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.36 | 326,204 | 4.453 | 9.084 | 8.035 |
104 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −1.74 | 326,198 | 4.445 | 9.063 | 8.070 |
105 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7.09 | 326,193 | 4.383 | 8.967 | 8.008 |
106 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 109.5 | 326,174 | 4.371 | 8.899 | 7.889 |
107 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0.0 | 326,169 | 4.332 | 8.454 | 7.669 |
108 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −5.85 | 326,164 | 4.29 | 8.456 | 7.689 |
109 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0.1 | 326,159 | 4.282 | 8.457 | 7.657 |
110 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | −54.88 | 326,154 | 4.313 | 8.463 | 7.689 |
111 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1380.74 | 326,150 | 4.291 | 8.489 | 7.7 |
112 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0.0 | 326,146 | 4.315 | 8.498 | 7.751 |
113 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | −0.11 | 326,142 | 4.287 | 8.501 | 7.736 |
114 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −4.3 | 326,138 | 4.32 | 8.461 | 7.558 |
115 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.05 | 326,135 | 4.299 | 8.514 | 7.566 |
116 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20.09 | 326,131 | 4.32 | 8.417 | 7.498 |
117 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.87 | 326,125 | 4.393 | 8.561 | 7.371 |
118 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.36 | 326,122 | 4.389 | 8.564 | 7.409 |
119 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 79.51 | 326,118 | 4.394 | 8.56 | 7.411 |
120 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.0 | 326,115 | 4.43 | 8.304 | 7.187 |
121 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 6.91 | 326,113 | 4.42 | 8.305 | 7.176 |
122 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | −435.81 | 326,110 | 4.39 | 8.301 | 7.212 |
123 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.03 | 326,107 | 4.419 | 8.45 | 7.206 |
124 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | −2.99 | 326,105 | 4.407 | 8.434 | 7.163 |
125 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.59 | 326,103 | 4.394 | 8.366 | 7.095 |
126 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.02 | 326,096 | 4.502 | 8.499 | 7.382 |
127 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 4.66 | 326,089 | 4.543 | 8.962 | 7.340 |
128 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −692.59 | 326,088 | 4.537 | 8.961 | 7.248 |
129 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8097.7 | 326,086 | 4.539 | 8.995 | 7.316 |
130 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | −0.04 | 326,084 | 4.555 | 9.024 | 7.285 |
131 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2.73 | 326,082 | 4.59 | 9.065 | 7.246 |
132 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −1.53 | 326,080 | 4.612 | 9.097 | 7.280 |
133 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | −1.28 | 326,078 | 4.616 | 9.086 | 7.251 |
134 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.07 | 326,077 | 4.607 | 9.055 | 7.287 |
135 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | −6.96 | 326,075 | 4.533 | 8.527 | 7.230 |
136 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 27.74 | 326,073 | 4.556 | 8.52 | 7.115 |
137 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 122.08 | 326,071 | 4.571 | 8.746 | 7.171 |
138 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 6.0 | 326,070 | 4.556 | 8.745 | 7.190 |
139 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | −14.5 | 326,066 | 4.533 | 8.699 | 7.199 |
140 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | −0.07 | 326,064 | 4.532 | 8.722 | 7.227 |
141 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | −1.05 | 326,057 | 4.507 | 8.733 | 7.250 |
142 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.74 | 326,056 | 4.515 | 8.719 | 7.238 |
143 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 5.71 | 326,054 | 4.503 | 8.706 | 7.263 |
144 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −39.87 | 326,053 | 4.499 | 8.715 | 7.244 |
145 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −431.71 | 326,047 | 4.47 | 8.669 | 7.215 |
146 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | −0.0 | 326,046 | 4.488 | 8.698 | 7.207 |
147 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.08 | 326,045 | 4.494 | 8.694 | 7.223 |
148 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 37.33 | 326,043 | 4.496 | 8.703 | 7.236 |
149 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | −0.42 | 326,039 | 4.508 | 8.706 | 7.253 |
150 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7224.25 | 326,038 | 4.512 | 8.712 | 7.265 |
Table A3.
OLS proxy function of BEL derived under 300–886 in the adaptive algorithm with the final coefficients. Furthermore, AIC scores and out-of-sample MAEs in % after each iteration.
Table A3.
OLS proxy function of BEL derived under 300–886 in the adaptive algorithm with the final coefficients. Furthermore, AIC scores and out-of-sample MAEs in % after each iteration.
k | | | | | | | | | | | | | | | | | AIC | v.mae | ns.mae | cr.mae |
---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14,689.75 | 437,251 | 4.557 | 3.231 | 4.027 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 7990.98 | 386,722 | 2.474 | 0.845 | 0.913 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −274.24 | 375,144 | 2.065 | 2.139 | 1.831 |
3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 145.73 | 366,567 | 1.656 | 0.444 | 0.496 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −5.11 | 358,894 | 1.647 | 1.006 | 0.556 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 416.79 | 355,732 | 1.635 | 0.853 | 0.469 |
6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2332.91 | 354,318 | 1.679 | 0.956 | 0.374 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 24,914.36 | 349,759 | 1.234 | 0.491 | 0.628 |
8 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 49.42 | 347,796 | 0.999 | 0.34 | 0.594 |
9 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 859.49 | 346,444 | 0.912 | 0.357 | 0.602 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 29.5 | 345,045 | 0.839 | 0.389 | 0.65 |
11 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1.71 | 341,083 | 0.759 | 0.398 | 0.465 |
12 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 91.65 | 339,360 | 0.718 | 0.394 | 0.39 |
13 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 36.34 | 337,731 | 0.574 | 0.653 | 0.512 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 51.78 | 336,843 | 0.589 | 0.658 | 0.518 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 68.02 | 335,980 | 0.628 | 0.678 | 0.512 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2661.47 | 335,351 | 0.609 | 0.671 | 0.503 |
17 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 109.14 | 334,876 | 0.579 | 0.701 | 0.545 |
18 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −12.63 | 334,413 | 0.593 | 0.72 | 0.531 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −114.48 | 333,904 | 0.562 | 0.621 | 0.474 |
20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 35.4 | 333,447 | 0.565 | 0.597 | 0.454 |
21 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −4570.15 | 333,116 | 0.553 | 0.543 | 0.407 |
22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0.02 | 332,806 | 0.562 | 0.478 | 0.358 |
23 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.26 | 332,547 | 0.55 | 0.45 | 0.381 |
24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 47.17 | 332,294 | 0.545 | 0.468 | 0.378 |
25 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 123.47 | 332,042 | 0.53 | 0.464 | 0.362 |
26 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1,240.44 | 331,687 | 0.522 | 0.453 | 0.355 |
27 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −43.82 | 331,405 | 0.525 | 0.444 | 0.343 |
28 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −32,661.61 | 331,136 | 0.499 | 0.405 | 0.327 |
29 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −140.9 | 330,562 | 0.504 | 0.348 | 0.268 |
30 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.56 | 330,361 | 0.518 | 0.418 | 0.264 |
31 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 87.33 | 330,163 | 0.512 | 0.443 | 0.272 |
32 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 25.31 | 329,988 | 0.508 | 0.443 | 0.264 |
33 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 14.22 | 329,834 | 0.477 | 0.491 | 0.286 |
34 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.44 | 329,688 | 0.477 | 0.5 | 0.29 |
35 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 26.88 | 329,550 | 0.476 | 0.502 | 0.291 |
36 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −391.81 | 329,442 | 0.472 | 0.499 | 0.288 |
37 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −18.58 | 329,147 | 0.462 | 0.505 | 0.301 |
38 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11,959.32 | 329,043 | 0.472 | 0.518 | 0.3 |
39 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −2.15 | 328,935 | 0.474 | 0.51 | 0.295 |
40 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 228.32 | 328,832 | 0.475 | 0.509 | 0.291 |
41 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1938.37 | 328,733 | 0.455 | 0.445 | 0.248 |
42 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −112.83 | 327,927 | 0.372 | 0.345 | 0.237 |
43 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.71 | 327,858 | 0.368 | 0.353 | 0.235 |
44 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.72 | 327,792 | 0.366 | 0.352 | 0.233 |
45 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −4230.29 | 327,729 | 0.365 | 0.356 | 0.228 |
46 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −10,720.3 | 327,659 | 0.368 | 0.364 | 0.227 |
47 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −18.39 | 327,603 | 0.368 | 0.366 | 0.226 |
48 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −212.78 | 327,537 | 0.374 | 0.367 | 0.226 |
49 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −177.64 | 327,483 | 0.369 | 0.367 | 0.23 |
50 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.09 | 327,432 | 0.368 | 0.391 | 0.221 |
51 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −57.4 | 327,382 | 0.359 | 0.39 | 0.228 |
52 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −23.55 | 327,331 | 0.352 | 0.39 | 0.225 |
53 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | −0.0 | 327,287 | 0.346 | 0.377 | 0.206 |
54 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | −0.08 | 327,149 | 0.339 | 0.357 | 0.185 |
55 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1.15 | 327,105 | 0.315 | 0.321 | 0.173 |
56 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.65 | 327,064 | 0.315 | 0.322 | 0.173 |
57 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | −4.41 | 327,025 | 0.322 | 0.317 | 0.175 |
58 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −6095.97 | 326,986 | 0.317 | 0.31 | 0.172 |
59 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −332.88 | 326,823 | 0.308 | 0.302 | 0.183 |
60 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3624.77 | 326,787 | 0.306 | 0.301 | 0.183 |
61 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 191.46 | 326,733 | 0.304 | 0.299 | 0.183 |
62 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | −17.49 | 326,700 | 0.306 | 0.299 | 0.182 |
63 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 183.68 | 326,668 | 0.304 | 0.296 | 0.182 |
64 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | −0.2 | 326,638 | 0.304 | 0.298 | 0.181 |
65 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2.55 | 326,610 | 0.301 | 0.296 | 0.183 |
66 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.13 | 326,572 | 0.297 | 0.299 | 0.18 |
67 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −29.57 | 326,545 | 0.292 | 0.286 | 0.169 |
68 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 95.55 | 326,519 | 0.292 | 0.287 | 0.172 |
69 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 922.48 | 326,478 | 0.294 | 0.282 | 0.173 |
70 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −6.22 | 326,453 | 0.291 | 0.281 | 0.175 |
71 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | −134.95 | 326,428 | 0.289 | 0.281 | 0.176 |
72 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | −4.47 | 326,398 | 0.284 | 0.282 | 0.173 |
73 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −26,186.72 | 326,374 | 0.276 | 0.264 | 0.162 |
74 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.29 | 326,352 | 0.272 | 0.266 | 0.158 |
75 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | −58.01 | 326,331 | 0.269 | 0.266 | 0.157 |
76 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | −3.11 | 326,313 | 0.271 | 0.266 | 0.155 |
77 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −2.1 | 326,295 | 0.264 | 0.27 | 0.151 |
78 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −8.73 | 326,278 | 0.264 | 0.275 | 0.153 |
79 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1.93 | 326,261 | 0.252 | 0.285 | 0.154 |
80 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | −14.9 | 326,245 | 0.263 | 0.309 | 0.157 |
81 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1.22 | 326,229 | 0.267 | 0.306 | 0.155 |
82 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3341.29 | 326,214 | 0.266 | 0.307 | 0.156 |
83 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −43.84 | 326,201 | 0.263 | 0.302 | 0.158 |
84 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | −0.12 | 326,187 | 0.262 | 0.302 | 0.157 |
85 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | −0.18 | 326,174 | 0.263 | 0.305 | 0.156 |
86 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 67.19 | 326,161 | 0.265 | 0.303 | 0.157 |
87 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −432,954.98 | 326,149 | 0.267 | 0.308 | 0.156 |
88 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −34.58 | 326,137 | 0.267 | 0.308 | 0.156 |
89 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | −5.1 | 326,126 | 0.267 | 0.31 | 0.156 |
90 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −10.78 | 326,116 | 0.267 | 0.313 | 0.158 |
91 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −66.99 | 326,106 | 0.265 | 0.317 | 0.158 |
92 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | −0.09 | 326,097 | 0.265 | 0.308 | 0.151 |
93 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.35 | 326,089 | 0.265 | 0.308 | 0.151 |
94 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −93.83 | 326,081 | 0.264 | 0.306 | 0.148 |
95 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 70.45 | 326,073 | 0.256 | 0.288 | 0.141 |
96 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1,073,454.04 | 326,066 | 0.256 | 0.289 | 0.141 |
97 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | −21.59 | 326,058 | 0.248 | 0.275 | 0.136 |
98 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | −1.1 | 326,051 | 0.248 | 0.276 | 0.136 |
99 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 398.94 | 326,045 | 0.249 | 0.275 | 0.136 |
100 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 22.03 | 326,038 | 0.25 | 0.276 | 0.136 |
101 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | −4.12 | 326,033 | 0.25 | 0.276 | 0.136 |
102 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1.3 | 326,027 | 0.248 | 0.281 | 0.138 |
103 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.2 | 326,017 | 0.244 | 0.283 | 0.135 |
104 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 351.11 | 326,009 | 0.245 | 0.289 | 0.138 |
105 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1.09 | 326,003 | 0.244 | 0.288 | 0.139 |
106 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | −0.0 | 325,997 | 0.242 | 0.274 | 0.136 |
107 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −7.78 | 325,992 | 0.239 | 0.271 | 0.134 |
108 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −126.28 | 325,973 | 0.238 | 0.269 | 0.132 |
109 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | −0.1 | 325,968 | 0.238 | 0.269 | 0.131 |
110 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 57.61 | 325,963 | 0.239 | 0.269 | 0.132 |
111 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 9.91 | 325,959 | 0.237 | 0.269 | 0.132 |
112 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1698.92 | 325,954 | 0.236 | 0.27 | 0.132 |
113 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | −0.01 | 325,950 | 0.237 | 0.27 | 0.133 |
114 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0.1 | 325,946 | 0.236 | 0.271 | 0.133 |
115 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.05 | 325,942 | 0.234 | 0.272 | 0.132 |
116 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5.0 | 325,939 | 0.236 | 0.271 | 0.129 |
117 | 1 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −17.6 | 325,935 | 0.238 | 0.268 | 0.127 |
118 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −0.79 | 325,929 | 0.242 | 0.273 | 0.128 |
119 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.55 | 325,925 | 0.241 | 0.273 | 0.128 |
120 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −119.81 | 325,922 | 0.242 | 0.273 | 0.129 |
121 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | −7.16 | 325,919 | 0.241 | 0.273 | 0.128 |
122 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | −0.0 | 325,916 | 0.243 | 0.265 | 0.124 |
123 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 497.02 | 325,914 | 0.241 | 0.265 | 0.125 |
124 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.03 | 325,911 | 0.243 | 0.269 | 0.125 |
125 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.58 | 325,909 | 0.242 | 0.267 | 0.123 |
126 | 2 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.02 | 325,901 | 0.248 | 0.271 | 0.129 |
127 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −4.48 | 325,895 | 0.251 | 0.286 | 0.129 |
128 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2.93 | 325,893 | 0.25 | 0.285 | 0.128 |
129 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −5069.15 | 325,891 | 0.25 | 0.286 | 0.128 |
130 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0.03 | 325,889 | 0.251 | 0.287 | 0.127 |
131 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2631.07 | 325,887 | 0.251 | 0.287 | 0.125 |
132 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 30.03 | 325,885 | 0.246 | 0.27 | 0.124 |
133 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | −27.79 | 325,883 | 0.248 | 0.27 | 0.123 |
134 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −2.68 | 325,881 | 0.249 | 0.271 | 0.122 |
135 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2.18 | 325,879 | 0.251 | 0.272 | 0.123 |
136 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | −0.07 | 325,878 | 0.25 | 0.271 | 0.124 |
137 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 52.06 | 325,876 | 0.251 | 0.272 | 0.123 |
138 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 507.79 | 325,870 | 0.25 | 0.27 | 0.123 |
139 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0.09 | 325,869 | 0.248 | 0.27 | 0.123 |
140 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 14.53 | 325,865 | 0.246 | 0.269 | 0.123 |
141 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0.0 | 325,864 | 0.247 | 0.27 | 0.122 |
142 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1.48 | 325,862 | 0.247 | 0.269 | 0.121 |
143 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −98.06 | 325,861 | 0.248 | 0.276 | 0.122 |
144 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.68 | 325,859 | 0.248 | 0.276 | 0.122 |
145 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0.08 | 325,858 | 0.248 | 0.276 | 0.122 |
146 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 1.1 | 325,850 | 0.247 | 0.277 | 0.122 |
147 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | −5.64 | 325,849 | 0.247 | 0.276 | 0.123 |
148 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | −0.08 | 325,847 | 0.247 | 0.276 | 0.123 |
149 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 20.58 | 325,846 | 0.246 | 0.277 | 0.123 |
150 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −60.89 | 325,841 | 0.242 | 0.274 | 0.123 |
151 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | −26.95 | 325,840 | 0.242 | 0.275 | 0.123 |
152 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0.42 | 325,835 | 0.243 | 0.275 | 0.123 |
153 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −10,592.62 | 325,834 | 0.243 | 0.275 | 0.123 |
154 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.93 | 325,833 | 0.243 | 0.275 | 0.125 |
155 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 2.96 | 325,832 | 0.244 | 0.275 | 0.124 |
156 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | −3.87 | 325,830 | 0.244 | 0.275 | 0.125 |
157 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | −68.29 | 325,829 | 0.243 | 0.277 | 0.125 |
158 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −9773.54 | 325,828 | 0.243 | 0.278 | 0.125 |
159 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 120.51 | 325,822 | 0.242 | 0.278 | 0.125 |
160 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.03 | 325,821 | 0.243 | 0.278 | 0.127 |
161 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −19.68 | 325,820 | 0.243 | 0.278 | 0.127 |
162 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | −24.62 | 325,819 | 0.24 | 0.261 | 0.127 |
163 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 3 | 0.0 | 325,818 | 0.239 | 0.261 | 0.128 |
164 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | −5.28 | 325,817 | 0.239 | 0.262 | 0.128 |
165 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2.36 | 325,816 | 0.24 | 0.262 | 0.129 |
166 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.02 | 325,814 | 0.238 | 0.264 | 0.129 |
167 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −5.06 | 325,813 | 0.238 | 0.264 | 0.129 |
168 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 20.18 | 325,812 | 0.238 | 0.263 | 0.129 |
169 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −461.05 | 325,812 | 0.239 | 0.264 | 0.130 |
170 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 6.14 | 325,811 | 0.238 | 0.265 | 0.130 |
171 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2708.64 | 325,810 | 0.237 | 0.265 | 0.130 |
172 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 9307.25 | 325,805 | 0.239 | 0.265 | 0.129 |
173 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.17 | 325,805 | 0.238 | 0.265 | 0.129 |
174 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 5.94 | 325,804 | 0.238 | 0.264 | 0.128 |
175 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | −0.07 | 325,804 | 0.238 | 0.264 | 0.127 |
176 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1367.33 | 325,803 | 0.238 | 0.264 | 0.128 |
177 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1133.78 | 325,803 | 0.237 | 0.264 | 0.128 |
178 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −1.86 | 325,802 | 0.237 | 0.264 | 0.128 |
179 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.99 | 325,802 | 0.241 | 0.274 | 0.131 |
180 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.01 | 325,766 | 0.241 | 0.3 | 0.149 |
181 | 3 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −0.68 | 325,744 | 0.248 | 0.335 | 0.172 |
182 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −70.02 | 325,727 | 0.245 | 0.326 | 0.157 |
183 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1883.77 | 325,700 | 0.238 | 0.313 | 0.144 |
184 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1.21 | 325,672 | 0.231 | 0.327 | 0.173 |
185 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −157,391.76 | 325,655 | 0.225 | 0.309 | 0.175 |
186 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 2127.74 | 325,644 | 0.221 | 0.303 | 0.176 |
187 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 21.17 | 325,583 | 0.206 | 0.296 | 0.190 |
188 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.62 | 325,524 | 0.198 | 0.268 | 0.164 |
189 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 5,216,336.05 | 325,515 | 0.199 | 0.27 | 0.166 |
190 | 3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −0.54 | 325,506 | 0.201 | 0.275 | 0.173 |
191 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.01 | 325,500 | 0.195 | 0.281 | 0.184 |
192 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 136.68 | 325,499 | 0.193 | 0.279 | 0.182 |
193 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −526.83 | 325,498 | 0.194 | 0.28 | 0.182 |
194 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −32.63 | 325,494 | 0.192 | 0.27 | 0.178 |
195 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −2,791.14 | 325,492 | 0.19 | 0.261 | 0.176 |
196 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 11.06 | 325,491 | 0.191 | 0.265 | 0.178 |
197 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.09 | 325,491 | 0.19 | 0.265 | 0.179 |
198 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 13.23 | 325,490 | 0.186 | 0.258 | 0.178 |
199 | 0 | 0 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 143.48 | 325,488 | 0.187 | 0.261 | 0.179 |
200 | 2 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.46 | 325,488 | 0.186 | 0.262 | 0.181 |
201 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0.98 | 325,487 | 0.185 | 0.262 | 0.181 |
202 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 8.97 | 325,487 | 0.185 | 0.263 | 0.180 |
203 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −33,222.1 | 325,487 | 0.184 | 0.263 | 0.179 |
204 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0.01 | 325,487 | 0.184 | 0.264 | 0.180 |
205 | 3 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −0.32 | 325,487 | 0.184 | 0.263 | 0.178 |
206 | 4 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.2 | 325,486 | 0.183 | 0.264 | 0.177 |
207 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −2.44 | 325,486 | 0.185 | 0.265 | 0.179 |
208 | 3 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −1.76 | 325,485 | 0.184 | 0.261 | 0.173 |
209 | 2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −12.48 | 325,482 | 0.183 | 0.26 | 0.173 |
210 | 2 | 0 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3.93 | 325,482 | 0.184 | 0.258 | 0.170 |
211 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −495.92 | 325,481 | 0.184 | 0.257 | 0.168 |
212 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −434.12 | 325,481 | 0.185 | 0.26 | 0.169 |
213 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −2854.58 | 325,479 | 0.185 | 0.26 | 0.167 |
214 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 6.58 | 325,479 | 0.184 | 0.261 | 0.167 |
215 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 7.08 | 325,479 | 0.183 | 0.257 | 0.167 |
216 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | −20.06 | 325,479 | 0.184 | 0.257 | 0.167 |
217 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 11.9 | 325,468 | 0.186 | 0.257 | 0.166 |
218 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0.2 | 325,468 | 0.186 | 0.257 | 0.166 |
219 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 18.33 | 325,468 | 0.186 | 0.257 | 0.165 |
220 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 9.56 | 325,468 | 0.185 | 0.258 | 0.165 |
221 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | 37.24 | 325,463 | 0.194 | 0.265 | 0.168 |
222 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | 17.46 | 325,460 | 0.196 | 0.265 | 0.168 |
223 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 3 | 0 | −5.47 | 325,460 | 0.194 | 0.266 | 0.166 |
224 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 0 | −11.21 | 325,459 | 0.194 | 0.268 | 0.168 |
Table A4.
Out-of-sample validation figures of the OLS proxy function of BEL under 150–443 after each tenth iteration.
Table A4.
Out-of-sample validation figures of the OLS proxy function of BEL under 150–443 after each tenth iteration.
k | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
0 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 0.839 | 0.802 | 0 | 21.468 | 104 | 0.389 | 0.376 | 23 | 21.659 | 113 | 0.650 | 0.636 | 89 | 27.112 | 179 |
20 | 0.565 | 0.540 | −10 | 16.780 | 82 | 0.597 | 0.577 | −75 | 8.274 | 2 | 0.454 | 0.445 | −40 | 10.083 | 38 |
30 | 0.518 | 0.496 | 1 | 17.501 | 100 | 0.418 | 0.404 | −47 | 7.970 | 37 | 0.264 | 0.259 | 1 | 13.378 | 85 |
40 | 0.475 | 0.454 | −10 | 16.888 | 98 | 0.509 | 0.492 | −66 | 6.234 | 27 | 0.291 | 0.285 | −26 | 10.497 | 68 |
50 | 0.368 | 0.352 | −15 | 13.268 | 78 | 0.391 | 0.378 | −50 | 6.060 | 29 | 0.221 | 0.217 | −9 | 10.674 | 69 |
60 | 0.306 | 0.293 | −17 | 10.760 | 62 | 0.301 | 0.290 | −36 | 5.863 | 29 | 0.183 | 0.179 | 5 | 10.651 | 69 |
70 | 0.291 | 0.278 | −18 | 10.451 | 60 | 0.281 | 0.272 | −33 | 6.060 | 30 | 0.175 | 0.171 | 8 | 10.958 | 72 |
80 | 0.263 | 0.251 | −23 | 9.389 | 54 | 0.309 | 0.298 | −41 | 4.837 | 22 | 0.157 | 0.154 | −4 | 8.945 | 59 |
90 | 0.267 | 0.256 | −24 | 9.196 | 54 | 0.313 | 0.303 | −42 | 4.689 | 22 | 0.158 | 0.155 | −7 | 8.587 | 57 |
100 | 0.250 | 0.239 | −18 | 9.152 | 53 | 0.276 | 0.266 | −35 | 4.637 | 22 | 0.136 | 0.133 | 0 | 8.606 | 57 |
110 | 0.237 | 0.226 | −18 | 8.494 | 48 | 0.264 | 0.255 | −34 | 4.144 | 18 | 0.129 | 0.126 | −2 | 7.634 | 50 |
120 | 0.241 | 0.230 | −16 | 8.896 | 50 | 0.267 | 0.258 | −34 | 4.153 | 18 | 0.124 | 0.122 | −2 | 7.679 | 51 |
130 | 0.250 | 0.239 | −18 | 9.839 | 57 | 0.281 | 0.272 | −37 | 4.810 | 24 | 0.122 | 0.120 | −1 | 8.900 | 59 |
140 | 0.246 | 0.235 | −15 | 9.855 | 57 | 0.263 | 0.254 | −33 | 4.809 | 24 | 0.120 | 0.117 | 1 | 8.822 | 58 |
150 | 0.247 | 0.237 | −14 | 9.924 | 57 | 0.271 | 0.262 | −35 | 4.612 | 22 | 0.122 | 0.120 | −1 | 8.537 | 56 |
Table A5.
Out-of-sample validation figures of the OLS proxy function of AC under 150–443 after each tenth iteration.
Table A5.
Out-of-sample validation figures of the OLS proxy function of AC under 150–443 after each tenth iteration.
k | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
0 | 60.620 | 3.178 | −296 | 100.000 | −207 | 97.518 | 2.936 | −453 | 100.000 | −369 | 257.762 | 4.251 | −653 | 100.000 | −568 |
10 | 15.987 | 0.838 | −1 | 29.161 | −110 | 10.264 | 0.309 | −6 | 32.492 | −119 | 31.461 | 0.519 | −67 | 31.704 | −180 |
20 | 10.292 | 0.540 | 10 | 21.029 | −82 | 19.163 | 0.577 | 75 | 12.240 | −21 | 26.995 | 0.445 | 39 | 13.324 | −57 |
30 | 9.444 | 0.495 | −1 | 21.971 | −100 | 13.409 | 0.404 | 47 | 15.583 | −56 | 15.766 | 0.260 | −1 | 18.759 | −105 |
40 | 8.656 | 0.454 | 10 | 21.197 | −98 | 16.359 | 0.492 | 67 | 12.740 | −46 | 17.271 | 0.285 | 26 | 15.434 | −87 |
50 | 6.718 | 0.352 | 15 | 16.655 | −78 | 12.565 | 0.378 | 50 | 12.938 | −47 | 13.182 | 0.217 | 9 | 15.666 | −88 |
60 | 5.581 | 0.293 | 17 | 13.506 | −62 | 9.671 | 0.291 | 36 | 12.985 | −48 | 10.904 | 0.180 | −5 | 15.640 | −88 |
70 | 5.313 | 0.279 | 19 | 13.026 | −59 | 9.095 | 0.274 | 34 | 13.289 | −49 | 10.357 | 0.171 | −8 | 15.975 | −90 |
80 | 4.688 | 0.246 | 21 | 11.326 | −51 | 9.069 | 0.273 | 36 | 11.131 | −41 | 8.997 | 0.148 | 0 | 13.590 | −77 |
90 | 4.870 | 0.255 | 24 | 11.525 | −53 | 10.043 | 0.302 | 42 | 10.995 | −41 | 9.414 | 0.155 | 7 | 13.285 | −75 |
100 | 4.546 | 0.238 | 18 | 11.471 | −53 | 8.847 | 0.266 | 35 | 11.041 | −41 | 8.081 | 0.133 | 0 | 13.308 | −76 |
110 | 4.313 | 0.226 | 18 | 10.650 | −48 | 8.463 | 0.255 | 34 | 9.999 | −37 | 7.689 | 0.127 | 2 | 12.181 | −69 |
120 | 4.430 | 0.232 | 16 | 11.350 | −51 | 8.304 | 0.250 | 33 | 10.596 | −39 | 7.187 | 0.119 | −1 | 12.763 | −73 |
130 | 4.555 | 0.239 | 18 | 12.345 | −57 | 9.024 | 0.272 | 37 | 11.491 | −42 | 7.285 | 0.120 | 1 | 13.663 | −78 |
140 | 4.532 | 0.238 | 15 | 12.470 | −57 | 8.722 | 0.263 | 35 | 11.282 | −42 | 7.227 | 0.119 | 0 | 13.448 | −76 |
150 | 4.512 | 0.237 | 14 | 12.459 | −57 | 8.712 | 0.262 | 35 | 11.136 | −41 | 7.265 | 0.120 | 1 | 13.242 | −75 |
Table A6.
Out-of-sample validation figures of the OLS proxy function of BEL under 300–886 after each tenth and the final iteration.
Table A6.
Out-of-sample validation figures of the OLS proxy function of BEL under 300–886 after each tenth and the final iteration.
k | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
0 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 0.839 | 0.802 | 0 | 21.468 | 104 | 0.389 | 0.376 | 23 | 21.659 | 113 | 0.650 | 0.636 | 89 | 27.112 | 179 |
20 | 0.565 | 0.540 | −10 | 16.780 | 82 | 0.597 | 0.577 | −75 | 8.274 | 2 | 0.454 | 0.445 | −40 | 10.083 | 38 |
30 | 0.518 | 0.496 | 1 | 17.501 | 100 | 0.418 | 0.404 | −47 | 7.970 | 37 | 0.264 | 0.259 | 1 | 13.378 | 85 |
40 | 0.475 | 0.454 | −10 | 16.888 | 98 | 0.509 | 0.492 | −66 | 6.234 | 27 | 0.291 | 0.285 | −26 | 10.497 | 68 |
50 | 0.368 | 0.352 | −15 | 13.268 | 78 | 0.391 | 0.378 | −50 | 6.060 | 29 | 0.221 | 0.217 | −9 | 10.674 | 69 |
60 | 0.306 | 0.293 | −17 | 10.760 | 62 | 0.301 | 0.290 | −36 | 5.863 | 29 | 0.183 | 0.179 | 5 | 10.651 | 69 |
70 | 0.291 | 0.278 | −18 | 10.451 | 60 | 0.281 | 0.272 | −33 | 6.060 | 30 | 0.175 | 0.171 | 8 | 10.958 | 72 |
80 | 0.263 | 0.251 | −23 | 9.389 | 54 | 0.309 | 0.298 | −41 | 4.837 | 22 | 0.157 | 0.154 | −4 | 8.945 | 59 |
90 | 0.267 | 0.256 | −24 | 9.196 | 54 | 0.313 | 0.303 | −42 | 4.689 | 22 | 0.158 | 0.155 | −7 | 8.587 | 57 |
100 | 0.250 | 0.239 | −18 | 9.152 | 53 | 0.276 | 0.266 | −35 | 4.637 | 22 | 0.136 | 0.133 | 0 | 8.606 | 57 |
110 | 0.239 | 0.229 | −18 | 9.132 | 52 | 0.269 | 0.260 | −35 | 4.577 | 22 | 0.132 | 0.129 | −1 | 8.358 | 55 |
120 | 0.242 | 0.231 | −16 | 9.519 | 54 | 0.273 | 0.263 | −35 | 4.569 | 21 | 0.129 | 0.126 | −1 | 8.380 | 55 |
130 | 0.251 | 0.240 | −18 | 10.506 | 61 | 0.287 | 0.277 | −37 | 5.421 | 27 | 0.127 | 0.125 | 0 | 9.724 | 64 |
140 | 0.246 | 0.235 | −15 | 10.530 | 61 | 0.269 | 0.260 | −34 | 5.329 | 27 | 0.123 | 0.120 | 2 | 9.526 | 63 |
150 | 0.242 | 0.232 | −14 | 10.556 | 61 | 0.274 | 0.265 | −35 | 5.119 | 26 | 0.123 | 0.120 | 0 | 9.261 | 61 |
160 | 0.243 | 0.232 | −15 | 10.483 | 60 | 0.278 | 0.268 | −36 | 5.018 | 25 | 0.127 | 0.124 | 0 | 9.144 | 60 |
170 | 0.238 | 0.228 | −13 | 10.140 | 58 | 0.265 | 0.256 | −33 | 4.968 | 24 | 0.130 | 0.127 | 2 | 8.884 | 59 |
180 | 0.241 | 0.230 | −12 | 10.128 | 57 | 0.300 | 0.290 | −37 | 4.552 | 18 | 0.149 | 0.146 | 2 | 8.716 | 58 |
190 | 0.201 | 0.192 | −13 | 6.458 | 32 | 0.275 | 0.266 | −33 | 4.124 | −2 | 0.173 | 0.169 | −4 | 4.721 | 27 |
200 | 0.186 | 0.178 | −9 | 6.111 | 29 | 0.262 | 0.254 | −29 | 4.460 | −4 | 0.181 | 0.177 | 3 | 4.920 | 27 |
210 | 0.184 | 0.176 | −9 | 6.210 | 30 | 0.258 | 0.249 | −28 | 4.337 | −3 | 0.170 | 0.167 | 3 | 4.846 | 28 |
220 | 0.185 | 0.177 | −8 | 6.433 | 32 | 0.258 | 0.250 | −28 | 4.286 | −3 | 0.165 | 0.161 | 3 | 4.850 | 28 |
224 | 0.194 | 0.186 | −9 | 6.659 | 34 | 0.268 | 0.259 | −30 | 4.200 | −2 | 0.168 | 0.165 | 1 | 5.007 | 29 |
Table A7.
Out-of-sample validation figures of the derived OLS proxy functions of BEL under 150–443 and 300–886 after the final iteration based on three different sets of validation value estimates. Thereby emerges the first set of validation value estimates from pointwise subtraction of times the standard errors from the original set of validation values. The second set is the original set. The third set is the addition counterpart of the first set.
Table A7.
Out-of-sample validation figures of the derived OLS proxy functions of BEL under 150–443 and 300–886 after the final iteration based on three different sets of validation value estimates. Thereby emerges the first set of validation value estimates from pointwise subtraction of times the standard errors from the original set of validation values. The second set is the original set. The third set is the addition counterpart of the first set.
k | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
150–443 figures based on validation values minus times standard errors |
150 | 0.286 | 0.273 | −30 | 9.878 | 57 | 0.330 | 0.319 | −46 | 3.915 | 16 | 0.151 | 0.148 | −13 | 7.473 | 49 |
150–443 figures based on validation values |
150 | 0.247 | 0.237 | −14 | 9.924 | 57 | 0.271 | 0.262 | −35 | 4.612 | 22 | 0.122 | 0.120 | −1 | 8.537 | 56 |
150–443 figures based on validation values plus times standard errors |
150 | 0.231 | 0.221 | 1 | 9.977 | 57 | 0.219 | 0.212 | −24 | 5.473 | 28 | 0.130 | 0.127 | 11 | 9.591 | 64 |
300–886 figures based on validation values minus times standard errors |
224 | 0.236 | 0.225 | −24 | 6.757 | 34 | 0.325 | 0.314 | −41 | 4.610 | −8 | 0.191 | 0.187 | −11 | 4.307 | 22 |
300–886 figures based on validation values |
224 | 0.194 | 0.186 | −9 | 6.659 | 34 | 0.268 | 0.259 | −30 | 4.200 | −2 | 0.168 | 0.165 | 1 | 5.007 | 29 |
300–886 figures based on validation values plus times standard errors |
224 | 0.184 | 0.177 | 7 | 6.625 | 35 | 0.218 | 0.211 | −19 | 3.982 | 4 | 0.173 | 0.169 | 13 | 5.813 | 37 |
Table A8.
AIC scores and out-of-sample validation figures of the gaussian generalized linear models (GLMs) of BEL with identity, inverse and log link functions under 150–443 after each tenth iteration.
Table A8.
AIC scores and out-of-sample validation figures of the gaussian generalized linear models (GLMs) of BEL with identity, inverse and log link functions under 150–443 after each tenth iteration.
k | AIC | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
Gaussian with identity link |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 345,045 | 0.839 | 0.802 | 0 | 21.468 | 104 | 0.389 | 0.376 | 23 | 21.659 | 113 | 0.650 | 0.636 | 89 | 27.112 | 179 |
20 | 333,447 | 0.565 | 0.540 | −10 | 16.780 | 82 | 0.597 | 0.577 | −75 | 8.274 | 2 | 0.454 | 0.445 | −40 | 10.083 | 38 |
30 | 330,361 | 0.518 | 0.496 | 1 | 17.501 | 100 | 0.418 | 0.404 | −47 | 7.970 | 37 | 0.264 | 0.259 | 1 | 13.378 | 85 |
40 | 328,832 | 0.475 | 0.454 | −10 | 16.888 | 98 | 0.509 | 0.492 | −66 | 6.234 | 27 | 0.291 | 0.285 | −26 | 10.497 | 68 |
50 | 327,432 | 0.368 | 0.352 | −15 | 13.268 | 78 | 0.391 | 0.378 | −50 | 6.060 | 29 | 0.221 | 0.217 | −9 | 10.674 | 69 |
60 | 326,787 | 0.306 | 0.293 | −17 | 10.760 | 62 | 0.301 | 0.290 | −36 | 5.863 | 29 | 0.183 | 0.179 | 5 | 10.651 | 69 |
70 | 326,453 | 0.291 | 0.278 | −18 | 10.451 | 60 | 0.281 | 0.272 | −33 | 6.060 | 30 | 0.175 | 0.171 | 8 | 10.958 | 72 |
80 | 326,245 | 0.263 | 0.251 | −23 | 9.389 | 54 | 0.309 | 0.298 | −41 | 4.837 | 22 | 0.157 | 0.154 | −4 | 8.945 | 59 |
90 | 326,116 | 0.267 | 0.256 | −24 | 9.196 | 54 | 0.313 | 0.303 | −42 | 4.689 | 22 | 0.158 | 0.155 | −7 | 8.587 | 57 |
100 | 326,038 | 0.250 | 0.239 | −18 | 9.152 | 53 | 0.276 | 0.266 | −35 | 4.637 | 22 | 0.136 | 0.133 | 0 | 8.606 | 57 |
110 | 325,968 | 0.237 | 0.226 | −18 | 8.494 | 48 | 0.264 | 0.255 | −34 | 4.144 | 18 | 0.129 | 0.126 | −2 | 7.634 | 50 |
120 | 325,928 | 0.241 | 0.230 | −16 | 8.896 | 50 | 0.267 | 0.258 | −34 | 4.153 | 18 | 0.124 | 0.122 | −2 | 7.679 | 51 |
130 | 325,896 | 0.250 | 0.239 | −18 | 9.839 | 57 | 0.281 | 0.272 | −37 | 4.810 | 24 | 0.122 | 0.120 | −1 | 8.900 | 59 |
140 | 325,873 | 0.246 | 0.235 | −15 | 9.855 | 57 | 0.263 | 0.254 | −33 | 4.809 | 24 | 0.120 | 0.117 | 1 | 8.822 | 58 |
150 | 325,850 | 0.247 | 0.237 | −14 | 9.924 | 57 | 0.271 | 0.262 | −35 | 4.612 | 22 | 0.122 | 0.120 | −1 | 8.537 | 56 |
Gaussian with inverse link |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 343,426 | 1.036 | 0.990 | 1 | 33.705 | 192 | 0.650 | 0.628 | −63 | 21.481 | 114 | 0.391 | 0.382 | 44 | 33.482 | 221 |
20 | 334,985 | 0.689 | 0.659 | −6 | 21.313 | 118 | 0.515 | 0.498 | −62 | 10.319 | 49 | 0.324 | 0.317 | −4 | 16.493 | 107 |
30 | 331,426 | 0.512 | 0.490 | −16 | 18.836 | 109 | 0.393 | 0.380 | −45 | 12.277 | 65 | 0.248 | 0.243 | 15 | 18.960 | 125 |
40 | 328,875 | 0.433 | 0.414 | −5 | 14.354 | 82 | 0.317 | 0.306 | −26 | 9.312 | 47 | 0.294 | 0.288 | 26 | 15.188 | 99 |
50 | 327,877 | 0.383 | 0.366 | −8 | 12.959 | 76 | 0.285 | 0.276 | −24 | 8.961 | 46 | 0.271 | 0.265 | 25 | 14.592 | 95 |
60 | 327,274 | 0.337 | 0.323 | −16 | 12.572 | 73 | 0.328 | 0.316 | −37 | 7.636 | 38 | 0.219 | 0.215 | 10 | 13.087 | 85 |
70 | 326,875 | 0.290 | 0.277 | −14 | 11.248 | 64 | 0.271 | 0.261 | −32 | 6.233 | 31 | 0.156 | 0.153 | 6 | 10.588 | 70 |
80 | 326,603 | 0.259 | 0.248 | −16 | 9.976 | 58 | 0.287 | 0.278 | −38 | 5.042 | 22 | 0.158 | 0.155 | −8 | 8.014 | 52 |
90 | 326,390 | 0.254 | 0.243 | −20 | 8.462 | 47 | 0.392 | 0.379 | −51 | 4.451 | 1 | 0.220 | 0.215 | −17 | 5.676 | 36 |
100 | 326,225 | 0.270 | 0.258 | −21 | 8.884 | 49 | 0.393 | 0.379 | −51 | 4.454 | 5 | 0.219 | 0.215 | −12 | 6.732 | 44 |
110 | 326,152 | 0.272 | 0.260 | −20 | 8.558 | 47 | 0.375 | 0.363 | −48 | 4.441 | 4 | 0.208 | 0.204 | −10 | 6.545 | 42 |
120 | 326,094 | 0.267 | 0.255 | −19 | 8.418 | 47 | 0.380 | 0.367 | −49 | 4.414 | 3 | 0.209 | 0.205 | −12 | 6.194 | 40 |
130 | 326,058 | 0.266 | 0.254 | −19 | 8.638 | 48 | 0.379 | 0.367 | −49 | 4.329 | 4 | 0.203 | 0.199 | −11 | 6.362 | 41 |
140 | 325,982 | 0.258 | 0.247 | −17 | 8.353 | 45 | 0.363 | 0.351 | −46 | 4.380 | 2 | 0.197 | 0.193 | −10 | 6.059 | 38 |
150 | 325,952 | 0.258 | 0.247 | −16 | 8.468 | 45 | 0.353 | 0.341 | −44 | 4.282 | 3 | 0.192 | 0.188 | −8 | 6.088 | 39 |
Gaussian with log link |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 342,325 | 0.879 | 0.840 | 26 | 25.171 | 132 | 0.422 | 0.408 | −17 | 15.628 | 74 | 0.530 | 0.519 | 52 | 22.034 | 143 |
20 | 334,417 | 0.661 | 0.632 | −5 | 22.474 | 125 | 0.532 | 0.514 | −64 | 10.764 | 51 | 0.330 | 0.323 | −3 | 17.317 | 112 |
30 | 330,901 | 0.560 | 0.536 | −3 | 21.780 | 126 | 0.474 | 0.458 | −55 | 11.199 | 59 | 0.266 | 0.261 | 3 | 17.802 | 117 |
40 | 328,444 | 0.411 | 0.393 | −10 | 13.639 | 78 | 0.315 | 0.304 | −29 | 8.610 | 44 | 0.264 | 0.258 | 19 | 14.162 | 92 |
50 | 327,574 | 0.341 | 0.326 | −16 | 12.936 | 75 | 0.334 | 0.323 | −35 | 8.294 | 42 | 0.262 | 0.257 | 12 | 13.642 | 89 |
60 | 327,029 | 0.315 | 0.302 | −17 | 11.991 | 69 | 0.312 | 0.301 | −36 | 7.024 | 36 | 0.192 | 0.188 | 10 | 12.465 | 82 |
70 | 326,637 | 0.279 | 0.267 | −16 | 10.620 | 61 | 0.266 | 0.257 | −31 | 6.142 | 31 | 0.162 | 0.158 | 9 | 10.797 | 71 |
80 | 326,449 | 0.266 | 0.254 | −21 | 10.069 | 59 | 0.304 | 0.294 | −40 | 5.195 | 25 | 0.153 | 0.149 | −4 | 9.234 | 61 |
90 | 326,287 | 0.273 | 0.261 | −22 | 9.742 | 57 | 0.300 | 0.290 | −40 | 5.082 | 25 | 0.141 | 0.138 | −5 | 8.990 | 59 |
100 | 326,082 | 0.269 | 0.257 | −23 | 8.052 | 45 | 0.370 | 0.358 | −48 | 4.094 | 6 | 0.210 | 0.205 | −13 | 6.314 | 41 |
110 | 326,021 | 0.258 | 0.247 | −19 | 8.043 | 44 | 0.343 | 0.331 | −43 | 4.102 | 5 | 0.198 | 0.193 | −7 | 6.381 | 41 |
120 | 325,950 | 0.252 | 0.241 | −17 | 7.891 | 42 | 0.329 | 0.318 | −41 | 4.086 | 3 | 0.191 | 0.187 | −7 | 5.883 | 37 |
130 | 325,881 | 0.251 | 0.240 | −18 | 8.049 | 45 | 0.359 | 0.347 | −46 | 4.238 | 2 | 0.194 | 0.190 | −10 | 5.924 | 38 |
140 | 325,849 | 0.245 | 0.234 | −17 | 7.978 | 44 | 0.340 | 0.328 | −43 | 4.045 | 4 | 0.183 | 0.179 | −7 | 6.131 | 40 |
150 | 325,823 | 0.240 | 0.229 | −15 | 7.980 | 44 | 0.316 | 0.305 | −38 | 4.014 | 6 | 0.170 | 0.167 | −2 | 6.434 | 42 |
Table A9.
AIC scores and out-of-sample validation figures of the gamma GLMs of BEL with identity, inverse and log link functions under 150–443 after each tenth iteration.
Table A9.
AIC scores and out-of-sample validation figures of the gamma GLMs of BEL with identity, inverse and log link functions under 150–443 after each tenth iteration.
k | AIC | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
Gamma with identity link |
0 | 437,243 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 345,605 | 0.872 | 0.834 | 1 | 23.485 | 114 | 0.315 | 0.304 | 6 | 19.861 | 105 | 0.530 | 0.519 | 68 | 25.266 | 167 |
20 | 333,911 | 0.553 | 0.529 | −12 | 16.265 | 79 | 0.599 | 0.579 | −76 | 8.268 | 0 | 0.464 | 0.454 | −43 | 9.895 | 34 |
30 | 330,707 | 0.503 | 0.481 | 0 | 17.404 | 99 | 0.425 | 0.411 | −49 | 7.754 | 35 | 0.267 | 0.262 | −2 | 12.959 | 82 |
40 | 328,589 | 0.376 | 0.359 | −13 | 13.317 | 76 | 0.341 | 0.330 | −39 | 7.187 | 35 | 0.238 | 0.233 | 6 | 12.341 | 80 |
50 | 327,668 | 0.348 | 0.333 | −15 | 13.173 | 77 | 0.356 | 0.344 | −44 | 6.656 | 34 | 0.227 | 0.222 | −4 | 11.348 | 74 |
60 | 327,135 | 0.305 | 0.292 | −16 | 11.190 | 65 | 0.304 | 0.294 | −37 | 6.059 | 30 | 0.175 | 0.172 | 3 | 10.843 | 71 |
70 | 326,686 | 0.273 | 0.261 | −15 | 9.730 | 55 | 0.257 | 0.249 | −30 | 5.364 | 26 | 0.165 | 0.161 | 9 | 9.928 | 65 |
80 | 326,461 | 0.268 | 0.257 | −21 | 9.471 | 54 | 0.287 | 0.277 | −36 | 5.151 | 25 | 0.149 | 0.146 | 2 | 9.549 | 63 |
90 | 326,328 | 0.259 | 0.248 | −23 | 8.889 | 52 | 0.304 | 0.293 | −40 | 4.373 | 20 | 0.148 | 0.145 | −6 | 8.255 | 55 |
100 | 326,246 | 0.238 | 0.227 | −20 | 8.321 | 48 | 0.262 | 0.253 | −34 | 4.279 | 19 | 0.137 | 0.134 | −1 | 7.845 | 52 |
110 | 326,184 | 0.233 | 0.223 | −18 | 8.045 | 45 | 0.255 | 0.246 | −33 | 3.907 | 16 | 0.130 | 0.127 | −1 | 7.182 | 47 |
120 | 326,135 | 0.228 | 0.218 | −16 | 8.191 | 46 | 0.253 | 0.245 | −33 | 3.696 | 15 | 0.129 | 0.126 | −2 | 6.870 | 45 |
130 | 326,093 | 0.244 | 0.233 | −17 | 9.530 | 55 | 0.272 | 0.263 | −35 | 4.628 | 22 | 0.124 | 0.122 | 0 | 8.596 | 57 |
140 | 326,068 | 0.238 | 0.228 | −17 | 9.416 | 54 | 0.271 | 0.261 | −35 | 4.523 | 22 | 0.125 | 0.123 | −1 | 8.371 | 55 |
150 | 326,041 | 0.236 | 0.226 | −14 | 9.329 | 53 | 0.260 | 0.251 | −33 | 4.321 | 20 | 0.121 | 0.118 | 1 | 8.206 | 54 |
Gamma with inverse link |
0 | 437,243 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 343,969 | 1.037 | 0.991 | 0 | 33.818 | 193 | 0.661 | 0.639 | −64 | 21.601 | 115 | 0.397 | 0.389 | 44 | 33.752 | 223 |
20 | 335,495 | 0.679 | 0.649 | −7 | 20.888 | 115 | 0.530 | 0.512 | −65 | 9.637 | 43 | 0.335 | 0.328 | −9 | 15.410 | 99 |
30 | 332,646 | 0.627 | 0.600 | −9 | 26.098 | 152 | 0.621 | 0.600 | −82 | 12.361 | 64 | 0.346 | 0.339 | −24 | 18.470 | 122 |
40 | 329,192 | 0.409 | 0.391 | −10 | 14.061 | 81 | 0.317 | 0.306 | −27 | 9.719 | 50 | 0.289 | 0.283 | 23 | 15.405 | 101 |
50 | 328,114 | 0.339 | 0.324 | −12 | 12.599 | 73 | 0.313 | 0.302 | −30 | 8.084 | 40 | 0.271 | 0.265 | 15 | 13.146 | 85 |
60 | 327,513 | 0.328 | 0.313 | −16 | 12.247 | 71 | 0.294 | 0.284 | −29 | 8.341 | 43 | 0.240 | 0.235 | 18 | 13.902 | 91 |
70 | 327,115 | 0.285 | 0.272 | −12 | 11.127 | 64 | 0.251 | 0.243 | −28 | 6.463 | 33 | 0.166 | 0.162 | 11 | 10.915 | 72 |
80 | 326,795 | 0.252 | 0.241 | −17 | 8.376 | 45 | 0.315 | 0.305 | −39 | 4.069 | 9 | 0.196 | 0.192 | −8 | 6.416 | 40 |
90 | 326,615 | 0.250 | 0.239 | −20 | 8.113 | 45 | 0.384 | 0.371 | −51 | 4.414 | 0 | 0.218 | 0.213 | −16 | 5.478 | 34 |
100 | 326,445 | 0.263 | 0.252 | −20 | 8.724 | 48 | 0.382 | 0.369 | −49 | 4.410 | 5 | 0.211 | 0.206 | −11 | 6.595 | 43 |
110 | 326,370 | 0.266 | 0.255 | −19 | 8.251 | 45 | 0.369 | 0.357 | −47 | 4.494 | 2 | 0.205 | 0.201 | −9 | 6.288 | 40 |
120 | 326,310 | 0.258 | 0.247 | −17 | 8.003 | 44 | 0.357 | 0.345 | −45 | 4.435 | 2 | 0.196 | 0.192 | −8 | 6.087 | 39 |
130 | 326,277 | 0.259 | 0.248 | −17 | 8.331 | 47 | 0.357 | 0.344 | −45 | 4.356 | 4 | 0.187 | 0.183 | −7 | 6.509 | 42 |
140 | 326,246 | 0.262 | 0.250 | −17 | 8.583 | 48 | 0.357 | 0.345 | −45 | 4.304 | 5 | 0.183 | 0.179 | −7 | 6.620 | 43 |
150 | 326,222 | 0.254 | 0.243 | −15 | 8.410 | 46 | 0.327 | 0.316 | −40 | 4.111 | 7 | 0.171 | 0.167 | −3 | 6.722 | 44 |
Gamma with log link |
0 | 437,243 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
1 | 388,234 | 2.365 | 2.261 | −4 | 67.494 | 277 | 0.773 | 0.747 | 22 | 54.214 | 287 | 1.193 | 1.168 | 170 | 65.932 | 435 |
10 | 342,942 | 0.870 | 0.832 | 21 | 24.998 | 131 | 0.440 | 0.425 | −24 | 15.145 | 71 | 0.505 | 0.494 | 43 | 21.396 | 138 |
20 | 334,881 | 0.649 | 0.621 | −5 | 19.899 | 110 | 0.519 | 0.501 | −65 | 8.283 | 36 | 0.312 | 0.306 | −11 | 14.105 | 90 |
30 | 331,227 | 0.544 | 0.520 | −4 | 21.752 | 126 | 0.479 | 0.463 | −57 | 11.010 | 58 | 0.262 | 0.257 | 0 | 17.458 | 115 |
40 | 328,727 | 0.374 | 0.357 | −10 | 14.009 | 81 | 0.329 | 0.318 | −33 | 8.553 | 43 | 0.268 | 0.263 | 15 | 13.990 | 91 |
50 | 327,806 | 0.328 | 0.313 | −16 | 12.750 | 74 | 0.327 | 0.316 | −33 | 8.325 | 42 | 0.272 | 0.266 | 14 | 13.779 | 90 |
60 | 327,270 | 0.302 | 0.289 | −15 | 11.825 | 68 | 0.297 | 0.287 | −33 | 7.147 | 37 | 0.197 | 0.193 | 14 | 12.637 | 83 |
70 | 326,866 | 0.264 | 0.253 | −15 | 10.159 | 58 | 0.249 | 0.241 | −28 | 6.071 | 31 | 0.165 | 0.162 | 12 | 10.693 | 70 |
80 | 326,669 | 0.255 | 0.244 | −19 | 9.819 | 57 | 0.288 | 0.279 | −37 | 5.085 | 24 | 0.146 | 0.143 | −2 | 9.090 | 60 |
90 | 326,433 | 0.266 | 0.254 | −23 | 8.891 | 51 | 0.327 | 0.316 | −45 | 4.079 | 15 | 0.171 | 0.167 | −12 | 7.353 | 48 |
100 | 326,302 | 0.265 | 0.253 | −23 | 7.839 | 44 | 0.361 | 0.349 | −47 | 4.030 | 5 | 0.205 | 0.201 | −12 | 6.246 | 40 |
110 | 326,224 | 0.256 | 0.244 | −18 | 8.139 | 45 | 0.335 | 0.324 | −41 | 4.211 | 8 | 0.191 | 0.187 | −3 | 7.043 | 46 |
120 | 326,147 | 0.250 | 0.239 | −18 | 7.817 | 43 | 0.340 | 0.328 | −43 | 4.122 | 4 | 0.188 | 0.184 | −6 | 6.247 | 41 |
130 | 326,111 | 0.247 | 0.236 | −17 | 7.750 | 43 | 0.341 | 0.329 | −43 | 4.115 | 3 | 0.186 | 0.183 | −7 | 6.060 | 39 |
140 | 326,050 | 0.247 | 0.236 | −17 | 7.730 | 43 | 0.336 | 0.324 | −42 | 4.073 | 4 | 0.179 | 0.176 | −6 | 6.117 | 40 |
150 | 326,022 | 0.243 | 0.232 | −15 | 7.820 | 43 | 0.323 | 0.312 | −40 | 4.040 | 3 | 0.174 | 0.170 | −4 | 6.010 | 39 |
Table A10.
AIC scores and out-of-sample validation figures of the inverse gaussian GLMs of BEL with identity, inverse, log and link functions under 150–443 after each tenth iteration.
Table A10.
AIC scores and out-of-sample validation figures of the inverse gaussian GLMs of BEL with identity, inverse, log and link functions under 150–443 after each tenth iteration.
k | AIC | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
inverse gaussian with identity link |
0 | 437,338 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 346,132 | 0.871 | 0.833 | 1 | 23.559 | 115 | 0.314 | 0.304 | 7 | 20.269 | 107 | 0.534 | 0.523 | 70 | 25.673 | 169 |
20 | 334,430 | 0.549 | 0.524 | −13 | 15.996 | 77 | 0.599 | 0.579 | −77 | 8.273 | −1 | 0.468 | 0.458 | −44 | 9.809 | 32 |
30 | 331,453 | 0.488 | 0.467 | −4 | 15.939 | 89 | 0.517 | 0.499 | −67 | 6.532 | 11 | 0.413 | 0.405 | −40 | 9.280 | 38 |
40 | 328,985 | 0.370 | 0.354 | −13 | 13.279 | 76 | 0.338 | 0.327 | −39 | 7.193 | 35 | 0.238 | 0.233 | 6 | 12.301 | 80 |
50 | 328,064 | 0.332 | 0.317 | −15 | 12.727 | 74 | 0.338 | 0.327 | −40 | 6.871 | 35 | 0.232 | 0.227 | 1 | 11.664 | 76 |
60 | 327,533 | 0.298 | 0.285 | −17 | 10.994 | 64 | 0.304 | 0.294 | −37 | 5.868 | 29 | 0.172 | 0.168 | 3 | 10.646 | 69 |
70 | 327,082 | 0.274 | 0.262 | −15 | 9.387 | 53 | 0.243 | 0.235 | −27 | 5.535 | 27 | 0.171 | 0.167 | 13 | 10.253 | 67 |
80 | 326,849 | 0.267 | 0.255 | −20 | 9.426 | 54 | 0.278 | 0.268 | −34 | 5.271 | 25 | 0.152 | 0.148 | 5 | 9.783 | 65 |
90 | 326,715 | 0.247 | 0.236 | −21 | 8.546 | 49 | 0.275 | 0.266 | −35 | 4.399 | 20 | 0.140 | 0.137 | −1 | 8.302 | 55 |
100 | 326,630 | 0.236 | 0.225 | −20 | 7.879 | 45 | 0.262 | 0.253 | −34 | 3.979 | 16 | 0.140 | 0.137 | −2 | 7.249 | 48 |
110 | 326,564 | 0.225 | 0.215 | −17 | 7.728 | 43 | 0.243 | 0.235 | −31 | 3.850 | 15 | 0.129 | 0.126 | 0 | 6.958 | 46 |
120 | 326,507 | 0.237 | 0.226 | −18 | 8.776 | 50 | 0.270 | 0.260 | −35 | 4.120 | 19 | 0.130 | 0.127 | −3 | 7.710 | 51 |
130 | 326,475 | 0.240 | 0.230 | −17 | 9.225 | 53 | 0.265 | 0.256 | −34 | 4.516 | 21 | 0.123 | 0.120 | 0 | 8.400 | 55 |
140 | 326,447 | 0.241 | 0.230 | −16 | 9.415 | 54 | 0.270 | 0.261 | −35 | 4.543 | 21 | 0.124 | 0.122 | −1 | 8.426 | 56 |
150 | 326,352 | 0.249 | 0.238 | −17 | 9.375 | 54 | 0.337 | 0.326 | −44 | 4.224 | 12 | 0.150 | 0.146 | −4 | 7.930 | 52 |
Inverse gaussian with inverse link |
0 | 437,338 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 344,458 | 1.129 | 1.079 | −25 | 35.685 | 202 | 1.138 | 1.099 | −150 | 14.423 | 63 | 0.639 | 0.626 | −63 | 22.713 | 149 |
20 | 336,004 | 0.682 | 0.652 | −5 | 21.011 | 117 | 0.534 | 0.516 | −67 | 8.866 | 41 | 0.321 | 0.314 | −12 | 14.895 | 95 |
30 | 333,060 | 0.626 | 0.598 | −10 | 24.463 | 142 | 0.623 | 0.602 | −83 | 10.859 | 55 | 0.376 | 0.369 | −31 | 16.233 | 107 |
40 | 329,632 | 0.412 | 0.394 | −14 | 15.912 | 93 | 0.345 | 0.333 | −29 | 12.096 | 64 | 0.318 | 0.311 | 28 | 18.446 | 121 |
50 | 328,515 | 0.335 | 0.320 | −12 | 12.387 | 71 | 0.305 | 0.295 | −29 | 8.122 | 40 | 0.276 | 0.270 | 18 | 13.333 | 86 |
60 | 327,916 | 0.321 | 0.307 | −15 | 11.970 | 70 | 0.286 | 0.276 | −27 | 8.385 | 44 | 0.247 | 0.241 | 20 | 13.973 | 91 |
70 | 327,543 | 0.278 | 0.266 | −12 | 10.488 | 60 | 0.246 | 0.238 | −28 | 6.106 | 31 | 0.164 | 0.161 | 9 | 10.331 | 67 |
80 | 327,196 | 0.249 | 0.238 | −17 | 8.227 | 45 | 0.308 | 0.297 | −38 | 4.037 | 9 | 0.193 | 0.189 | −7 | 6.381 | 40 |
90 | 327,012 | 0.247 | 0.236 | −19 | 8.016 | 44 | 0.376 | 0.363 | −49 | 4.390 | −1 | 0.212 | 0.207 | −15 | 5.407 | 33 |
100 | 326,837 | 0.261 | 0.250 | −20 | 8.469 | 46 | 0.375 | 0.363 | −48 | 4.428 | 4 | 0.208 | 0.204 | −10 | 6.569 | 43 |
110 | 326,762 | 0.262 | 0.250 | −18 | 8.090 | 44 | 0.365 | 0.353 | −46 | 4.505 | 2 | 0.201 | 0.197 | −8 | 6.242 | 40 |
120 | 326,699 | 0.259 | 0.248 | −18 | 8.106 | 45 | 0.367 | 0.355 | −47 | 4.402 | 2 | 0.192 | 0.188 | −9 | 6.082 | 39 |
130 | 326,667 | 0.259 | 0.247 | −17 | 7.987 | 44 | 0.352 | 0.340 | −44 | 4.303 | 2 | 0.187 | 0.183 | −8 | 5.958 | 38 |
140 | 326,642 | 0.258 | 0.246 | −16 | 8.243 | 46 | 0.340 | 0.328 | −42 | 4.228 | 6 | 0.173 | 0.169 | −5 | 6.602 | 43 |
150 | 326,617 | 0.253 | 0.242 | −15 | 8.152 | 44 | 0.324 | 0.313 | −39 | 4.148 | 5 | 0.172 | 0.169 | −3 | 6.476 | 42 |
Inverse gaussian with log link |
0 | 437,338 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 343,530 | 0.866 | 0.828 | 19 | 24.925 | 131 | 0.450 | 0.435 | −28 | 14.940 | 69 | 0.494 | 0.484 | 39 | 21.122 | 136 |
20 | 335,355 | 0.644 | 0.616 | −5 | 19.653 | 109 | 0.526 | 0.509 | −67 | 7.947 | 33 | 0.318 | 0.311 | −14 | 13.490 | 85 |
30 | 331,675 | 0.536 | 0.512 | −4 | 21.697 | 125 | 0.482 | 0.465 | −58 | 10.885 | 57 | 0.262 | 0.256 | −2 | 17.245 | 113 |
40 | 329,140 | 0.366 | 0.350 | −10 | 13.913 | 80 | 0.325 | 0.314 | −32 | 8.604 | 44 | 0.269 | 0.264 | 16 | 14.011 | 91 |
50 | 328,190 | 0.324 | 0.310 | −16 | 12.640 | 73 | 0.319 | 0.308 | −32 | 8.482 | 43 | 0.274 | 0.268 | 16 | 13.966 | 91 |
60 | 327,666 | 0.296 | 0.283 | −15 | 11.626 | 67 | 0.290 | 0.280 | −31 | 7.181 | 37 | 0.201 | 0.197 | 15 | 12.695 | 83 |
70 | 327,263 | 0.261 | 0.250 | −15 | 9.948 | 57 | 0.244 | 0.236 | −27 | 6.042 | 30 | 0.172 | 0.168 | 12 | 10.531 | 69 |
80 | 327,061 | 0.251 | 0.240 | −18 | 9.746 | 56 | 0.284 | 0.275 | −37 | 4.988 | 24 | 0.145 | 0.142 | −1 | 8.964 | 59 |
90 | 326,825 | 0.263 | 0.251 | −23 | 8.769 | 51 | 0.321 | 0.310 | −44 | 4.059 | 15 | 0.168 | 0.165 | −11 | 7.316 | 48 |
100 | 326,695 | 0.261 | 0.249 | −22 | 7.727 | 43 | 0.352 | 0.340 | −45 | 4.048 | 6 | 0.203 | 0.199 | −10 | 6.341 | 41 |
110 | 326,598 | 0.239 | 0.229 | −17 | 7.408 | 40 | 0.343 | 0.332 | −43 | 4.444 | −1 | 0.185 | 0.181 | −7 | 5.572 | 35 |
120 | 326,530 | 0.249 | 0.238 | −18 | 7.520 | 41 | 0.343 | 0.331 | −43 | 4.247 | 1 | 0.191 | 0.187 | −7 | 5.928 | 38 |
130 | 326,494 | 0.246 | 0.235 | −17 | 7.602 | 42 | 0.337 | 0.326 | −43 | 4.108 | 2 | 0.183 | 0.179 | −6 | 5.964 | 39 |
140 | 326,471 | 0.246 | 0.235 | −17 | 7.772 | 43 | 0.332 | 0.321 | −42 | 4.068 | 4 | 0.177 | 0.173 | −6 | 6.092 | 39 |
150 | 326,413 | 0.247 | 0.237 | −15 | 7.716 | 42 | 0.324 | 0.313 | −40 | 4.095 | 2 | 0.172 | 0.168 | −4 | 5.892 | 38 |
Inverse gaussian with link |
0 | 437,338 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 344,467 | 0.985 | 0.941 | −14 | 31.473 | 176 | 0.993 | 0.959 | −130 | 12.573 | 46 | 0.561 | 0.549 | −52 | 18.986 | 124 |
20 | 336,815 | 0.668 | 0.639 | −7 | 21.404 | 122 | 0.591 | 0.571 | −75 | 9.506 | 38 | 0.372 | 0.364 | −22 | 14.521 | 91 |
30 | 331,792 | 0.478 | 0.457 | −5 | 15.821 | 90 | 0.367 | 0.354 | −28 | 10.573 | 53 | 0.373 | 0.365 | 33 | 17.496 | 114 |
40 | 330,089 | 0.421 | 0.403 | −1 | 15.183 | 89 | 0.295 | 0.285 | −19 | 10.660 | 56 | 0.316 | 0.309 | 34 | 16.657 | 109 |
50 | 329,020 | 0.376 | 0.359 | −10 | 14.443 | 85 | 0.300 | 0.290 | −21 | 11.439 | 60 | 0.320 | 0.313 | 34 | 17.553 | 115 |
60 | 328,452 | 0.330 | 0.316 | −12 | 12.905 | 75 | 0.290 | 0.280 | −24 | 9.196 | 48 | 0.273 | 0.267 | 25 | 14.952 | 98 |
70 | 327,925 | 0.316 | 0.302 | −16 | 11.733 | 69 | 0.301 | 0.291 | −35 | 7.090 | 35 | 0.200 | 0.195 | 6 | 11.701 | 76 |
80 | 327,639 | 0.262 | 0.250 | −18 | 8.128 | 43 | 0.298 | 0.288 | −35 | 4.425 | 11 | 0.208 | 0.203 | −1 | 7.205 | 45 |
90 | 327,265 | 0.278 | 0.266 | −22 | 8.311 | 46 | 0.355 | 0.343 | −44 | 4.383 | 9 | 0.202 | 0.197 | −7 | 7.090 | 46 |
100 | 327,148 | 0.288 | 0.275 | −22 | 8.166 | 44 | 0.357 | 0.345 | −44 | 4.408 | 8 | 0.207 | 0.203 | −6 | 7.039 | 46 |
110 | 327,078 | 0.274 | 0.262 | −20 | 7.943 | 43 | 0.354 | 0.342 | −44 | 4.451 | 4 | 0.196 | 0.192 | −7 | 6.434 | 41 |
120 | 326,920 | 0.269 | 0.257 | −18 | 8.350 | 46 | 0.374 | 0.361 | −47 | 4.579 | 3 | 0.198 | 0.193 | −9 | 6.419 | 41 |
130 | 326,887 | 0.270 | 0.258 | −18 | 8.437 | 47 | 0.360 | 0.348 | −44 | 4.544 | 6 | 0.196 | 0.192 | −4 | 7.151 | 46 |
140 | 326,807 | 0.267 | 0.255 | −18 | 8.193 | 45 | 0.345 | 0.333 | −43 | 4.318 | 5 | 0.188 | 0.184 | −5 | 6.661 | 43 |
150 | 326,778 | 0.262 | 0.250 | −16 | 8.258 | 44 | 0.332 | 0.321 | −41 | 4.238 | 5 | 0.177 | 0.174 | −3 | 6.518 | 42 |
Table A11.
AIC scores and out-of-sample validation figures of the gaussian GLMs of BEL with identity, inverse and log link functions under 300–886 after each tenth and the final iteration.
Table A11.
AIC scores and out-of-sample validation figures of the gaussian GLMs of BEL with identity, inverse and log link functions under 300–886 after each tenth and the final iteration.
k | AIC | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
Gaussian with identity link |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 345,045 | 0.839 | 0.802 | 0 | 21.468 | 104 | 0.389 | 0.376 | 23 | 21.659 | 113 | 0.650 | 0.636 | 89 | 27.112 | 179 |
20 | 333,447 | 0.565 | 0.540 | −10 | 16.780 | 82 | 0.597 | 0.577 | −75 | 8.274 | 2 | 0.454 | 0.445 | −40 | 10.083 | 38 |
30 | 330,361 | 0.518 | 0.496 | 1 | 17.501 | 100 | 0.418 | 0.404 | −47 | 7.970 | 37 | 0.264 | 0.259 | 1 | 13.378 | 85 |
40 | 328,832 | 0.475 | 0.454 | −10 | 16.888 | 98 | 0.509 | 0.492 | −66 | 6.234 | 27 | 0.291 | 0.285 | −26 | 10.497 | 68 |
50 | 327,432 | 0.368 | 0.352 | −15 | 13.268 | 78 | 0.391 | 0.378 | −50 | 6.060 | 29 | 0.221 | 0.217 | −9 | 10.674 | 69 |
60 | 326,787 | 0.306 | 0.293 | −17 | 10.760 | 62 | 0.301 | 0.290 | −36 | 5.863 | 29 | 0.183 | 0.179 | 5 | 10.651 | 69 |
70 | 326,453 | 0.291 | 0.278 | −18 | 10.451 | 60 | 0.281 | 0.272 | −33 | 6.060 | 30 | 0.175 | 0.171 | 8 | 10.958 | 72 |
80 | 326,245 | 0.263 | 0.251 | −23 | 9.389 | 54 | 0.309 | 0.298 | −41 | 4.837 | 22 | 0.157 | 0.154 | −4 | 8.945 | 59 |
90 | 326,116 | 0.267 | 0.256 | −24 | 9.196 | 54 | 0.313 | 0.303 | −42 | 4.689 | 22 | 0.158 | 0.155 | −7 | 8.587 | 57 |
100 | 326,038 | 0.250 | 0.239 | −18 | 9.152 | 53 | 0.276 | 0.266 | −35 | 4.637 | 22 | 0.136 | 0.133 | 0 | 8.606 | 57 |
110 | 325,963 | 0.239 | 0.229 | −18 | 9.132 | 52 | 0.269 | 0.260 | −35 | 4.577 | 22 | 0.132 | 0.129 | −1 | 8.358 | 55 |
120 | 325,922 | 0.242 | 0.231 | −16 | 9.519 | 54 | 0.273 | 0.263 | −35 | 4.569 | 21 | 0.129 | 0.126 | −1 | 8.380 | 55 |
130 | 325,889 | 0.251 | 0.240 | −18 | 10.506 | 61 | 0.287 | 0.277 | −37 | 5.421 | 27 | 0.127 | 0.125 | 0 | 9.724 | 64 |
140 | 325,865 | 0.246 | 0.235 | −15 | 10.530 | 61 | 0.269 | 0.260 | −34 | 5.329 | 27 | 0.123 | 0.120 | 2 | 9.526 | 63 |
150 | 325,841 | 0.242 | 0.232 | −14 | 10.556 | 61 | 0.274 | 0.265 | −35 | 5.119 | 26 | 0.123 | 0.120 | 0 | 9.261 | 61 |
160 | 325,821 | 0.243 | 0.232 | −15 | 10.483 | 60 | 0.278 | 0.268 | −36 | 5.018 | 25 | 0.127 | 0.124 | 0 | 9.144 | 60 |
170 | 325,811 | 0.238 | 0.228 | −13 | 10.140 | 58 | 0.265 | 0.256 | −33 | 4.968 | 24 | 0.130 | 0.127 | 2 | 8.884 | 59 |
180 | 325,766 | 0.241 | 0.230 | −12 | 10.128 | 57 | 0.300 | 0.290 | −37 | 4.552 | 18 | 0.149 | 0.146 | 2 | 8.716 | 58 |
190 | 325,506 | 0.201 | 0.192 | −13 | 6.458 | 32 | 0.275 | 0.266 | −33 | 4.124 | −2 | 0.173 | 0.169 | −4 | 4.721 | 27 |
200 | 325,488 | 0.186 | 0.178 | −9 | 6.111 | 29 | 0.262 | 0.254 | −29 | 4.460 | −4 | 0.181 | 0.177 | 3 | 4.920 | 27 |
210 | 325,482 | 0.184 | 0.176 | −9 | 6.210 | 30 | 0.258 | 0.249 | −28 | 4.337 | −3 | 0.170 | 0.167 | 3 | 4.846 | 28 |
220 | 325,468 | 0.185 | 0.177 | −8 | 6.433 | 32 | 0.258 | 0.250 | −28 | 4.286 | −3 | 0.165 | 0.161 | 3 | 4.850 | 28 |
224 | 325,459 | 0.194 | 0.186 | −9 | 6.659 | 34 | 0.268 | 0.259 | −30 | 4.200 | −2 | 0.168 | 0.165 | 1 | 5.007 | 29 |
Gaussian with inverse link |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 343,426 | 1.036 | 0.990 | 1 | 33.705 | 192 | 0.650 | 0.628 | −63 | 21.481 | 114 | 0.391 | 0.382 | 44 | 33.482 | 221 |
20 | 334,985 | 0.689 | 0.659 | −6 | 21.313 | 118 | 0.515 | 0.498 | −62 | 10.319 | 49 | 0.324 | 0.317 | −4 | 16.493 | 107 |
30 | 331,426 | 0.512 | 0.490 | −16 | 18.836 | 109 | 0.393 | 0.380 | −45 | 12.277 | 65 | 0.248 | 0.243 | 15 | 18.960 | 125 |
40 | 328,875 | 0.433 | 0.414 | −5 | 14.354 | 82 | 0.317 | 0.306 | −26 | 9.312 | 47 | 0.294 | 0.288 | 26 | 15.188 | 99 |
50 | 327,877 | 0.383 | 0.366 | −8 | 12.959 | 76 | 0.285 | 0.276 | −24 | 8.961 | 46 | 0.271 | 0.265 | 25 | 14.592 | 95 |
60 | 327,274 | 0.337 | 0.323 | −16 | 12.572 | 73 | 0.328 | 0.316 | −37 | 7.636 | 38 | 0.219 | 0.215 | 10 | 13.087 | 85 |
70 | 326,875 | 0.290 | 0.277 | −14 | 11.248 | 64 | 0.271 | 0.261 | −32 | 6.233 | 31 | 0.156 | 0.153 | 6 | 10.588 | 70 |
80 | 326,603 | 0.259 | 0.248 | −16 | 9.976 | 58 | 0.287 | 0.278 | −38 | 5.042 | 22 | 0.158 | 0.155 | −8 | 8.014 | 52 |
90 | 326,390 | 0.254 | 0.243 | −20 | 8.462 | 47 | 0.392 | 0.379 | −51 | 4.451 | 1 | 0.220 | 0.215 | −17 | 5.676 | 36 |
100 | 326,224 | 0.269 | 0.257 | −21 | 9.365 | 53 | 0.403 | 0.389 | −52 | 4.500 | 7 | 0.225 | 0.220 | −12 | 7.174 | 47 |
110 | 326,135 | 0.266 | 0.254 | −19 | 8.894 | 49 | 0.377 | 0.364 | −49 | 4.334 | 5 | 0.205 | 0.201 | −12 | 6.497 | 42 |
120 | 326,069 | 0.266 | 0.254 | −19 | 8.564 | 48 | 0.381 | 0.368 | −50 | 4.271 | 4 | 0.204 | 0.200 | −14 | 6.102 | 39 |
130 | 326,033 | 0.265 | 0.253 | −19 | 8.498 | 47 | 0.386 | 0.373 | −50 | 4.445 | 2 | 0.212 | 0.207 | −14 | 5.917 | 38 |
140 | 325,950 | 0.253 | 0.242 | −17 | 8.151 | 44 | 0.358 | 0.346 | −46 | 4.345 | 1 | 0.189 | 0.185 | −11 | 5.598 | 35 |
150 | 325,924 | 0.255 | 0.244 | −17 | 8.485 | 46 | 0.364 | 0.352 | −46 | 4.288 | 3 | 0.192 | 0.188 | −11 | 5.894 | 38 |
160 | 325,886 | 0.258 | 0.247 | −15 | 8.842 | 48 | 0.349 | 0.337 | −44 | 4.199 | 5 | 0.178 | 0.174 | −8 | 6.359 | 41 |
170 | 325,869 | 0.249 | 0.238 | −14 | 8.503 | 46 | 0.331 | 0.320 | −40 | 4.254 | 5 | 0.174 | 0.171 | −5 | 6.182 | 40 |
180 | 325,850 | 0.248 | 0.237 | −12 | 8.505 | 45 | 0.312 | 0.302 | −37 | 4.099 | 6 | 0.164 | 0.161 | −3 | 6.095 | 40 |
190 | 325,820 | 0.238 | 0.228 | −12 | 8.240 | 43 | 0.313 | 0.303 | −37 | 4.137 | 4 | 0.169 | 0.166 | −3 | 5.825 | 38 |
200 | 325,803 | 0.244 | 0.234 | −13 | 8.458 | 45 | 0.320 | 0.309 | −38 | 4.073 | 6 | 0.171 | 0.167 | −4 | 6.132 | 40 |
210 | 325,800 | 0.241 | 0.231 | −13 | 8.376 | 45 | 0.313 | 0.302 | −36 | 4.059 | 6 | 0.171 | 0.167 | −2 | 6.248 | 41 |
213 | 325,797 | 0.241 | 0.230 | −12 | 8.325 | 44 | 0.310 | 0.299 | −36 | 4.063 | 6 | 0.171 | 0.167 | −1 | 6.284 | 41 |
Gaussian with log link |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 342,325 | 0.879 | 0.840 | 26 | 25.171 | 132 | 0.422 | 0.408 | −17 | 15.628 | 74 | 0.530 | 0.519 | 52 | 22.034 | 143 |
20 | 334,417 | 0.661 | 0.632 | −5 | 22.474 | 125 | 0.532 | 0.514 | −64 | 10.764 | 51 | 0.330 | 0.323 | −3 | 17.317 | 112 |
30 | 330,901 | 0.560 | 0.536 | −3 | 21.780 | 126 | 0.474 | 0.458 | −55 | 11.199 | 59 | 0.266 | 0.261 | 3 | 17.802 | 117 |
40 | 328,444 | 0.411 | 0.393 | −10 | 13.639 | 78 | 0.315 | 0.304 | −29 | 8.610 | 44 | 0.264 | 0.258 | 19 | 14.162 | 92 |
50 | 327,574 | 0.341 | 0.326 | −16 | 12.936 | 75 | 0.334 | 0.323 | −35 | 8.294 | 42 | 0.262 | 0.257 | 12 | 13.642 | 89 |
60 | 327,029 | 0.315 | 0.302 | −17 | 11.991 | 69 | 0.312 | 0.301 | −36 | 7.024 | 36 | 0.192 | 0.188 | 10 | 12.465 | 82 |
70 | 326,637 | 0.279 | 0.267 | −16 | 10.620 | 61 | 0.266 | 0.257 | −31 | 6.142 | 31 | 0.162 | 0.158 | 9 | 10.797 | 71 |
80 | 326,449 | 0.266 | 0.254 | −21 | 10.069 | 59 | 0.304 | 0.294 | −40 | 5.195 | 25 | 0.153 | 0.149 | −4 | 9.234 | 61 |
90 | 326,287 | 0.273 | 0.261 | −22 | 9.742 | 57 | 0.300 | 0.290 | −40 | 5.082 | 25 | 0.141 | 0.138 | −5 | 8.990 | 59 |
100 | 326,082 | 0.269 | 0.257 | −23 | 8.052 | 45 | 0.370 | 0.358 | −48 | 4.094 | 6 | 0.210 | 0.205 | −13 | 6.314 | 41 |
110 | 326,021 | 0.258 | 0.247 | −19 | 8.043 | 44 | 0.343 | 0.331 | −43 | 4.102 | 5 | 0.198 | 0.193 | −7 | 6.381 | 41 |
120 | 325,950 | 0.252 | 0.241 | −17 | 7.891 | 42 | 0.329 | 0.318 | −41 | 4.086 | 3 | 0.191 | 0.187 | −7 | 5.883 | 37 |
130 | 325,743 | 0.208 | 0.199 | −13 | 6.208 | 30 | 0.310 | 0.299 | −38 | 4.994 | −10 | 0.191 | 0.187 | −8 | 4.273 | 21 |
140 | 325,693 | 0.211 | 0.202 | −13 | 6.620 | 34 | 0.302 | 0.292 | −36 | 4.522 | −3 | 0.186 | 0.182 | −3 | 5.037 | 30 |
150 | 325,665 | 0.210 | 0.200 | −13 | 6.729 | 35 | 0.298 | 0.288 | −36 | 4.385 | −2 | 0.180 | 0.176 | −3 | 5.168 | 31 |
160 | 325,626 | 0.214 | 0.205 | −14 | 6.549 | 33 | 0.302 | 0.292 | −36 | 4.410 | −3 | 0.183 | 0.179 | −4 | 5.076 | 30 |
170 | 325,610 | 0.214 | 0.204 | −14 | 6.590 | 33 | 0.291 | 0.281 | −35 | 4.273 | −3 | 0.173 | 0.169 | −2 | 5.028 | 30 |
180 | 325,584 | 0.214 | 0.204 | −13 | 6.587 | 33 | 0.296 | 0.286 | −35 | 4.386 | −4 | 0.176 | 0.172 | −2 | 4.973 | 29 |
190 | 325,575 | 0.212 | 0.203 | −12 | 6.502 | 32 | 0.283 | 0.273 | −33 | 4.363 | −4 | 0.173 | 0.170 | 0 | 4.950 | 29 |
200 | 325,567 | 0.201 | 0.192 | −9 | 6.272 | 30 | 0.264 | 0.255 | −29 | 4.491 | −4 | 0.171 | 0.168 | 3 | 4.863 | 27 |
210 | 325,553 | 0.205 | 0.196 | −9 | 6.655 | 32 | 0.267 | 0.258 | −29 | 4.398 | −2 | 0.176 | 0.173 | 3 | 5.165 | 30 |
214 | 325,552 | 0.206 | 0.197 | −10 | 6.640 | 32 | 0.267 | 0.258 | −29 | 4.402 | −2 | 0.177 | 0.173 | 3 | 5.180 | 30 |
Table A12.
AIC scores and out-of-sample validation figures of the gamma GLMs of BEL with identity, inverse and log link functions under 300–886 after each tenth and the final iteration.
Table A12.
AIC scores and out-of-sample validation figures of the gamma GLMs of BEL with identity, inverse and log link functions under 300–886 after each tenth and the final iteration.
k | AIC | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
Gamma with identity link |
0 | 437,243 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 345,605 | 0.872 | 0.834 | 1 | 23.485 | 114 | 0.315 | 0.304 | 6 | 19.861 | 105 | 0.530 | 0.519 | 68 | 25.266 | 167 |
20 | 333,911 | 0.553 | 0.529 | −12 | 16.265 | 79 | 0.599 | 0.579 | −76 | 8.268 | 0 | 0.464 | 0.454 | −43 | 9.895 | 34 |
30 | 330,707 | 0.503 | 0.481 | 0 | 17.404 | 99 | 0.425 | 0.411 | −49 | 7.754 | 35 | 0.267 | 0.262 | −2 | 12.959 | 82 |
40 | 328,589 | 0.376 | 0.359 | −13 | 13.317 | 76 | 0.341 | 0.330 | −39 | 7.187 | 35 | 0.238 | 0.233 | 6 | 12.341 | 80 |
50 | 327,668 | 0.348 | 0.333 | −15 | 13.173 | 77 | 0.356 | 0.344 | −44 | 6.656 | 34 | 0.227 | 0.222 | −4 | 11.348 | 74 |
60 | 327,135 | 0.305 | 0.292 | −16 | 11.190 | 65 | 0.304 | 0.294 | −37 | 6.059 | 30 | 0.175 | 0.172 | 3 | 10.843 | 71 |
70 | 326,686 | 0.273 | 0.261 | −15 | 9.730 | 55 | 0.257 | 0.249 | −30 | 5.364 | 26 | 0.165 | 0.161 | 9 | 9.928 | 65 |
80 | 326,461 | 0.268 | 0.257 | −21 | 9.471 | 54 | 0.287 | 0.277 | −36 | 5.151 | 25 | 0.149 | 0.146 | 2 | 9.549 | 63 |
90 | 326,328 | 0.259 | 0.248 | −23 | 8.889 | 52 | 0.304 | 0.293 | −40 | 4.373 | 20 | 0.148 | 0.145 | −6 | 8.255 | 55 |
100 | 326,244 | 0.240 | 0.229 | −20 | 9.273 | 54 | 0.282 | 0.273 | −37 | 4.759 | 22 | 0.144 | 0.141 | −2 | 8.662 | 57 |
110 | 326,178 | 0.236 | 0.225 | −18 | 8.837 | 51 | 0.262 | 0.254 | −34 | 4.454 | 20 | 0.135 | 0.132 | 0 | 8.139 | 54 |
120 | 326,117 | 0.237 | 0.226 | −18 | 9.668 | 56 | 0.275 | 0.266 | −36 | 4.845 | 24 | 0.129 | 0.126 | −1 | 8.799 | 58 |
130 | 326,084 | 0.245 | 0.235 | −17 | 10.148 | 59 | 0.270 | 0.260 | −35 | 5.236 | 26 | 0.122 | 0.120 | 1 | 9.375 | 62 |
140 | 326,058 | 0.243 | 0.232 | −17 | 10.153 | 58 | 0.273 | 0.264 | −35 | 5.092 | 25 | 0.125 | 0.122 | −1 | 9.122 | 60 |
150 | 326,031 | 0.239 | 0.229 | −14 | 10.130 | 58 | 0.263 | 0.254 | −33 | 4.914 | 24 | 0.121 | 0.118 | 2 | 9.014 | 60 |
160 | 325,871 | 0.232 | 0.222 | −15 | 7.898 | 44 | 0.317 | 0.307 | −39 | 3.918 | 5 | 0.174 | 0.170 | −4 | 6.237 | 40 |
170 | 325,729 | 0.199 | 0.190 | −13 | 6.235 | 30 | 0.280 | 0.271 | −34 | 4.288 | −5 | 0.176 | 0.172 | −2 | 4.684 | 27 |
180 | 325,718 | 0.201 | 0.192 | −13 | 6.171 | 30 | 0.279 | 0.270 | −34 | 4.253 | −5 | 0.172 | 0.169 | −2 | 4.623 | 27 |
190 | 325,703 | 0.197 | 0.189 | −12 | 6.158 | 30 | 0.278 | 0.268 | −33 | 4.269 | −5 | 0.171 | 0.168 | −3 | 4.521 | 26 |
200 | 325,697 | 0.194 | 0.185 | −11 | 5.943 | 28 | 0.264 | 0.255 | −30 | 4.416 | −5 | 0.169 | 0.165 | 0 | 4.470 | 25 |
210 | 325,689 | 0.190 | 0.181 | −10 | 5.992 | 28 | 0.261 | 0.252 | −29 | 4.381 | −5 | 0.169 | 0.165 | 1 | 4.534 | 25 |
212 | 325,689 | 0.189 | 0.180 | −11 | 5.975 | 28 | 0.261 | 0.252 | −29 | 4.384 | −5 | 0.169 | 0.165 | 1 | 4.545 | 25 |
Gamma with inverse link |
0 | 437,243 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 343,969 | 1.037 | 0.991 | 0 | 33.818 | 193 | 0.661 | 0.639 | −64 | 21.601 | 115 | 0.397 | 0.389 | 44 | 33.752 | 223 |
20 | 335,495 | 0.679 | 0.649 | −7 | 20.888 | 115 | 0.530 | 0.512 | −65 | 9.637 | 43 | 0.335 | 0.328 | −9 | 15.410 | 99 |
30 | 332,646 | 0.627 | 0.600 | −9 | 26.098 | 152 | 0.621 | 0.600 | −82 | 12.361 | 64 | 0.346 | 0.339 | −24 | 18.470 | 122 |
40 | 329,192 | 0.409 | 0.391 | −10 | 14.061 | 81 | 0.317 | 0.306 | −27 | 9.719 | 50 | 0.289 | 0.283 | 23 | 15.405 | 101 |
50 | 328,114 | 0.339 | 0.324 | −12 | 12.599 | 73 | 0.313 | 0.302 | −30 | 8.084 | 40 | 0.271 | 0.265 | 15 | 13.146 | 85 |
60 | 327,513 | 0.328 | 0.313 | −16 | 12.247 | 71 | 0.294 | 0.284 | −29 | 8.341 | 43 | 0.240 | 0.235 | 18 | 13.902 | 91 |
70 | 327,115 | 0.285 | 0.272 | −12 | 11.127 | 64 | 0.251 | 0.243 | −28 | 6.463 | 33 | 0.166 | 0.162 | 11 | 10.915 | 72 |
80 | 326,795 | 0.252 | 0.241 | −17 | 8.376 | 45 | 0.315 | 0.305 | −39 | 4.069 | 9 | 0.196 | 0.192 | −8 | 6.416 | 40 |
90 | 326,615 | 0.250 | 0.239 | −20 | 8.113 | 45 | 0.384 | 0.371 | −51 | 4.414 | 0 | 0.218 | 0.213 | −16 | 5.478 | 34 |
100 | 326,445 | 0.263 | 0.252 | −20 | 9.213 | 52 | 0.387 | 0.374 | −50 | 4.469 | 8 | 0.219 | 0.214 | −10 | 7.316 | 48 |
110 | 326,355 | 0.272 | 0.260 | −21 | 8.812 | 49 | 0.384 | 0.371 | −50 | 4.313 | 5 | 0.209 | 0.205 | −14 | 6.489 | 42 |
120 | 326,297 | 0.267 | 0.255 | −20 | 8.378 | 46 | 0.377 | 0.365 | −48 | 4.470 | 2 | 0.206 | 0.202 | −11 | 6.140 | 39 |
130 | 326,248 | 0.259 | 0.248 | −17 | 8.210 | 45 | 0.365 | 0.352 | −46 | 4.437 | 1 | 0.200 | 0.196 | −10 | 5.933 | 38 |
140 | 326,214 | 0.258 | 0.247 | −17 | 8.212 | 45 | 0.355 | 0.343 | −45 | 4.404 | 3 | 0.192 | 0.188 | −9 | 6.077 | 39 |
150 | 326,190 | 0.260 | 0.248 | −17 | 8.701 | 49 | 0.349 | 0.337 | −44 | 4.217 | 7 | 0.180 | 0.176 | −7 | 6.781 | 44 |
160 | 326,147 | 0.247 | 0.236 | −15 | 8.556 | 47 | 0.329 | 0.317 | −40 | 4.091 | 7 | 0.174 | 0.170 | −4 | 6.643 | 43 |
170 | 326,070 | 0.247 | 0.236 | −15 | 8.355 | 46 | 0.332 | 0.321 | −41 | 4.077 | 5 | 0.173 | 0.169 | −6 | 6.182 | 40 |
180 | 326,045 | 0.243 | 0.233 | −14 | 8.143 | 43 | 0.307 | 0.297 | −37 | 4.001 | 6 | 0.164 | 0.160 | −3 | 6.107 | 40 |
190 | 326,026 | 0.236 | 0.225 | −13 | 7.996 | 42 | 0.305 | 0.295 | −36 | 4.039 | 5 | 0.165 | 0.161 | −2 | 5.973 | 39 |
200 | 325,979 | 0.239 | 0.229 | −12 | 8.320 | 45 | 0.284 | 0.274 | −31 | 4.162 | 11 | 0.154 | 0.151 | 5 | 7.110 | 47 |
208 | 325,969 | 0.234 | 0.223 | −11 | 8.162 | 44 | 0.288 | 0.278 | −31 | 4.185 | 9 | 0.158 | 0.154 | 5 | 6.832 | 45 |
Gamma with log link |
0 | 437,243 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 342,942 | 0.870 | 0.832 | 21 | 24.998 | 131 | 0.440 | 0.425 | −24 | 15.145 | 71 | 0.505 | 0.494 | 43 | 21.396 | 138 |
20 | 334,881 | 0.649 | 0.621 | −5 | 19.899 | 110 | 0.519 | 0.501 | −65 | 8.283 | 36 | 0.312 | 0.306 | −11 | 14.105 | 90 |
30 | 331,227 | 0.544 | 0.520 | −4 | 21.752 | 126 | 0.479 | 0.463 | −57 | 11.010 | 58 | 0.262 | 0.257 | 0 | 17.458 | 115 |
40 | 328,727 | 0.374 | 0.357 | −10 | 14.009 | 81 | 0.329 | 0.318 | −33 | 8.553 | 43 | 0.268 | 0.263 | 15 | 13.990 | 91 |
50 | 327,806 | 0.328 | 0.313 | −16 | 12.750 | 74 | 0.327 | 0.316 | −33 | 8.325 | 42 | 0.272 | 0.266 | 14 | 13.779 | 90 |
60 | 327,270 | 0.302 | 0.289 | −15 | 11.825 | 68 | 0.297 | 0.287 | −33 | 7.147 | 37 | 0.197 | 0.193 | 14 | 12.637 | 83 |
70 | 326,866 | 0.264 | 0.253 | −15 | 10.159 | 58 | 0.249 | 0.241 | −28 | 6.071 | 31 | 0.165 | 0.162 | 12 | 10.693 | 70 |
80 | 326,669 | 0.255 | 0.244 | −19 | 9.819 | 57 | 0.288 | 0.279 | −37 | 5.085 | 24 | 0.146 | 0.143 | −2 | 9.090 | 60 |
90 | 326,433 | 0.266 | 0.254 | −23 | 8.891 | 51 | 0.327 | 0.316 | −45 | 4.079 | 15 | 0.171 | 0.167 | −12 | 7.353 | 48 |
100 | 326,302 | 0.265 | 0.253 | −23 | 7.839 | 44 | 0.361 | 0.349 | −47 | 4.030 | 5 | 0.205 | 0.201 | −12 | 6.246 | 40 |
110 | 326,224 | 0.256 | 0.244 | −18 | 8.139 | 45 | 0.335 | 0.324 | −41 | 4.211 | 8 | 0.191 | 0.187 | −3 | 7.043 | 46 |
120 | 326,015 | 0.220 | 0.210 | −17 | 6.898 | 36 | 0.317 | 0.306 | −40 | 4.411 | −1 | 0.194 | 0.190 | −7 | 5.364 | 33 |
130 | 325,973 | 0.216 | 0.207 | −15 | 6.654 | 33 | 0.307 | 0.296 | −37 | 4.544 | −4 | 0.196 | 0.192 | −4 | 5.114 | 30 |
140 | 325,919 | 0.212 | 0.203 | −15 | 6.334 | 31 | 0.302 | 0.292 | −37 | 4.556 | −5 | 0.191 | 0.187 | −4 | 4.883 | 28 |
150 | 325,878 | 0.215 | 0.205 | −14 | 6.486 | 33 | 0.297 | 0.287 | −36 | 4.375 | −3 | 0.181 | 0.177 | −3 | 4.968 | 29 |
160 | 325,858 | 0.216 | 0.206 | −14 | 6.619 | 34 | 0.299 | 0.289 | −35 | 4.442 | −2 | 0.181 | 0.177 | −1 | 5.275 | 32 |
170 | 325,826 | 0.213 | 0.203 | −14 | 6.485 | 33 | 0.302 | 0.292 | −36 | 4.464 | −4 | 0.183 | 0.180 | −3 | 5.109 | 30 |
180 | 325,816 | 0.213 | 0.204 | −14 | 6.505 | 33 | 0.300 | 0.290 | −36 | 4.468 | −3 | 0.179 | 0.176 | −1 | 5.238 | 31 |
190 | 325,797 | 0.210 | 0.201 | −14 | 6.580 | 33 | 0.295 | 0.285 | −35 | 4.406 | −3 | 0.179 | 0.176 | −2 | 5.157 | 31 |
200 | 325,783 | 0.208 | 0.199 | −13 | 6.496 | 32 | 0.290 | 0.280 | −34 | 4.421 | −3 | 0.178 | 0.174 | −1 | 5.140 | 30 |
210 | 325,777 | 0.200 | 0.191 | −10 | 6.260 | 30 | 0.263 | 0.254 | −28 | 4.471 | −3 | 0.176 | 0.173 | 4 | 5.107 | 30 |
220 | 325,774 | 0.199 | 0.190 | −10 | 6.248 | 30 | 0.264 | 0.255 | −28 | 4.541 | −3 | 0.179 | 0.175 | 4 | 5.085 | 29 |
226 | 325,767 | 0.198 | 0.189 | −8 | 6.256 | 29 | 0.249 | 0.241 | −24 | 4.532 | −1 | 0.184 | 0.180 | 8 | 5.417 | 32 |
Table A13.
AIC scores and out-of-sample validation figures of the inverse gaussian GLMs of BEL with identity, inverse, log and link functions under 300–886 after each tenth and the final iteration.
Table A13.
AIC scores and out-of-sample validation figures of the inverse gaussian GLMs of BEL with identity, inverse, log and link functions under 300–886 after each tenth and the final iteration.
k | AIC | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
Inverse gaussian with identity link |
0 | 437,338 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 346,132 | 0.871 | 0.833 | 1 | 23.559 | 115 | 0.314 | 0.304 | 7 | 20.269 | 107 | 0.534 | 0.523 | 70 | 25.673 | 169 |
20 | 334,430 | 0.549 | 0.524 | −13 | 15.996 | 77 | 0.599 | 0.579 | −77 | 8.273 | −1 | 0.468 | 0.458 | −44 | 9.809 | 32 |
30 | 331,453 | 0.488 | 0.467 | −4 | 15.939 | 89 | 0.517 | 0.499 | −67 | 6.532 | 11 | 0.413 | 0.405 | −40 | 9.280 | 38 |
40 | 328,985 | 0.370 | 0.354 | −13 | 13.279 | 76 | 0.338 | 0.327 | −39 | 7.193 | 35 | 0.238 | 0.233 | 6 | 12.301 | 80 |
50 | 328,064 | 0.332 | 0.317 | −15 | 12.727 | 74 | 0.338 | 0.327 | −40 | 6.871 | 35 | 0.232 | 0.227 | 1 | 11.664 | 76 |
60 | 327,533 | 0.298 | 0.285 | −17 | 10.994 | 64 | 0.304 | 0.294 | −37 | 5.868 | 29 | 0.172 | 0.168 | 3 | 10.646 | 69 |
70 | 327,082 | 0.274 | 0.262 | −15 | 9.387 | 53 | 0.243 | 0.235 | −27 | 5.535 | 27 | 0.171 | 0.167 | 13 | 10.253 | 67 |
80 | 326,849 | 0.267 | 0.255 | −20 | 9.426 | 54 | 0.278 | 0.268 | −34 | 5.271 | 25 | 0.152 | 0.148 | 5 | 9.783 | 65 |
90 | 326,715 | 0.247 | 0.236 | −21 | 8.546 | 49 | 0.275 | 0.266 | −35 | 4.399 | 20 | 0.140 | 0.137 | −1 | 8.302 | 55 |
100 | 326,627 | 0.234 | 0.224 | −20 | 8.454 | 49 | 0.266 | 0.257 | −34 | 4.414 | 20 | 0.144 | 0.141 | −1 | 8.023 | 53 |
110 | 326,557 | 0.225 | 0.215 | −17 | 8.350 | 47 | 0.246 | 0.238 | −31 | 4.337 | 19 | 0.132 | 0.129 | 2 | 7.841 | 52 |
120 | 326,505 | 0.233 | 0.223 | −17 | 8.897 | 51 | 0.256 | 0.247 | −33 | 4.428 | 21 | 0.125 | 0.123 | 0 | 8.106 | 54 |
130 | 326,465 | 0.243 | 0.232 | −16 | 9.965 | 58 | 0.265 | 0.256 | −34 | 5.126 | 26 | 0.122 | 0.120 | 1 | 9.216 | 61 |
140 | 326,442 | 0.244 | 0.233 | −16 | 10.175 | 59 | 0.273 | 0.264 | −35 | 5.079 | 25 | 0.125 | 0.122 | 0 | 9.098 | 60 |
150 | 326,357 | 0.252 | 0.241 | −16 | 10.133 | 58 | 0.352 | 0.340 | −45 | 4.601 | 15 | 0.169 | 0.166 | −1 | 8.831 | 58 |
160 | 326,130 | 0.206 | 0.197 | −15 | 6.294 | 31 | 0.293 | 0.283 | −36 | 4.360 | −5 | 0.187 | 0.183 | −4 | 4.711 | 26 |
170 | 326,112 | 0.204 | 0.195 | −15 | 6.173 | 30 | 0.289 | 0.279 | −35 | 4.284 | −5 | 0.179 | 0.175 | −4 | 4.688 | 27 |
180 | 326,099 | 0.203 | 0.194 | −14 | 6.130 | 30 | 0.283 | 0.273 | −34 | 4.277 | −5 | 0.177 | 0.173 | −3 | 4.654 | 26 |
190 | 326,088 | 0.204 | 0.195 | −14 | 6.143 | 30 | 0.282 | 0.272 | −34 | 4.280 | −5 | 0.178 | 0.174 | −3 | 4.699 | 27 |
200 | 326,076 | 0.204 | 0.195 | −14 | 6.172 | 30 | 0.286 | 0.276 | −34 | 4.347 | −4 | 0.184 | 0.180 | −3 | 4.823 | 27 |
210 | 326,071 | 0.199 | 0.190 | −12 | 6.140 | 30 | 0.273 | 0.264 | −32 | 4.277 | −4 | 0.183 | 0.179 | 0 | 4.868 | 28 |
217 | 326,069 | 0.191 | 0.183 | −11 | 5.967 | 28 | 0.261 | 0.252 | −29 | 4.364 | −5 | 0.178 | 0.175 | 2 | 4.779 | 27 |
Inverse gaussian with inverse link |
0 | 437,338 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 344,458 | 1.129 | 1.079 | −25 | 35.685 | 202 | 1.138 | 1.099 | −150 | 14.423 | 63 | 0.639 | 0.626 | −63 | 22.713 | 149 |
20 | 336,004 | 0.682 | 0.652 | −5 | 21.011 | 117 | 0.534 | 0.516 | −67 | 8.866 | 41 | 0.321 | 0.314 | −12 | 14.895 | 95 |
30 | 333,060 | 0.626 | 0.598 | −10 | 24.463 | 142 | 0.623 | 0.602 | −83 | 10.859 | 55 | 0.376 | 0.369 | −31 | 16.233 | 107 |
40 | 329,632 | 0.412 | 0.394 | −14 | 15.912 | 93 | 0.345 | 0.333 | −29 | 12.096 | 64 | 0.318 | 0.311 | 28 | 18.446 | 121 |
50 | 328,515 | 0.335 | 0.320 | −12 | 12.387 | 71 | 0.305 | 0.295 | −29 | 8.122 | 40 | 0.276 | 0.270 | 18 | 13.333 | 86 |
60 | 327,916 | 0.321 | 0.307 | −15 | 11.970 | 70 | 0.286 | 0.276 | −27 | 8.385 | 44 | 0.247 | 0.241 | 20 | 13.973 | 91 |
70 | 327,543 | 0.278 | 0.266 | −12 | 10.488 | 60 | 0.246 | 0.238 | −28 | 6.106 | 31 | 0.164 | 0.161 | 9 | 10.331 | 67 |
80 | 327,196 | 0.249 | 0.238 | −17 | 8.227 | 45 | 0.308 | 0.297 | −38 | 4.037 | 9 | 0.193 | 0.189 | −7 | 6.381 | 40 |
90 | 327,012 | 0.247 | 0.236 | −19 | 8.016 | 44 | 0.376 | 0.363 | −49 | 4.390 | −1 | 0.212 | 0.207 | −15 | 5.407 | 33 |
100 | 326,836 | 0.261 | 0.250 | −20 | 9.073 | 51 | 0.382 | 0.369 | −49 | 4.438 | 8 | 0.215 | 0.211 | −9 | 7.237 | 47 |
110 | 326,750 | 0.268 | 0.257 | −21 | 8.679 | 47 | 0.386 | 0.373 | −50 | 4.510 | 4 | 0.217 | 0.212 | −12 | 6.490 | 42 |
120 | 326,674 | 0.263 | 0.251 | −19 | 8.191 | 45 | 0.378 | 0.365 | −49 | 4.499 | 1 | 0.207 | 0.203 | −12 | 6.011 | 38 |
130 | 326,636 | 0.261 | 0.249 | −18 | 8.380 | 46 | 0.373 | 0.360 | −48 | 4.402 | 2 | 0.198 | 0.193 | −12 | 5.985 | 38 |
140 | 326,607 | 0.258 | 0.247 | −17 | 8.253 | 46 | 0.349 | 0.337 | −44 | 4.289 | 4 | 0.185 | 0.181 | −8 | 6.277 | 40 |
150 | 326,581 | 0.258 | 0.246 | −17 | 8.437 | 47 | 0.350 | 0.338 | −44 | 4.228 | 6 | 0.183 | 0.179 | −7 | 6.505 | 42 |
160 | 326,538 | 0.246 | 0.235 | −15 | 8.445 | 47 | 0.326 | 0.315 | −40 | 4.077 | 7 | 0.173 | 0.169 | −4 | 6.572 | 43 |
170 | 326,522 | 0.249 | 0.238 | −15 | 8.148 | 45 | 0.322 | 0.311 | −39 | 4.119 | 6 | 0.175 | 0.172 | −2 | 6.603 | 43 |
180 | 326,468 | 0.245 | 0.234 | −14 | 8.583 | 47 | 0.298 | 0.288 | −34 | 4.303 | 13 | 0.162 | 0.159 | 4 | 7.724 | 51 |
190 | 326,455 | 0.243 | 0.233 | −14 | 8.506 | 47 | 0.299 | 0.289 | −34 | 4.290 | 13 | 0.163 | 0.160 | 4 | 7.641 | 50 |
200 | 326,399 | 0.231 | 0.221 | −12 | 7.918 | 42 | 0.286 | 0.277 | −31 | 4.208 | 9 | 0.158 | 0.155 | 6 | 6.856 | 45 |
210 | 326,365 | 0.233 | 0.223 | −12 | 7.983 | 43 | 0.288 | 0.279 | −31 | 4.208 | 9 | 0.159 | 0.155 | 5 | 6.765 | 45 |
219 | 326,363 | 0.233 | 0.223 | −11 | 8.040 | 43 | 0.283 | 0.274 | −31 | 4.130 | 9 | 0.153 | 0.150 | 5 | 6.786 | 45 |
Inverse gaussian with log link |
0 | 437,338 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 343,530 | 0.866 | 0.828 | 19 | 24.925 | 131 | 0.450 | 0.435 | −28 | 14.940 | 69 | 0.494 | 0.484 | 39 | 21.122 | 136 |
20 | 335,355 | 0.644 | 0.616 | −5 | 19.653 | 109 | 0.526 | 0.509 | −67 | 7.947 | 33 | 0.318 | 0.311 | −14 | 13.490 | 85 |
30 | 331,675 | 0.536 | 0.512 | −4 | 21.697 | 125 | 0.482 | 0.465 | −58 | 10.885 | 57 | 0.262 | 0.256 | −2 | 17.245 | 113 |
40 | 329,140 | 0.366 | 0.350 | −10 | 13.913 | 80 | 0.325 | 0.314 | −32 | 8.604 | 44 | 0.269 | 0.264 | 16 | 14.011 | 91 |
50 | 328,190 | 0.324 | 0.310 | −16 | 12.640 | 73 | 0.319 | 0.308 | −32 | 8.482 | 43 | 0.274 | 0.268 | 16 | 13.966 | 91 |
60 | 327,666 | 0.296 | 0.283 | −15 | 11.626 | 67 | 0.290 | 0.280 | −31 | 7.181 | 37 | 0.201 | 0.197 | 15 | 12.695 | 83 |
70 | 327,263 | 0.261 | 0.250 | −15 | 9.948 | 57 | 0.244 | 0.236 | −27 | 6.042 | 30 | 0.172 | 0.168 | 12 | 10.531 | 69 |
80 | 327,061 | 0.251 | 0.240 | −18 | 9.746 | 56 | 0.284 | 0.275 | −37 | 4.988 | 24 | 0.145 | 0.142 | −1 | 8.964 | 59 |
90 | 326,825 | 0.263 | 0.251 | −23 | 8.769 | 51 | 0.321 | 0.310 | −44 | 4.059 | 15 | 0.168 | 0.165 | −11 | 7.316 | 48 |
100 | 326,695 | 0.261 | 0.249 | −22 | 7.727 | 43 | 0.352 | 0.340 | −45 | 4.048 | 6 | 0.203 | 0.199 | −10 | 6.341 | 41 |
110 | 326,589 | 0.240 | 0.230 | −19 | 7.484 | 41 | 0.342 | 0.330 | −44 | 4.124 | 1 | 0.192 | 0.188 | −11 | 5.484 | 35 |
120 | 326,409 | 0.216 | 0.207 | −16 | 6.397 | 32 | 0.299 | 0.289 | −37 | 4.534 | −2 | 0.195 | 0.191 | −4 | 5.170 | 30 |
130 | 326,363 | 0.216 | 0.207 | −15 | 6.314 | 31 | 0.308 | 0.298 | −37 | 4.693 | −6 | 0.201 | 0.196 | −4 | 4.957 | 28 |
140 | 326,331 | 0.218 | 0.208 | −15 | 6.537 | 33 | 0.303 | 0.292 | −36 | 4.505 | −3 | 0.195 | 0.191 | −1 | 5.362 | 32 |
150 | 326,270 | 0.216 | 0.207 | −14 | 6.457 | 32 | 0.302 | 0.291 | −36 | 4.524 | −4 | 0.189 | 0.185 | −2 | 5.049 | 30 |
160 | 326,249 | 0.217 | 0.208 | −14 | 6.596 | 34 | 0.298 | 0.288 | −36 | 4.418 | −2 | 0.182 | 0.178 | −1 | 5.291 | 32 |
170 | 326,231 | 0.217 | 0.207 | −15 | 6.492 | 32 | 0.296 | 0.286 | −35 | 4.391 | −3 | 0.179 | 0.175 | −2 | 5.189 | 31 |
180 | 326,206 | 0.214 | 0.205 | −15 | 6.426 | 32 | 0.302 | 0.291 | −36 | 4.466 | −4 | 0.179 | 0.175 | −3 | 4.950 | 29 |
190 | 326,191 | 0.206 | 0.197 | −13 | 6.472 | 33 | 0.288 | 0.279 | −34 | 4.422 | −3 | 0.173 | 0.170 | 0 | 5.149 | 31 |
200 | 326,176 | 0.208 | 0.199 | −13 | 6.545 | 33 | 0.286 | 0.276 | −33 | 4.430 | −2 | 0.179 | 0.175 | 0 | 5.288 | 31 |
210 | 326,161 | 0.208 | 0.199 | −13 | 6.501 | 33 | 0.286 | 0.276 | −33 | 4.439 | −2 | 0.184 | 0.180 | 1 | 5.318 | 32 |
220 | 326,153 | 0.202 | 0.193 | −10 | 6.280 | 30 | 0.260 | 0.251 | −27 | 4.455 | −2 | 0.178 | 0.174 | 5 | 5.190 | 31 |
222 | 326,153 | 0.201 | 0.192 | −10 | 6.291 | 30 | 0.261 | 0.252 | −28 | 4.494 | −3 | 0.180 | 0.177 | 5 | 5.176 | 30 |
Inverse gaussian withlink |
0 | 437,338 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 344,467 | 0.985 | 0.941 | −14 | 31.473 | 176 | 0.993 | 0.959 | −130 | 12.573 | 46 | 0.561 | 0.549 | −52 | 18.986 | 124 |
20 | 336,815 | 0.668 | 0.639 | −7 | 21.404 | 122 | 0.591 | 0.571 | −75 | 9.506 | 38 | 0.372 | 0.364 | −22 | 14.521 | 91 |
30 | 331,792 | 0.478 | 0.457 | −5 | 15.821 | 90 | 0.367 | 0.354 | −28 | 10.573 | 53 | 0.373 | 0.365 | 33 | 17.496 | 114 |
40 | 330,089 | 0.421 | 0.403 | −1 | 15.183 | 89 | 0.295 | 0.285 | −19 | 10.660 | 56 | 0.316 | 0.309 | 34 | 16.657 | 109 |
50 | 329,020 | 0.376 | 0.359 | −10 | 14.443 | 85 | 0.300 | 0.290 | −21 | 11.439 | 60 | 0.320 | 0.313 | 34 | 17.553 | 115 |
60 | 328,452 | 0.330 | 0.316 | −12 | 12.905 | 75 | 0.290 | 0.280 | −24 | 9.196 | 48 | 0.273 | 0.267 | 25 | 14.952 | 98 |
70 | 327,925 | 0.316 | 0.302 | −16 | 11.733 | 69 | 0.301 | 0.291 | −35 | 7.090 | 35 | 0.200 | 0.195 | 6 | 11.701 | 76 |
80 | 327,639 | 0.262 | 0.250 | −18 | 8.128 | 43 | 0.298 | 0.288 | −35 | 4.425 | 11 | 0.208 | 0.203 | −1 | 7.205 | 45 |
90 | 327,265 | 0.278 | 0.266 | −22 | 8.311 | 46 | 0.355 | 0.343 | −44 | 4.383 | 9 | 0.202 | 0.197 | −7 | 7.090 | 46 |
100 | 327,148 | 0.288 | 0.275 | −22 | 8.166 | 44 | 0.357 | 0.345 | −44 | 4.408 | 8 | 0.207 | 0.203 | −6 | 7.039 | 46 |
110 | 327,077 | 0.275 | 0.262 | −20 | 7.965 | 42 | 0.366 | 0.353 | −45 | 4.676 | 2 | 0.207 | 0.202 | −7 | 6.410 | 40 |
120 | 326,916 | 0.274 | 0.262 | −18 | 8.313 | 45 | 0.393 | 0.380 | −47 | 5.133 | 1 | 0.228 | 0.223 | −5 | 6.790 | 43 |
130 | 326,876 | 0.269 | 0.257 | −18 | 8.133 | 43 | 0.396 | 0.382 | −47 | 5.217 | 0 | 0.234 | 0.229 | −5 | 6.625 | 42 |
140 | 326,789 | 0.259 | 0.248 | −18 | 8.149 | 44 | 0.395 | 0.381 | −47 | 5.074 | 1 | 0.249 | 0.244 | −6 | 6.697 | 42 |
150 | 326,576 | 0.227 | 0.217 | −15 | 6.896 | 34 | 0.341 | 0.329 | −39 | 5.291 | −5 | 0.221 | 0.217 | −3 | 5.510 | 31 |
160 | 326,479 | 0.214 | 0.205 | −16 | 6.274 | 29 | 0.291 | 0.281 | −35 | 4.571 | −6 | 0.206 | 0.202 | −8 | 4.617 | 22 |
170 | 326,451 | 0.210 | 0.201 | −15 | 6.035 | 26 | 0.285 | 0.275 | −34 | 4.611 | −8 | 0.202 | 0.198 | −8 | 4.441 | 19 |
180 | 326,426 | 0.196 | 0.187 | −13 | 5.753 | 25 | 0.250 | 0.242 | −28 | 4.373 | −6 | 0.187 | 0.183 | −2 | 4.426 | 21 |
190 | 326,408 | 0.195 | 0.187 | −13 | 5.682 | 24 | 0.249 | 0.241 | −28 | 4.360 | −6 | 0.188 | 0.184 | −2 | 4.464 | 21 |
200 | 326,397 | 0.193 | 0.184 | −13 | 5.686 | 24 | 0.245 | 0.237 | −27 | 4.252 | −5 | 0.186 | 0.182 | −3 | 4.382 | 20 |
210 | 326,305 | 0.187 | 0.179 | −13 | 5.721 | 27 | 0.237 | 0.229 | −26 | 3.811 | 0 | 0.162 | 0.159 | 2 | 4.510 | 27 |
220 | 326,172 | 0.176 | 0.168 | −14 | 5.110 | 26 | 0.197 | 0.191 | −22 | 3.346 | 4 | 0.146 | 0.143 | 6 | 4.919 | 31 |
230 | 326,160 | 0.175 | 0.168 | −14 | 4.994 | 25 | 0.206 | 0.199 | −21 | 3.583 | 3 | 0.159 | 0.155 | 8 | 5.114 | 32 |
240 | 326,141 | 0.166 | 0.159 | −11 | 5.012 | 24 | 0.197 | 0.190 | −16 | 3.909 | 5 | 0.182 | 0.178 | 14 | 5.560 | 35 |
250 | 326,124 | 0.174 | 0.166 | −12 | 5.058 | 25 | 0.193 | 0.186 | −15 | 3.833 | 9 | 0.188 | 0.184 | 17 | 6.266 | 41 |
Table A14.
AIC scores and out-of-sample validation figures of the gaussian, gamma and inverse gaussian GLMs of BEL with identity, inverse, log and link functions under 150–443 and 300–886 after the final iteration. Highlighted in green and red respectively the best and worst AIC scores and validation figures.
Table A14.
AIC scores and out-of-sample validation figures of the gaussian, gamma and inverse gaussian GLMs of BEL with identity, inverse, log and link functions under 150–443 and 300–886 after the final iteration. Highlighted in green and red respectively the best and worst AIC scores and validation figures.
k | AIC | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
Gaussian with identity link under 150-443 |
150 | 325,850 | 0.247 | 0.237 | −14 | 9.924 | 57 | 0.271 | 0.262 | −35 | 4.612 | 22 | 0.122 | 0.120 | −1 | 8.537 | 56 |
Gaussian with inverse link under 150-443 |
150 | 325,952 | 0.258 | 0.247 | −16 | 8.468 | 45 | 0.353 | 0.341 | −44 | 4.282 | 3 | 0.192 | 0.188 | −8 | 6.088 | 39 |
Gaussian with log link under 150-443 |
150 | 325,823 | 0.240 | 0.229 | −15 | 7.980 | 44 | 0.316 | 0.305 | −38 | 4.014 | 6 | 0.170 | 0.167 | −2 | 6.434 | 42 |
Gamma with identity link under 150-443 |
150 | 326,041 | 0.236 | 0.226 | −14 | 9.329 | 53 | 0.260 | 0.251 | −33 | 4.321 | 20 | 0.121 | 0.118 | 1 | 8.206 | 54 |
Gamma with inverse link under 150-443 |
150 | 326,222 | 0.254 | 0.243 | −15 | 8.410 | 46 | 0.327 | 0.316 | −40 | 4.111 | 7 | 0.171 | 0.167 | −3 | 6.722 | 44 |
Gamma with log link under 150-443 |
150 | 326,022 | 0.243 | 0.232 | −15 | 7.820 | 43 | 0.323 | 0.312 | −40 | 4.040 | 3 | 0.174 | 0.170 | −4 | 6.010 | 39 |
Inverse gaussian with identity link under 150-443 |
150 | 326,352 | 0.249 | 0.238 | −17 | 9.375 | 54 | 0.337 | 0.326 | −44 | 4.224 | 12 | 0.150 | 0.146 | −4 | 7.930 | 52 |
Inverse gaussian with inverse link under 150-443 |
150 | 326,617 | 0.253 | 0.242 | −15 | 8.152 | 44 | 0.324 | 0.313 | −39 | 4.148 | 5 | 0.172 | 0.169 | −3 | 6.476 | 42 |
Inverse gaussian with log link under 150-443 |
150 | 326,413 | 0.247 | 0.237 | −15 | 7.716 | 42 | 0.324 | 0.313 | −40 | 4.095 | 2 | 0.172 | 0.168 | −4 | 5.892 | 38 |
Inverse gaussian withlink under 150-443 |
150 | 326,778 | 0.262 | 0.250 | −16 | 8.258 | 44 | 0.332 | 0.321 | −41 | 4.238 | 5 | 0.177 | 0.174 | −3 | 6.518 | 42 |
Gaussian with identity link under 300-886 |
224 | 325,459 | 0.194 | 0.186 | −9 | 6.659 | 34 | 0.268 | 0.259 | −30 | 4.200 | −2 | 0.168 | 0.165 | 1 | 5.007 | 29 |
Gaussian with inverse link under 300-886 |
213 | 325,797 | 0.241 | 0.230 | −12 | 8.325 | 44 | 0.310 | 0.299 | −36 | 4.063 | 6 | 0.171 | 0.167 | −1 | 6.284 | 41 |
Gaussian with log link under 300-886 |
214 | 325,552 | 0.206 | 0.197 | −10 | 6.640 | 32 | 0.267 | 0.258 | −29 | 4.402 | −2 | 0.177 | 0.173 | 3 | 5.180 | 30 |
Gamma with identity link under 300-886 |
212 | 325,689 | 0.189 | 0.180 | −11 | 5.975 | 28 | 0.261 | 0.252 | −29 | 4.384 | −5 | 0.169 | 0.165 | 1 | 4.545 | 25 |
Gamma with inverse link under 300-886 |
208 | 325,969 | 0.234 | 0.223 | −11 | 8.162 | 44 | 0.288 | 0.278 | −31 | 4.185 | 9 | 0.158 | 0.154 | 5 | 6.832 | 45 |
Gamma with log link under 300-886 |
226 | 325,767 | 0.198 | 0.189 | −8 | 6.256 | 29 | 0.249 | 0.241 | −24 | 4.532 | −1 | 0.184 | 0.180 | 8 | 5.417 | 32 |
Inverse gaussian with identity link under 300-886 |
217 | 326,069 | 0.191 | 0.183 | −11 | 5.967 | 28 | 0.261 | 0.252 | −29 | 4.364 | −5 | 0.178 | 0.175 | 2 | 4.779 | 27 |
Inverse gaussian with inverse link under 300-886 |
219 | 326,363 | 0.233 | 0.223 | −11 | 8.040 | 43 | 0.283 | 0.274 | −31 | 4.130 | 9 | 0.153 | 0.150 | 5 | 6.786 | 45 |
Inverse gaussian with log link under 300-886 |
222 | 326,153 | 0.201 | 0.192 | −10 | 6.291 | 30 | 0.261 | 0.252 | −28 | 4.494 | −3 | 0.180 | 0.177 | 5 | 5.176 | 30 |
Inverse gaussian withlink under 300-886 |
250 | 326,124 | 0.174 | 0.166 | −12 | 5.058 | 25 | 0.193 | 0.186 | −15 | 3.833 | 9 | 0.188 | 0.184 | 17 | 6.266 | 41 |
Table A15.
Out-of-sample validation figures of selected generalized additive models (GAMs) of BEL with varying spline function number per dimension and fixed spline function type under 150–443 after each tenth and the finally selected smooth function.
Table A15.
Out-of-sample validation figures of selected generalized additive models (GAMs) of BEL with varying spline function number per dimension and fixed spline function type under 150–443 after each tenth and the finally selected smooth function.
k | | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
4 Thin plate regression splines under gaussian with identity link in stagewise selection of length |
0 | 150 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 150 | 0.632 | 0.604 | 28 | 22.019 | 116 | 0.345 | 0.334 | −8 | 13.247 | 65 | 0.479 | 0.469 | 66 | 21.072 | 139 |
20 | 150 | 0.406 | 0.388 | 0 | 11.330 | 44 | 0.375 | 0.362 | −42 | 7.254 | −12 | 0.341 | 0.334 | −6 | 7.709 | 24 |
30 | 150 | 0.399 | 0.382 | −11 | 12.268 | 59 | 0.465 | 0.449 | −61 | 5.744 | −6 | 0.314 | 0.307 | −26 | 6.116 | 29 |
40 | 150 | 0.371 | 0.355 | −8 | 11.415 | 53 | 0.480 | 0.463 | −64 | 6.380 | −16 | 0.340 | 0.332 | −34 | 5.283 | 13 |
50 | 150 | 0.392 | 0.375 | −13 | 12.079 | 59 | 0.520 | 0.503 | −70 | 5.961 | −12 | 0.365 | 0.358 | −39 | 5.368 | 19 |
60 | 150 | 0.306 | 0.292 | −15 | 9.833 | 48 | 0.405 | 0.391 | −51 | 5.283 | −2 | 0.273 | 0.267 | −10 | 6.484 | 39 |
70 | 150 | 0.272 | 0.260 | −15 | 9.896 | 56 | 0.321 | 0.310 | −35 | 5.227 | 22 | 0.232 | 0.228 | 12 | 10.460 | 69 |
80 | 150 | 0.249 | 0.238 | −17 | 8.627 | 49 | 0.308 | 0.297 | −36 | 4.588 | 16 | 0.205 | 0.201 | 9 | 9.100 | 60 |
90 | 150 | 0.261 | 0.250 | −17 | 9.262 | 54 | 0.325 | 0.314 | −39 | 4.639 | 18 | 0.195 | 0.191 | 5 | 9.340 | 62 |
100 | 150 | 0.254 | 0.243 | −18 | 9.593 | 55 | 0.340 | 0.328 | −42 | 4.626 | 17 | 0.196 | 0.192 | 3 | 9.312 | 62 |
110 | 150 | 0.255 | 0.244 | −18 | 9.407 | 54 | 0.336 | 0.324 | −40 | 4.640 | 18 | 0.207 | 0.203 | 4 | 9.325 | 62 |
120 | 150 | 0.243 | 0.233 | −16 | 8.474 | 48 | 0.307 | 0.296 | −38 | 4.023 | 13 | 0.186 | 0.182 | 1 | 7.819 | 51 |
130 | 150 | 0.241 | 0.230 | −16 | 8.481 | 49 | 0.308 | 0.298 | −37 | 4.108 | 13 | 0.183 | 0.179 | 2 | 8.075 | 53 |
140 | 150 | 0.235 | 0.225 | −15 | 8.018 | 45 | 0.295 | 0.285 | −35 | 3.865 | 10 | 0.173 | 0.169 | 2 | 7.182 | 47 |
150 | 150 | 0.240 | 0.229 | −15 | 8.192 | 46 | 0.291 | 0.281 | −35 | 3.907 | 13 | 0.176 | 0.172 | 3 | 7.641 | 50 |
5 Thin plate regression splines under gaussian with identity link |
0 | 100 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 100 | 0.643 | 0.615 | 27 | 23.278 | 125 | 0.344 | 0.332 | −6 | 15.238 | 78 | 0.493 | 0.483 | 69 | 23.151 | 153 |
20 | 100 | 0.387 | 0.370 | 1 | 10.371 | 35 | 0.364 | 0.352 | −40 | 7.855 | −20 | 0.335 | 0.328 | −6 | 7.454 | 14 |
30 | 100 | 0.382 | 0.366 | −10 | 11.235 | 50 | 0.454 | 0.439 | −60 | 6.247 | −14 | 0.317 | 0.310 | −28 | 5.603 | 18 |
40 | 100 | 0.368 | 0.352 | −11 | 10.931 | 48 | 0.463 | 0.447 | −61 | 6.266 | −16 | 0.337 | 0.329 | −33 | 5.343 | 12 |
50 | 100 | 0.355 | 0.339 | −11 | 10.086 | 40 | 0.481 | 0.465 | −64 | 7.752 | −28 | 0.351 | 0.344 | −37 | 5.481 | 0 |
60 | 100 | 0.344 | 0.329 | −9 | 10.015 | 40 | 0.490 | 0.474 | −66 | 8.152 | −30 | 0.364 | 0.356 | −38 | 5.593 | −3 |
70 | 100 | 0.339 | 0.324 | −6 | 10.034 | 45 | 0.476 | 0.460 | −64 | 7.578 | −27 | 0.345 | 0.337 | −37 | 5.078 | 0 |
80 | 100 | 0.295 | 0.282 | −11 | 9.397 | 49 | 0.404 | 0.390 | −51 | 5.513 | −6 | 0.241 | 0.236 | −11 | 5.820 | 34 |
90 | 100 | 0.296 | 0.283 | −12 | 9.694 | 52 | 0.393 | 0.380 | −49 | 5.155 | 0 | 0.206 | 0.202 | −7 | 6.605 | 41 |
100 | 100 | 0.287 | 0.274 | −11 | 9.431 | 48 | 0.397 | 0.383 | −50 | 5.402 | −5 | 0.202 | 0.198 | −9 | 5.945 | 36 |
8 Thin plate regression splines under gaussian with identity link |
0 | 150 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 150 | 0.639 | 0.611 | 27 | 23.176 | 125 | 0.340 | 0.329 | −3 | 15.517 | 80 | 0.516 | 0.505 | 73 | 23.627 | 156 |
20 | 150 | 0.375 | 0.359 | 3 | 9.604 | 26 | 0.334 | 0.322 | −33 | 8.378 | −24 | 0.341 | 0.333 | 1 | 7.711 | 10 |
30 | 150 | 0.361 | 0.345 | −7 | 10.444 | 41 | 0.415 | 0.401 | −52 | 6.961 | −19 | 0.304 | 0.297 | −21 | 5.871 | 13 |
40 | 150 | 0.356 | 0.340 | −5 | 10.098 | 36 | 0.425 | 0.410 | −54 | 7.920 | −28 | 0.311 | 0.304 | −27 | 5.647 | −1 |
50 | 150 | 0.339 | 0.324 | −7 | 9.712 | 33 | 0.418 | 0.404 | −53 | 7.746 | −27 | 0.311 | 0.304 | −26 | 5.596 | 0 |
60 | 150 | 0.325 | 0.311 | −6 | 9.037 | 26 | 0.411 | 0.397 | −52 | 8.706 | −34 | 0.310 | 0.304 | −26 | 5.850 | −8 |
70 | 150 | 0.325 | 0.311 | −4 | 9.180 | 31 | 0.429 | 0.414 | −55 | 8.773 | −34 | 0.326 | 0.319 | −30 | 5.912 | −9 |
80 | 150 | 0.309 | 0.296 | −5 | 8.618 | 29 | 0.430 | 0.415 | −55 | 8.984 | −35 | 0.336 | 0.329 | −29 | 6.382 | −9 |
90 | 150 | 0.313 | 0.299 | −5 | 8.981 | 32 | 0.384 | 0.371 | −48 | 7.390 | −26 | 0.300 | 0.293 | −26 | 5.430 | −4 |
100 | 150 | 0.328 | 0.313 | −6 | 9.910 | 47 | 0.400 | 0.387 | −51 | 5.572 | −12 | 0.291 | 0.285 | −25 | 5.064 | 13 |
110 | 150 | 0.256 | 0.245 | −10 | 7.985 | 38 | 0.326 | 0.315 | −40 | 4.655 | −6 | 0.201 | 0.197 | −6 | 5.002 | 28 |
120 | 150 | 0.253 | 0.242 | −9 | 7.340 | 30 | 0.321 | 0.310 | −39 | 5.542 | −14 | 0.209 | 0.204 | −5 | 4.541 | 20 |
130 | 150 | 0.252 | 0.241 | −9 | 7.767 | 34 | 0.326 | 0.315 | −40 | 5.197 | −11 | 0.205 | 0.201 | −5 | 4.770 | 24 |
140 | 150 | 0.245 | 0.234 | −8 | 7.592 | 33 | 0.322 | 0.311 | −41 | 5.315 | −15 | 0.197 | 0.193 | −7 | 4.317 | 20 |
150 | 150 | 0.217 | 0.208 | −11 | 6.477 | 32 | 0.239 | 0.231 | −26 | 3.652 | 2 | 0.179 | 0.175 | 6 | 5.578 | 34 |
10 Thin plate regression splines under gaussian with identity link |
0 | 150 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 150 | 0.642 | 0.614 | 27 | 23.354 | 126 | 0.344 | 0.332 | −5 | 15.463 | 80 | 0.509 | 0.499 | 71 | 23.654 | 156 |
20 | 150 | 0.382 | 0.365 | 2 | 10.101 | 33 | 0.341 | 0.329 | −34 | 7.780 | −18 | 0.338 | 0.331 | 1 | 7.728 | 18 |
30 | 150 | 0.370 | 0.354 | −7 | 10.922 | 45 | 0.416 | 0.402 | −52 | 6.497 | −14 | 0.305 | 0.299 | −20 | 6.103 | 18 |
40 | 150 | 0.354 | 0.338 | −7 | 10.412 | 39 | 0.404 | 0.391 | −51 | 6.747 | −20 | 0.308 | 0.301 | −24 | 5.600 | 8 |
50 | 150 | 0.347 | 0.331 | −7 | 10.119 | 38 | 0.426 | 0.412 | −54 | 7.258 | −24 | 0.310 | 0.304 | −27 | 5.467 | 4 |
60 | 150 | 0.342 | 0.327 | −4 | 9.766 | 34 | 0.400 | 0.387 | −50 | 7.600 | −26 | 0.298 | 0.292 | −23 | 5.615 | 0 |
70 | 150 | 0.334 | 0.319 | −4 | 9.601 | 35 | 0.428 | 0.414 | −55 | 8.158 | −30 | 0.318 | 0.311 | −29 | 5.618 | −5 |
80 | 150 | 0.315 | 0.301 | −5 | 9.093 | 35 | 0.432 | 0.418 | −55 | 8.113 | −29 | 0.334 | 0.327 | −29 | 6.087 | −3 |
90 | 150 | 0.323 | 0.309 | −5 | 9.436 | 38 | 0.388 | 0.375 | −49 | 6.558 | −20 | 0.297 | 0.291 | −26 | 5.194 | 2 |
100 | 150 | 0.309 | 0.296 | −6 | 8.722 | 27 | 0.409 | 0.395 | −54 | 8.780 | −36 | 0.261 | 0.255 | −27 | 4.994 | −9 |
110 | 150 | 0.309 | 0.295 | −6 | 8.542 | 26 | 0.411 | 0.397 | −54 | 8.711 | −37 | 0.284 | 0.278 | −33 | 4.768 | −15 |
120 | 150 | 0.206 | 0.197 | −9 | 5.768 | 25 | 0.216 | 0.209 | −23 | 3.806 | −4 | 0.164 | 0.161 | 5 | 4.519 | 24 |
130 | 150 | 0.205 | 0.196 | −10 | 5.759 | 24 | 0.226 | 0.218 | −24 | 3.952 | −5 | 0.175 | 0.172 | 4 | 4.579 | 24 |
140 | 150 | 0.214 | 0.205 | −10 | 6.761 | 34 | 0.228 | 0.220 | −25 | 3.363 | 5 | 0.167 | 0.163 | 6 | 5.762 | 36 |
150 | 150 | 0.212 | 0.203 | −10 | 7.070 | 37 | 0.230 | 0.223 | −24 | 3.575 | 8 | 0.173 | 0.170 | 8 | 6.337 | 40 |
Table A16.
Effective degrees of freedom, p-values and significance codes per dimension of GAMs of BEL built up of thin plate regression splines with gaussian random component and identity link function under 150–443 for spline function numbers per dimension at stages . The confidence levels corresponding to the indicated significance codes are *** = 0.001, ** = 0.01, * = 0.05, = 0.1, = 1.
Table A16.
Effective degrees of freedom, p-values and significance codes per dimension of GAMs of BEL built up of thin plate regression splines with gaussian random component and identity link function under 150–443 for spline function numbers per dimension at stages . The confidence levels corresponding to the indicated significance codes are *** = 0.001, ** = 0.01, * = 0.05, = 0.1, = 1.
, | , | , | , | , | , |
---|
k | df | p-val | sign | df | p-val | sign | df | p-val | sign | df | p-val | sign | df | p-val | sign | df | p-val | sign |
---|
1 | 2.858 | | *** | 2.350 | | *** | 1.948 | | *** | 9.000 | | *** | 8.941 | | *** | 7.724 | | *** |
2 | 3.000 | | *** | 2.104 | | *** | 1.000 | | *** | 7.857 | | *** | 4.436 | | *** | 1.000 | | *** |
3 | 3.000 | | *** | 2.901 | | *** | 2.922 | | *** | 5.600 | | *** | 1.000 | | *** | 1.000 | | *** |
4 | 2.997 | | *** | 2.962 | | *** | 2.998 | | *** | 7.073 | | *** | 6.791 | | *** | 7.288 | | *** |
5 | 2.729 | | *** | 1.000 | | *** | 1.000 | | *** | 8.679 | | *** | 8.870 | | *** | 8.210 | | *** |
6 | 3.000 | | *** | 3.000 | | *** | 1.043 | | *** | 3.417 | | *** | 1.000 | | *** | 1.000 | | *** |
7 | 3.000 | | *** | 2.806 | | *** | 2.841 | | *** | 7.990 | | *** | 8.608 | | *** | 1.000 | | *** |
8 | 3.000 | | *** | 2.956 | | *** | 2.961 | | *** | 8.282 | | *** | 8.292 | | *** | 8.122 | | *** |
9 | 1.000 | | *** | 1.000 | | *** | 2.223 | | *** | 7.710 | | *** | 6.510 | | *** | 6.549 | | *** |
10 | 2.991 | | *** | 2.924 | | *** | 3.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
11 | 2.587 | | *** | 2.922 | | *** | 2.889 | | *** | 6.535 | | *** | 7.014 | | *** | 5.672 | | *** |
12 | 2.645 | | *** | 1.874 | | *** | 1.000 | | *** | 7.235 | | *** | 7.284 | | *** | 8.346 | | *** |
13 | 2.244 | | *** | 2.425 | | *** | 1.000 | | *** | 2.372 | | *** | 2.531 | | *** | 1.000 | | *** |
14 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
15 | 3.000 | | *** | 1.000 | | *** | 2.285 | | *** | 5.430 | | *** | 5.640 | | *** | 4.437 | | *** |
16 | 1.000 | | *** | 1.000 | | *** | 2.783 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
17 | 2.344 | | *** | 1.670 | | *** | 1.646 | | *** | 3.886 | | *** | 1.610 | | *** | 1.624 | | *** |
18 | 3.000 | | *** | 3.000 | | *** | 3.000 | | *** | 8.751 | | *** | 8.620 | | *** | 5.367 | | *** |
19 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
20 | 1.497 | | *** | 1.501 | | *** | 2.148 | | *** | 1.754 | | *** | 1.000 | | *** | 3.141 | | *** |
21 | 1.441 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
22 | 1.770 | | *** | 2.192 | | *** | 1.400 | | *** | 1.000 | | *** | 1.000 | | *** | 3.985 | | *** |
23 | 2.395 | | *** | 2.746 | | *** | 2.911 | | *** | 2.057 | | *** | 1.428 | | *** | 2.663 | | *** |
24 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 2.964 | | *** | 1.000 | | *** | 1.000 | | *** |
25 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
26 | 1.000 | | *** | 1.485 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
27 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
28 | 1.000 | | *** | 2.607 | | *** | 1.839 | | *** | 1.000 | | *** | 2.780 | | *** | 1.914 | | *** |
29 | 1.000 | | *** | 1.000 | | *** | 1.809 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
30 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 6.740 | | *** | 6.416 | | *** | 6.508 | | *** |
31 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
32 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
33 | 1.000 | | *** | 2.055 | | *** | 1.893 | | *** | 7.111 | | *** | 7.175 | | *** | 6.728 | | *** |
34 | 1.000 | 3.2 | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.213 | | *** | 1.635 | 4.9 | *** |
35 | 3.000 | | *** | 1.000 | | *** | 1.000 | | *** | 4.780 | | *** | 4.013 | | *** | 4.224 | | *** |
36 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 7.825 | | *** | 7.867 | | *** | 7.738 | | ** |
37 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
38 | 2.512 | | *** | 2.303 | | *** | 2.057 | | *** | 1.233 | | *** | 1.000 | | *** | 1.000 | | *** |
39 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | 2.6 | *** | 1.000 | | *** |
40 | 1.826 | | *** | 1.000 | | *** | 1.915 | | *** | 1.000 | | *** | 1.514 | | *** | 1.000 | | *** |
41 | 2.668 | | *** | 2.701 | | *** | 1.787 | | *** | 1.823 | | *** | 1.319 | | *** | 1.000 | | *** |
42 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 5.275 | | *** |
43 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
44 | 1.713 | | *** | 1.887 | | *** | 1.892 | | *** | 2.109 | | *** | 1.779 | | *** | 2.061 | | *** |
45 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
46 | 1.917 | | *** | 1.000 | | *** | 1.000 | | *** | 1.305 | | *** | 1.610 | | *** | 1.000 | | *** |
47 | 1.451 | | *** | 1.507 | | *** | 1.234 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
48 | 2.753 | | *** | 2.863 | | *** | 2.804 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
49 | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
50 | 1.000 | | *** | 1.372 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** | 1.000 | | *** |
51 | | | | 1.004 | | *** | 1.000 | | *** | | | | 1.000 | | *** | 1.000 | | *** |
52 | | | | 2.839 | | *** | 1.334 | | *** | | | | 1.000 | | *** | 1.000 | | *** |
53 | | | | 2.640 | | *** | 2.421 | | *** | | | | 1.000 | | *** | 1.000 | | *** |
54 | | | | 2.664 | | *** | 1.000 | | *** | | | | 3.237 | | *** | 3.168 | | *** |
55 | | | | 1.000 | | *** | 1.000 | | *** | | | | 3.906 | | *** | 3.493 | | *** |
56 | | | | 1.000 | | *** | 2.376 | | *** | | | | 1.098 | | *** | 3.513 | | *** |
57 | | | | 1.000 | | *** | 1.000 | | *** | | | | 5.574 | | ** | 5.019 | | . |
58 | | | | 1.000 | | *** | 1.000 | | *** | | | | 1.000 | | *** | 1.000 | | *** |
59 | | | | 1.000 | | *** | 1.000 | | *** | | | | 1.000 | | *** | 1.000 | | *** |
60 | | | | 1.000 | | *** | 1.000 | | *** | | | | 3.717 | | *** | 3.286 | | ** |
61 | | | | 1.000 | | *** | 1.000 | | *** | | | | 1.000 | | *** | 1.000 | | *** |
62 | | | | 2.613 | | *** | 2.868 | | *** | | | | 1.000 | | *** | 1.000 | | *** |
63 | | | | 1.000 | | *** | 1.867 | | *** | | | | 4.210 | | ** | 3.543 | | *** |
64 | | | | 1.000 | | *** | 1.000 | | *** | | | | 1.000 | | *** | 1.000 | | *** |
65 | | | | 2.960 | | *** | 2.976 | | *** | | | | 2.799 | | ** | 2.861 | | ** |
66 | | | | 1.904 | | *** | 2.115 | | *** | | | | 3.054 | | ** | 3.159 | | *** |
67 | | | | 2.859 | | *** | 2.778 | | *** | | | | 3.671 | | ** | 3.788 | | *** |
68 | | | | 1.000 | | | 1.000 | | *** | | | | 1.000 | | *** | 1.000 | | *** |
69 | | | | 2.797 | | ** | 2.954 | | ** | | | | 1.000 | | ** | 1.000 | | ** |
70 | | | | 1.000 | | *** | 1.000 | | *** | | | | 1.000 | | ** | 1.000 | | ** |
71 | | | | 2.957 | | *** | 2.996 | | *** | | | | 1.000 | | ** | 1.000 | | ** |
72 | | | | 2.612 | | *** | 2.101 | | *** | | | | 1.000 | | * | 1.000 | | ** |
73 | | | | 1.196 | | *** | 3.000 | | *** | | | | 1.000 | | * | 1.000 | | *** |
74 | | | | 2.994 | | *** | 2.559 | | ** | | | | 3.644 | | | 2.988 | | |
75 | | | | 1.000 | | *** | 1.000 | | *** | | | | 1.000 | | * | 1.000 | | * |
76 | | | | 1.000 | | *** | 2.334 | | *** | | | | 2.469 | | | 2.077 | | |
77 | | | | 1.353 | | *** | 1.411 | | *** | | | | 1.000 | | * | 1.000 | | * |
78 | | | | 1.000 | | *** | 1.000 | | *** | | | | 1.000 | | *** | 1.000 | | *** |
79 | | | | 1.000 | | *** | 1.000 | | *** | | | | 5.186 | | *** | 1.000 | | *** |
80 | | | | 1.000 | | *** | 1.000 | | *** | | | | 1.892 | | * | 1.795 | | * |
81 | | | | 2.725 | | *** | 2.739 | | *** | | | | 1.000 | | *** | 1.000 | | |
82 | | | | 1.000 | | *** | 2.175 | | *** | | | | 1.000 | | ** | 1.000 | | |
83 | | | | 2.24 | | ** | 2.075 | | *** | | | | 7.02 | | *** | 4.809 | | ** |
84 | | | | 1.000 | | *** | 2.902 | | *** | | | | 4.003 | | | 4.722 | | ** |
85 | | | | 1.000 | | *** | 1.000 | | *** | | | | 1.000 | | *** | 1.000 | | *** |
86 | | | | 1.000 | | *** | 1.000 | | *** | | | | 3.115 | | | 2.748 | | |
87 | | | | 1.000 | | *** | 1.000 | | *** | | | | 5.294 | | | 5.598 | | |
88 | | | | 1.000 | | *** | 1.000 | | *** | | | | 2.263 | | | 1.788 | | |
89 | | | | 2.828 | | ** | 1.000 | | *** | | | | 1.000 | | *** | 1.000 | | *** |
90 | | | | 1.000 | | *** | 1.000 | | *** | | | | 1.000 | | * | 1.000 | | * |
91 | | | | 1.000 | | ** | 1.000 | | ** | | | | 1.000 | | ** | 1.000 | | ** |
92 | | | | 1.000 | | ** | 1.000 | | ** | | | | 1.000 | | * | 1.000 | | * |
93 | | | | 1.000 | | ** | 1.000 | | ** | | | | 1.000 | | * | 1.000 | | * |
94 | | | | 2.776 | | *** | 1.000 | | *** | | | | 5.921 | | ** | 3.962 | | *** |
95 | | | | 2.103 | | * | 1.974 | | | | | | 8.154 | | *** | 2.290 | | *** |
96 | | | | 2.023 | | *** | 1.000 | | *** | | | | 1.000 | | *** | 1.000 | | *** |
97 | | | | 2.811 | | * | 2.873 | | ** | | | | 3.748 | | *** | 1.000 | | *** |
98 | | | | 1.000 | | ** | 1.000 | | * | | | | 1.000 | | *** | 7.349 | | |
99 | | | | 1.000 | | * | 1.000 | | * | | | | 2.149 | | ** | 1.000 | | *** |
100 | | | | 2.764 | | * | 2.321 | | . | | | | 1.000 | | ** | 1.000 | | |
101 | | | | | | | 1.000 | | *** | | | | | | | 1.000 | | *** |
102 | | | | | | | 1.000 | | . | | | | | | | 1.000 | | * |
103 | | | | | | | 1.000 | | ** | | | | | | | 4.084 | | *** |
104 | | | | | | | 1.000 | | *** | | | | | | | 1.000 | | * |
105 | | | | | | | 1.000 | | ** | | | | | | | 1.000 | | . |
106 | | | | | | | 1.000 | | *** | | | | | | | 1.000 | | ** |
107 | | | | | | | 1.000 | | * | | | | | | | 3.397 | | |
108 | | | | | | | 2.187 | | . | | | | | | | 1.248 | | |
109 | | | | | | | 1.000 | | ** | | | | | | | 3.079 | | |
110 | | | | | | | 1.000 | | * | | | | | | | 1.000 | | *** |
111 | | | | | | | 1.000 | | *** | | | | | | | | | *** |
112 | | | | | | | 1.000 | | * | | | | | | | 8.555 | | *** |
113 | | | | | | | 1.000 | | | | | | | | | 8.952 | | *** |
114 | | | | | | | 1.644 | | . | | | | | | | 1.000 | | *** |
115 | | | | | | | 1.000 | | * | | | | | | | 1.000 | | *** |
116 | | | | | | | 1.000 | | * | | | | | | | 1.000 | | *** |
117 | | | | | | | 1.000 | | ** | | | | | | | 2.988 | | *** |
118 | | | | | | | 1.000 | | * | | | | | | | 8.401 | | *** |
119 | | | | | | | 2.704 | | . | | | | | | | 2.493 | | *** |
120 | | | | | | | 1.000 | | * | | | | | | | 1.000 | | *** |
121 | | | | | | | 1.413 | | | | | | | | | 1.000 | | *** |
122 | | | | | | | 1.886 | | | | | | | | | 2.745 | | ** |
123 | | | | | | | 1.000 | | *** | | | | | | | 1.000 | | ** |
124 | | | | | | | 2.499 | | | | | | | | | 1.000 | | * |
125 | | | | | | | 1.000 | | * | | | | | | | 1.000 | | * |
126 | | | | | | | 2.416 | | | | | | | | | 1.000 | | ** |
127 | | | | | | | 1.000 | | *** | | | | | | | 3.120 | | . |
128 | | | | | | | 1.000 | | * | | | | | | | 1.000 | | *** |
129 | | | | | | | 1.000 | | ** | | | | | | | 1.000 | | ** |
130 | | | | | | | 1.000 | | . | | | | | | | 3.778 | | |
131 | | | | | | | 1.000 | | * | | | | | | | 2.752 | | * |
132 | | | | | | | 1.000 | | * | | | | | | | 1.000 | | ** |
133 | | | | | | | 1.97 | | | | | | | | | 1.000 | | ** |
134 | | | | | | | 1.000 | | * | | | | | | | 1.000 | | . |
135 | | | | | | | 1.000 | | *** | | | | | | | 1.000 | | * |
136 | | | | | | | 1.176 | | ** | | | | | | | 5.289 | | |
137 | | | | | | | 2.357 | | | | | | | | | 1.000 | | * |
138 | | | | | | | 1.000 | | . | | | | | | | 1.000 | | *** |
139 | | | | | | | 1.000 | | . | | | | | | | 1.000 | | ** |
140 | | | | | | | 1.000 | | . | | | | | | | 1.000 | | |
141 | | | | | | | 1.000 | | * | | | | | | | 8.453 | | ** |
142 | | | | | | | 1.000 | | ** | | | | | | | 1.000 | | * |
143 | | | | | | | 2.602 | | * | | | | | | | 3.975 | | |
144 | | | | | | | 1.631 | | | | | | | | | 1.000 | | *** |
145 | | | | | | | 1.000 | | . | | | | | | | 1.000 | | ** |
146 | | | | | | | 1.000 | | * | | | | | | | 2.147 | | |
147 | | | | | | | 1.000 | | * | | | | | | | 1.000 | | . |
148 | | | | | | | 1.251 | | | | | | | | | 1.000 | | * |
149 | | | | | | | 2.376 | | | | | | | | | 1.000 | | . |
150 | | | | | | | 1.482 | | | | | | | | | 1.000 | | . |
Table A17.
Out-of-sample validation figures of selected GAMs of BEL with varying spline function type and fixed spline function number of 5 per dimension under 100–443 after each tenth and the finally selected smooth function.
Table A17.
Out-of-sample validation figures of selected GAMs of BEL with varying spline function type and fixed spline function number of 5 per dimension under 100–443 after each tenth and the finally selected smooth function.
k | | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
5 Thin plate regression splines under gaussian with identity link |
0 | 100 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 100 | 0.643 | 0.615 | 27 | 23.278 | 125 | 0.344 | 0.332 | −6 | 15.238 | 78 | 0.493 | 0.483 | 69 | 23.151 | 153 |
20 | 100 | 0.387 | 0.370 | 1 | 10.371 | 35 | 0.364 | 0.352 | −40 | 7.855 | −20 | 0.335 | 0.328 | −6 | 7.454 | 14 |
30 | 100 | 0.382 | 0.366 | −10 | 11.235 | 50 | 0.454 | 0.439 | −60 | 6.247 | −14 | 0.317 | 0.310 | −28 | 5.603 | 18 |
40 | 100 | 0.368 | 0.352 | −11 | 10.931 | 48 | 0.463 | 0.447 | −61 | 6.266 | −16 | 0.337 | 0.329 | −33 | 5.343 | 12 |
50 | 100 | 0.355 | 0.339 | −11 | 10.086 | 40 | 0.481 | 0.465 | −64 | 7.752 | −28 | 0.351 | 0.344 | −37 | 5.481 | 0 |
60 | 100 | 0.344 | 0.329 | −9 | 10.015 | 40 | 0.490 | 0.474 | −66 | 8.152 | −30 | 0.364 | 0.356 | −38 | 5.593 | −3 |
70 | 100 | 0.339 | 0.324 | −6 | 10.034 | 45 | 0.476 | 0.460 | −64 | 7.578 | −27 | 0.345 | 0.337 | −37 | 5.078 | 0 |
80 | 100 | 0.295 | 0.282 | −11 | 9.397 | 49 | 0.404 | 0.390 | −51 | 5.513 | −6 | 0.241 | 0.236 | −11 | 5.820 | 34 |
90 | 100 | 0.296 | 0.283 | −12 | 9.694 | 52 | 0.393 | 0.380 | −49 | 5.155 | 0 | 0.206 | 0.202 | −7 | 6.605 | 41 |
100 | 100 | 0.287 | 0.274 | −11 | 9.431 | 48 | 0.397 | 0.383 | −50 | 5.402 | −5 | 0.202 | 0.198 | −9 | 5.945 | 36 |
5 Cubic regression splines under gaussian with identity link |
0 | 100 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 100 | 0.637 | 0.609 | 28 | 22.739 | 122 | 0.337 | 0.326 | −4 | 14.733 | 75 | 0.505 | 0.494 | 71 | 22.781 | 150 |
20 | 100 | 0.388 | 0.371 | 2 | 10.094 | 32 | 0.358 | 0.346 | −40 | 8.256 | −25 | 0.319 | 0.313 | −5 | 7.161 | 10 |
30 | 100 | 0.389 | 0.372 | −6 | 11.426 | 50 | 0.436 | 0.421 | −55 | 6.652 | −14 | 0.289 | 0.283 | −19 | 5.849 | 22 |
40 | 100 | 0.359 | 0.343 | −9 | 10.508 | 41 | 0.448 | 0.433 | −59 | 7.171 | −23 | 0.310 | 0.303 | −29 | 5.175 | 6 |
50 | 100 | 0.345 | 0.330 | −9 | 9.906 | 35 | 0.476 | 0.460 | −63 | 8.736 | −34 | 0.328 | 0.321 | −34 | 5.373 | −5 |
60 | 100 | 0.338 | 0.323 | −7 | 9.817 | 34 | 0.475 | 0.459 | −63 | 9.192 | −37 | 0.330 | 0.324 | −34 | 5.491 | −8 |
70 | 100 | 0.307 | 0.294 | −8 | 9.341 | 47 | 0.430 | 0.416 | −58 | 6.081 | −18 | 0.234 | 0.229 | −26 | 3.871 | 15 |
80 | 100 | 0.289 | 0.277 | −13 | 10.157 | 55 | 0.410 | 0.396 | −53 | 5.106 | 0 | 0.237 | 0.232 | −11 | 6.939 | 43 |
90 | 100 | 0.283 | 0.271 | −13 | 10.307 | 56 | 0.407 | 0.394 | −53 | 5.067 | 1 | 0.229 | 0.224 | −10 | 7.035 | 44 |
100 | 100 | 0.268 | 0.256 | −12 | 9.903 | 52 | 0.399 | 0.386 | −51 | 5.182 | −2 | 0.226 | 0.221 | −9 | 6.533 | 40 |
5 Duchon splines under gaussian with identity link |
0 | 100 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 100 | 0.753 | 0.720 | −4 | 20.570 | 98 | 0.428 | 0.413 | −39 | 11.806 | 49 | 0.408 | 0.399 | 6 | 15.241 | 93 |
20 | 100 | 0.704 | 0.673 | −22 | 17.488 | 74 | 0.441 | 0.426 | −51 | 8.606 | 31 | 0.380 | 0.372 | −16 | 11.600 | 66 |
30 | 100 | 0.661 | 0.632 | −32 | 19.699 | 95 | 0.376 | 0.363 | −40 | 14.235 | 73 | 0.319 | 0.312 | 11 | 19.168 | 124 |
40 | 100 | 0.663 | 0.634 | −21 | 18.426 | 84 | 0.292 | 0.282 | −18 | 14.138 | 73 | 0.377 | 0.370 | 33 | 19.007 | 123 |
50 | 100 | 0.666 | 0.636 | −17 | 18.534 | 86 | 0.287 | 0.277 | −12 | 14.785 | 76 | 0.410 | 0.402 | 41 | 19.896 | 130 |
56 | 100 | 0.666 | 0.636 | −18 | 18.532 | 86 | 0.288 | 0.279 | −14 | 14.643 | 75 | 0.406 | 0.397 | 40 | 19.757 | 129 |
5 Eilers and Marx style P-splines under gaussian with identity link |
0 | 100 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 100 | 0.643 | 0.615 | 29 | 22.836 | 123 | 0.344 | 0.332 | −9 | 13.951 | 70 | 0.471 | 0.461 | 65 | 21.854 | 144 |
20 | 100 | 0.389 | 0.372 | 1 | 10.496 | 37 | 0.365 | 0.353 | −41 | 7.778 | −20 | 0.336 | 0.329 | −8 | 7.402 | 13 |
30 | 100 | 0.384 | 0.367 | −9 | 11.377 | 53 | 0.459 | 0.444 | −60 | 6.138 | −13 | 0.320 | 0.313 | −30 | 5.512 | 17 |
40 | 100 | 0.371 | 0.354 | −10 | 10.977 | 49 | 0.454 | 0.439 | −60 | 6.095 | −16 | 0.327 | 0.320 | −34 | 5.092 | 11 |
50 | 100 | 0.357 | 0.341 | −9 | 10.459 | 45 | 0.467 | 0.451 | −62 | 6.909 | −22 | 0.335 | 0.328 | −34 | 5.059 | 6 |
60 | 100 | 0.339 | 0.324 | −10 | 9.932 | 43 | 0.492 | 0.476 | −66 | 7.640 | −28 | 0.365 | 0.357 | −40 | 5.155 | −2 |
70 | 100 | 0.343 | 0.328 | −10 | 10.523 | 52 | 0.546 | 0.527 | −75 | 7.681 | −27 | 0.366 | 0.358 | −46 | 4.576 | 2 |
80 | 100 | 0.334 | 0.319 | −7 | 9.920 | 45 | 0.520 | 0.503 | −67 | 8.655 | −29 | 0.346 | 0.339 | −36 | 5.036 | 1 |
90 | 100 | 0.228 | 0.218 | −10 | 6.973 | 35 | 0.279 | 0.269 | −31 | 4.299 | 0 | 0.208 | 0.204 | 3 | 5.810 | 34 |
100 | 100 | 0.225 | 0.215 | −11 | 6.897 | 34 | 0.256 | 0.248 | −30 | 3.716 | 2 | 0.164 | 0.161 | 1 | 5.212 | 32 |
Table A18.
Out-of-sample validation figures of selected GAMs of BEL with varying spline function type and fixed spline function number of 10 per dimension under between 100–443 and 150–443 after each tenth and the finally selected smooth function.
Table A18.
Out-of-sample validation figures of selected GAMs of BEL with varying spline function type and fixed spline function number of 10 per dimension under between 100–443 and 150–443 after each tenth and the finally selected smooth function.
k | | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
10 Thin plate regression splines under gaussian with identity link |
0 | 150 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 150 | 0.642 | 0.614 | 27 | 23.354 | 126 | 0.344 | 0.332 | −5 | 15.463 | 80 | 0.509 | 0.499 | 71 | 23.654 | 156 |
20 | 150 | 0.382 | 0.365 | 2 | 10.101 | 33 | 0.341 | 0.329 | −34 | 7.780 | −18 | 0.338 | 0.331 | 1 | 7.728 | 18 |
30 | 150 | 0.370 | 0.354 | −7 | 10.922 | 45 | 0.416 | 0.402 | −52 | 6.497 | −14 | 0.305 | 0.299 | −20 | 6.103 | 18 |
40 | 150 | 0.354 | 0.338 | −7 | 10.412 | 39 | 0.404 | 0.391 | −51 | 6.747 | −20 | 0.308 | 0.301 | −24 | 5.600 | 8 |
50 | 150 | 0.347 | 0.331 | −7 | 10.119 | 38 | 0.426 | 0.412 | −54 | 7.258 | −24 | 0.310 | 0.304 | −27 | 5.467 | 4 |
60 | 150 | 0.342 | 0.327 | −4 | 9.766 | 34 | 0.400 | 0.387 | −50 | 7.600 | −26 | 0.298 | 0.292 | −23 | 5.615 | 0 |
70 | 150 | 0.334 | 0.319 | −4 | 9.601 | 35 | 0.428 | 0.414 | −55 | 8.158 | −30 | 0.318 | 0.311 | −29 | 5.618 | −5 |
80 | 150 | 0.315 | 0.301 | −5 | 9.093 | 35 | 0.432 | 0.418 | −55 | 8.113 | −29 | 0.334 | 0.327 | −29 | 6.087 | −3 |
90 | 150 | 0.323 | 0.309 | −5 | 9.436 | 38 | 0.388 | 0.375 | −49 | 6.558 | −20 | 0.297 | 0.291 | −26 | 5.194 | 2 |
100 | 150 | 0.309 | 0.296 | −6 | 8.722 | 27 | 0.409 | 0.395 | −54 | 8.780 | −36 | 0.261 | 0.255 | −27 | 4.994 | −9 |
110 | 150 | 0.309 | 0.295 | −6 | 8.542 | 26 | 0.411 | 0.397 | −54 | 8.711 | −37 | 0.284 | 0.278 | −33 | 4.768 | −15 |
120 | 150 | 0.206 | 0.197 | −9 | 5.768 | 25 | 0.216 | 0.209 | −23 | 3.806 | −4 | 0.164 | 0.161 | 5 | 4.519 | 24 |
130 | 150 | 0.205 | 0.196 | −10 | 5.759 | 24 | 0.226 | 0.218 | −24 | 3.952 | −5 | 0.175 | 0.172 | 4 | 4.579 | 24 |
140 | 150 | 0.214 | 0.205 | −10 | 6.761 | 34 | 0.228 | 0.220 | −25 | 3.363 | 5 | 0.167 | 0.163 | 6 | 5.762 | 36 |
150 | 150 | 0.212 | 0.203 | −10 | 7.070 | 37 | 0.230 | 0.223 | −24 | 3.575 | 8 | 0.173 | 0.170 | 8 | 6.337 | 40 |
10 Cubic regression splines under gaussian with identity link |
0 | 125 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 125 | 0.638 | 0.610 | 27 | 23.397 | 127 | 0.341 | 0.329 | −3 | 15.829 | 82 | 0.519 | 0.509 | 73 | 23.960 | 158 |
20 | 125 | 0.380 | 0.364 | 2 | 10.038 | 34 | 0.339 | 0.328 | −34 | 7.650 | −16 | 0.345 | 0.338 | 0 | 7.865 | 18 |
30 | 125 | 0.377 | 0.360 | −6 | 11.458 | 53 | 0.411 | 0.397 | −50 | 6.035 | −5 | 0.309 | 0.302 | −14 | 6.976 | 30 |
40 | 125 | 0.364 | 0.348 | −10 | 10.929 | 47 | 0.421 | 0.407 | −53 | 5.791 | −10 | 0.315 | 0.308 | −25 | 5.824 | 18 |
50 | 125 | 0.348 | 0.333 | −11 | 10.437 | 44 | 0.436 | 0.421 | −56 | 6.263 | −15 | 0.319 | 0.312 | −27 | 5.636 | 13 |
60 | 125 | 0.342 | 0.327 | −5 | 9.791 | 36 | 0.403 | 0.389 | −50 | 7.282 | −23 | 0.308 | 0.302 | −23 | 5.789 | 4 |
70 | 125 | 0.355 | 0.340 | −3 | 10.502 | 48 | 0.442 | 0.427 | −56 | 7.001 | −20 | 0.327 | 0.320 | −30 | 5.570 | 6 |
80 | 125 | 0.349 | 0.334 | −2 | 10.275 | 46 | 0.434 | 0.419 | −55 | 7.159 | −22 | 0.326 | 0.319 | −29 | 5.592 | 4 |
90 | 125 | 0.282 | 0.269 | −5 | 7.978 | 37 | 0.275 | 0.266 | −30 | 4.426 | −3 | 0.215 | 0.210 | −2 | 5.088 | 25 |
100 | 125 | 0.263 | 0.251 | −5 | 7.109 | 29 | 0.301 | 0.291 | −37 | 5.637 | −17 | 0.200 | 0.196 | −8 | 3.969 | 12 |
110 | 125 | 0.255 | 0.244 | −7 | 6.999 | 30 | 0.303 | 0.292 | −37 | 5.435 | −15 | 0.202 | 0.198 | −6 | 4.230 | 16 |
120 | 125 | 0.257 | 0.246 | −7 | 7.052 | 30 | 0.304 | 0.294 | −37 | 5.371 | −14 | 0.200 | 0.196 | −6 | 4.232 | 17 |
125 | 125 | 0.254 | 0.243 | −7 | 7.139 | 31 | 0.299 | 0.289 | −36 | 5.189 | −13 | 0.197 | 0.192 | −6 | 4.228 | 17 |
10 Duchon splines under gaussian with identity link |
0 | 100 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 100 | 0.786 | 0.752 | −5 | 22.143 | 110 | 0.445 | 0.430 | −44 | 12.588 | 57 | 0.406 | 0.397 | 1 | 16.238 | 102 |
20 | 100 | 0.783 | 0.749 | −32 | 20.489 | 101 | 0.494 | 0.477 | −62 | 11.319 | 58 | 0.357 | 0.350 | −21 | 15.316 | 98 |
30 | 100 | 0.782 | 0.748 | −39 | 21.134 | 98 | 0.538 | 0.520 | −59 | 12.715 | 64 | 0.422 | 0.413 | −3 | 18.621 | 121 |
40 | 100 | 0.816 | 0.780 | −45 | 22.125 | 98 | 0.559 | 0.540 | −63 | 13.071 | 65 | 0.450 | 0.440 | −10 | 18.616 | 119 |
50 | 100 | 0.823 | 0.787 | −45 | 21.473 | 96 | 0.555 | 0.536 | −63 | 12.672 | 63 | 0.451 | 0.441 | −10 | 18.114 | 116 |
53 | 100 | 0.821 | 0.785 | −44 | 21.348 | 94 | 0.545 | 0.526 | −61 | 12.593 | 62 | 0.446 | 0.437 | −8 | 18.091 | 116 |
10 Eilers and Marx style P-splines under gaussian with identity link in stagewise selection of length |
0 | 150 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 150 | 0.648 | 0.619 | 27 | 23.688 | 128 | 0.349 | 0.337 | −7 | 15.566 | 80 | 0.506 | 0.495 | 71 | 23.889 | 158 |
20 | 150 | 0.398 | 0.380 | 1 | 10.946 | 45 | 0.358 | 0.346 | −37 | 7.063 | −7 | 0.338 | 0.331 | 1 | 8.102 | 31 |
30 | 150 | 0.393 | 0.376 | −9 | 11.983 | 59 | 0.435 | 0.421 | −55 | 5.575 | −2 | 0.299 | 0.293 | −17 | 6.928 | 36 |
40 | 150 | 0.371 | 0.355 | −8 | 11.374 | 55 | 0.449 | 0.434 | −57 | 5.738 | −9 | 0.314 | 0.308 | −26 | 5.770 | 23 |
50 | 150 | 0.363 | 0.347 | −9 | 10.956 | 50 | 0.460 | 0.444 | −60 | 6.249 | −14 | 0.315 | 0.308 | −28 | 5.492 | 17 |
60 | 150 | 0.349 | 0.334 | −8 | 10.479 | 46 | 0.443 | 0.428 | −56 | 6.526 | −17 | 0.305 | 0.298 | −26 | 5.427 | 14 |
70 | 150 | 0.349 | 0.333 | −6 | 10.629 | 51 | 0.464 | 0.449 | −60 | 6.687 | −17 | 0.325 | 0.318 | −29 | 5.501 | 13 |
80 | 150 | 0.350 | 0.335 | −7 | 10.465 | 48 | 0.468 | 0.452 | −60 | 7.036 | −19 | 0.335 | 0.328 | −29 | 5.563 | 11 |
90 | 150 | 0.350 | 0.335 | −7 | 10.639 | 51 | 0.470 | 0.454 | −60 | 6.683 | −17 | 0.330 | 0.323 | −29 | 5.453 | 14 |
100 | 150 | 0.334 | 0.319 | −8 | 9.960 | 46 | 0.468 | 0.452 | −60 | 7.170 | −20 | 0.339 | 0.332 | −29 | 5.835 | 11 |
110 | 150 | 0.337 | 0.323 | −9 | 10.249 | 48 | 0.450 | 0.435 | −58 | 6.171 | −15 | 0.329 | 0.322 | −31 | 5.267 | 12 |
120 | 150 | 0.339 | 0.324 | −7 | 10.283 | 45 | 0.433 | 0.419 | −55 | 6.420 | −17 | 0.320 | 0.313 | −28 | 5.340 | 10 |
130 | 150 | 0.269 | 0.257 | −13 | 8.912 | 43 | 0.365 | 0.352 | −46 | 4.891 | −4 | 0.244 | 0.238 | −12 | 5.503 | 30 |
140 | 150 | 0.255 | 0.244 | −12 | 8.157 | 36 | 0.356 | 0.344 | −44 | 5.415 | −10 | 0.246 | 0.241 | −10 | 5.196 | 24 |
150 | 150 | 0.261 | 0.250 | −12 | 8.514 | 39 | 0.368 | 0.355 | −46 | 5.267 | −9 | 0.245 | 0.240 | −12 | 5.162 | 25 |
Table A19.
Out-of-sample validation figures of selected GAMs of BEL with varying random component link function combination and fixed spline function number of 4 per dimension under between 40–443 and 150–443 after each tenth and the finally selected smooth function.
Table A19.
Out-of-sample validation figures of selected GAMs of BEL with varying random component link function combination and fixed spline function number of 4 per dimension under between 40–443 and 150–443 after each tenth and the finally selected smooth function.
k | | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
4 Thin plate regression splines under gaussian with identity link in stagewise selection of length |
0 | 150 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 150 | 0.632 | 0.604 | 28 | 22.019 | 116 | 0.345 | 0.334 | −8 | 13.247 | 65 | 0.479 | 0.469 | 66 | 21.072 | 139 |
20 | 150 | 0.406 | 0.388 | 0 | 11.330 | 44 | 0.375 | 0.362 | −42 | 7.254 | −12 | 0.341 | 0.334 | −6 | 7.709 | 24 |
30 | 150 | 0.399 | 0.382 | −11 | 12.268 | 59 | 0.465 | 0.449 | −61 | 5.744 | −6 | 0.314 | 0.307 | −26 | 6.116 | 29 |
40 | 150 | 0.371 | 0.355 | −8 | 11.415 | 53 | 0.480 | 0.463 | −64 | 6.380 | −16 | 0.340 | 0.332 | −34 | 5.283 | 13 |
50 | 150 | 0.392 | 0.375 | −13 | 12.079 | 59 | 0.520 | 0.503 | −70 | 5.961 | −12 | 0.365 | 0.358 | −39 | 5.368 | 19 |
60 | 150 | 0.306 | 0.292 | −15 | 9.833 | 48 | 0.405 | 0.391 | −51 | 5.283 | −2 | 0.273 | 0.267 | −10 | 6.484 | 39 |
70 | 150 | 0.272 | 0.260 | −15 | 9.896 | 56 | 0.321 | 0.310 | −35 | 5.227 | 22 | 0.232 | 0.228 | 12 | 10.460 | 69 |
80 | 150 | 0.249 | 0.238 | −17 | 8.627 | 49 | 0.308 | 0.297 | −36 | 4.588 | 16 | 0.205 | 0.201 | 9 | 9.100 | 60 |
90 | 150 | 0.261 | 0.250 | −17 | 9.262 | 54 | 0.325 | 0.314 | −39 | 4.639 | 18 | 0.195 | 0.191 | 5 | 9.340 | 62 |
100 | 150 | 0.254 | 0.243 | −18 | 9.593 | 55 | 0.340 | 0.328 | −42 | 4.626 | 17 | 0.196 | 0.192 | 3 | 9.312 | 62 |
110 | 150 | 0.255 | 0.244 | −18 | 9.407 | 54 | 0.336 | 0.324 | −40 | 4.640 | 18 | 0.207 | 0.203 | 4 | 9.325 | 62 |
120 | 150 | 0.243 | 0.233 | −16 | 8.474 | 48 | 0.307 | 0.296 | −38 | 4.023 | 13 | 0.186 | 0.182 | 1 | 7.819 | 51 |
130 | 150 | 0.241 | 0.230 | −16 | 8.481 | 49 | 0.308 | 0.298 | −37 | 4.108 | 13 | 0.183 | 0.179 | 2 | 8.075 | 53 |
140 | 150 | 0.235 | 0.225 | −15 | 8.018 | 45 | 0.295 | 0.285 | −35 | 3.865 | 10 | 0.173 | 0.169 | 2 | 7.182 | 47 |
150 | 150 | 0.240 | 0.229 | −15 | 8.192 | 46 | 0.291 | 0.281 | −35 | 3.907 | 13 | 0.176 | 0.172 | 3 | 7.641 | 50 |
4 Thin plate regression splines under gaussian with log link in stagewise selection of length |
0 | 40 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 40 | 0.788 | 0.754 | 8 | 23.011 | 114 | 0.423 | 0.408 | 26 | 22.471 | 118 | 0.700 | 0.685 | 94 | 28.248 | 186 |
20 | 40 | 0.452 | 0.432 | −4 | 12.761 | 50 | 0.421 | 0.406 | −48 | 7.626 | −9 | 0.360 | 0.352 | −11 | 8.166 | 29 |
30 | 40 | 0.462 | 0.442 | −10 | 14.180 | 72 | 0.527 | 0.509 | −68 | 6.209 | −1 | 0.368 | 0.360 | −32 | 7.116 | 36 |
40 | 40 | 0.438 | 0.419 | −7 | 13.382 | 66 | 0.523 | 0.506 | −69 | 6.189 | −10 | 0.373 | 0.365 | −39 | 5.913 | 20 |
4 Thin plate regression splines under gamma with identity link in stagewise selection of length |
0 | 70 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 70 | 0.625 | 0.598 | 31 | 21.068 | 110 | 0.332 | 0.321 | −5 | 12.421 | 60 | 0.486 | 0.475 | 68 | 19.997 | 132 |
20 | 70 | 0.394 | 0.377 | 1 | 10.887 | 41 | 0.357 | 0.345 | −39 | 7.283 | −15 | 0.340 | 0.333 | −6 | 7.641 | 19 |
30 | 70 | 0.383 | 0.367 | −10 | 11.985 | 56 | 0.467 | 0.451 | −62 | 5.853 | −10 | 0.331 | 0.324 | −30 | 5.742 | 22 |
40 | 70 | 0.289 | 0.277 | −11 | 9.447 | 45 | 0.346 | 0.335 | −41 | 5.159 | 0 | 0.256 | 0.250 | −2 | 6.682 | 39 |
50 | 70 | 0.307 | 0.293 | −11 | 10.339 | 53 | 0.389 | 0.376 | −50 | 4.922 | 0 | 0.252 | 0.247 | −11 | 6.294 | 38 |
60 | 70 | 0.308 | 0.295 | −14 | 10.455 | 56 | 0.372 | 0.360 | −49 | 4.377 | 7 | 0.222 | 0.218 | −9 | 7.143 | 46 |
70 | 70 | 0.270 | 0.259 | −16 | 9.999 | 57 | 0.325 | 0.314 | −36 | 5.280 | 23 | 0.245 | 0.240 | 10 | 10.416 | 69 |
4 Thin plate regression splines under gamma with log link in stagewise selection of length |
0 | 120 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 120 | 0.780 | 0.745 | 12 | 22.104 | 101 | 0.436 | 0.421 | 35 | 21.150 | 110 | 0.736 | 0.720 | 101 | 26.692 | 175 |
20 | 120 | 0.497 | 0.475 | −1 | 14.721 | 71 | 0.457 | 0.442 | −55 | 6.794 | 2 | 0.360 | 0.352 | −16 | 8.605 | 41 |
30 | 120 | 0.437 | 0.418 | −7 | 13.581 | 66 | 0.483 | 0.467 | −61 | 6.042 | −3 | 0.364 | 0.357 | −28 | 7.018 | 31 |
40 | 120 | 0.418 | 0.400 | −7 | 12.575 | 58 | 0.505 | 0.488 | −67 | 6.530 | −16 | 0.382 | 0.374 | −40 | 5.844 | 11 |
50 | 120 | 0.416 | 0.397 | −11 | 12.456 | 58 | 0.522 | 0.505 | −70 | 6.310 | −15 | 0.392 | 0.384 | −42 | 5.536 | 12 |
60 | 120 | 0.407 | 0.390 | −11 | 12.201 | 59 | 0.547 | 0.529 | −74 | 6.706 | −19 | 0.411 | 0.403 | −47 | 5.476 | 8 |
70 | 120 | 0.407 | 0.390 | −7 | 12.104 | 59 | 0.480 | 0.464 | −64 | 5.741 | −13 | 0.356 | 0.349 | −39 | 5.173 | 12 |
80 | 120 | 0.274 | 0.262 | −9 | 10.461 | 60 | 0.319 | 0.309 | −31 | 5.409 | 23 | 0.257 | 0.251 | 16 | 10.636 | 70 |
90 | 120 | 0.252 | 0.241 | −10 | 9.362 | 52 | 0.289 | 0.279 | −31 | 4.594 | 17 | 0.195 | 0.191 | 9 | 8.753 | 58 |
100 | 120 | 0.239 | 0.229 | −13 | 8.404 | 46 | 0.254 | 0.245 | −26 | 4.423 | 18 | 0.182 | 0.178 | 13 | 8.710 | 57 |
110 | 120 | 0.251 | 0.240 | −15 | 8.307 | 46 | 0.256 | 0.248 | −28 | 4.442 | 19 | 0.174 | 0.171 | 11 | 8.708 | 57 |
120 | 120 | 0.252 | 0.241 | −16 | 8.368 | 47 | 0.263 | 0.254 | −29 | 4.585 | 20 | 0.171 | 0.167 | 9 | 8.830 | 58 |
4 Thin plate regression splines under inverse gaussian with identity link in stagewise selection of length |
0 | 85 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 85 | 0.622 | 0.595 | 33 | 20.643 | 108 | 0.328 | 0.317 | −3 | 12.034 | 57 | 0.488 | 0.478 | 68 | 19.473 | 129 |
20 | 85 | 0.443 | 0.423 | 0 | 13.176 | 63 | 0.412 | 0.398 | −49 | 6.644 | −1 | 0.336 | 0.329 | −11 | 8.149 | 37 |
30 | 85 | 0.390 | 0.373 | −10 | 12.087 | 60 | 0.481 | 0.465 | −65 | 5.771 | −9 | 0.334 | 0.327 | −33 | 5.777 | 23 |
40 | 85 | 0.280 | 0.268 | −9 | 9.655 | 48 | 0.339 | 0.327 | −39 | 5.079 | 4 | 0.255 | 0.250 | 1 | 7.154 | 44 |
50 | 85 | 0.296 | 0.283 | −10 | 9.742 | 48 | 0.374 | 0.362 | −48 | 4.933 | −3 | 0.242 | 0.237 | −10 | 5.768 | 34 |
60 | 85 | 0.310 | 0.297 | −14 | 10.405 | 54 | 0.367 | 0.354 | −48 | 4.592 | 6 | 0.232 | 0.227 | −8 | 7.165 | 46 |
70 | 85 | 0.272 | 0.260 | −12 | 10.279 | 58 | 0.313 | 0.303 | −34 | 5.205 | 22 | 0.249 | 0.244 | 12 | 10.286 | 67 |
80 | 85 | 0.247 | 0.236 | −14 | 8.583 | 48 | 0.293 | 0.283 | −33 | 4.594 | 15 | 0.217 | 0.213 | 10 | 8.776 | 58 |
85 | 85 | 0.250 | 0.239 | −17 | 8.739 | 50 | 0.325 | 0.314 | −38 | 4.585 | 14 | 0.218 | 0.213 | 6 | 8.871 | 58 |
4 Thin plate regression splines under inverse gaussian with log link in stagewise selection of length |
0 | 75 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 75 | 0.778 | 0.744 | 14 | 21.780 | 95 | 0.446 | 0.431 | 40 | 20.520 | 106 | 0.756 | 0.740 | 104 | 25.969 | 170 |
20 | 75 | 0.491 | 0.470 | −1 | 14.542 | 69 | 0.452 | 0.437 | −55 | 6.759 | 0 | 0.362 | 0.355 | −17 | 8.423 | 38 |
30 | 75 | 0.425 | 0.407 | −7 | 13.142 | 62 | 0.472 | 0.456 | −60 | 6.123 | −5 | 0.366 | 0.358 | −27 | 6.854 | 27 |
40 | 75 | 0.406 | 0.388 | −7 | 12.151 | 54 | 0.499 | 0.482 | −66 | 6.757 | −19 | 0.389 | 0.381 | −41 | 5.920 | 7 |
50 | 75 | 0.412 | 0.394 | −11 | 12.543 | 56 | 0.513 | 0.495 | −69 | 6.309 | −16 | 0.396 | 0.388 | −42 | 5.655 | 10 |
60 | 75 | 0.298 | 0.285 | −12 | 9.519 | 47 | 0.392 | 0.379 | −50 | 5.298 | −4 | 0.265 | 0.260 | −10 | 6.172 | 36 |
70 | 75 | 0.263 | 0.251 | −13 | 9.789 | 56 | 0.298 | 0.288 | −31 | 5.406 | 23 | 0.227 | 0.222 | 16 | 10.673 | 70 |
75 | 75 | 0.258 | 0.246 | −14 | 9.181 | 52 | 0.300 | 0.290 | −33 | 5.049 | 19 | 0.223 | 0.219 | 13 | 9.837 | 65 |
4 Thin plate regression splines under inverse gaussian withlink in stagewise selection of length |
0 | 55 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 55 | 0.803 | 0.768 | 2 | 23.425 | 117 | 0.383 | 0.370 | −24 | 15.197 | 76 | 0.435 | 0.426 | 27 | 19.713 | 127 |
20 | 55 | 0.448 | 0.428 | 8 | 12.645 | 61 | 0.331 | 0.320 | −29 | 7.088 | 10 | 0.330 | 0.323 | 18 | 9.983 | 56 |
30 | 55 | 0.387 | 0.370 | 1 | 12.458 | 64 | 0.331 | 0.320 | −29 | 6.701 | 20 | 0.311 | 0.304 | 22 | 11.099 | 70 |
40 | 55 | 0.341 | 0.326 | −5 | 11.661 | 61 | 0.339 | 0.328 | −35 | 5.920 | 17 | 0.271 | 0.266 | 11 | 9.851 | 63 |
45 | 55 | 0.343 | 0.328 | −9 | 10.928 | 55 | 0.361 | 0.349 | −38 | 6.111 | 12 | 0.300 | 0.294 | 9 | 9.451 | 59 |
50 | 55 | 0.336 | 0.321 | −7 | 10.645 | 55 | 0.355 | 0.343 | −40 | 5.319 | 8 | 0.250 | 0.245 | 7 | 8.525 | 54 |
55 | 55 | 0.328 | 0.314 | −9 | 10.595 | 56 | 0.328 | 0.317 | −35 | 5.325 | 15 | 0.241 | 0.236 | 16 | 10.249 | 67 |
Table A20.
Out-of-sample validation figures of selected GAMs of BEL with varying random component link function combination and fixed spline function number of 8 per dimension under between 50–443 and 150–443 after each tenth and the finally selected smooth function.
Table A20.
Out-of-sample validation figures of selected GAMs of BEL with varying random component link function combination and fixed spline function number of 8 per dimension under between 50–443 and 150–443 after each tenth and the finally selected smooth function.
k | | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
8 Thin plate regression splines under gaussian with identity link |
0 | 150 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 150 | 0.639 | 0.611 | 27 | 23.176 | 125 | 0.340 | 0.329 | −3 | 15.517 | 80 | 0.516 | 0.505 | 73 | 23.627 | 156 |
20 | 150 | 0.375 | 0.359 | 3 | 9.604 | 26 | 0.334 | 0.322 | −33 | 8.378 | −24 | 0.341 | 0.333 | 1 | 7.711 | 10 |
30 | 150 | 0.361 | 0.345 | −7 | 10.444 | 41 | 0.415 | 0.401 | −52 | 6.961 | −19 | 0.304 | 0.297 | −21 | 5.871 | 13 |
40 | 150 | 0.356 | 0.340 | −5 | 10.098 | 36 | 0.425 | 0.410 | −54 | 7.920 | −28 | 0.311 | 0.304 | −27 | 5.647 | −1 |
50 | 150 | 0.339 | 0.324 | −7 | 9.712 | 33 | 0.418 | 0.404 | −53 | 7.746 | −27 | 0.311 | 0.304 | −26 | 5.596 | 0 |
60 | 150 | 0.325 | 0.311 | −6 | 9.037 | 26 | 0.411 | 0.397 | −52 | 8.706 | −34 | 0.310 | 0.304 | −26 | 5.850 | −8 |
70 | 150 | 0.325 | 0.311 | −4 | 9.180 | 31 | 0.429 | 0.414 | −55 | 8.773 | −34 | 0.326 | 0.319 | −30 | 5.912 | −9 |
80 | 150 | 0.309 | 0.296 | −5 | 8.618 | 29 | 0.430 | 0.415 | −55 | 8.984 | −35 | 0.336 | 0.329 | −29 | 6.382 | −9 |
90 | 150 | 0.313 | 0.299 | −5 | 8.981 | 32 | 0.384 | 0.371 | −48 | 7.390 | −26 | 0.300 | 0.293 | −26 | 5.430 | −4 |
100 | 150 | 0.328 | 0.313 | −6 | 9.910 | 47 | 0.400 | 0.387 | −51 | 5.572 | −12 | 0.291 | 0.285 | −25 | 5.064 | 13 |
110 | 150 | 0.256 | 0.245 | −10 | 7.985 | 38 | 0.326 | 0.315 | −40 | 4.655 | −6 | 0.201 | 0.197 | −6 | 5.002 | 28 |
120 | 150 | 0.253 | 0.242 | −9 | 7.340 | 30 | 0.321 | 0.310 | −39 | 5.542 | −14 | 0.209 | 0.204 | −5 | 4.541 | 20 |
130 | 150 | 0.252 | 0.241 | −9 | 7.767 | 34 | 0.326 | 0.315 | −40 | 5.197 | −11 | 0.205 | 0.201 | −5 | 4.770 | 24 |
140 | 150 | 0.245 | 0.234 | −8 | 7.592 | 33 | 0.322 | 0.311 | −41 | 5.315 | −15 | 0.197 | 0.193 | −7 | 4.317 | 20 |
150 | 150 | 0.217 | 0.208 | −11 | 6.477 | 32 | 0.239 | 0.231 | −26 | 3.652 | 2 | 0.179 | 0.175 | 6 | 5.578 | 34 |
8 Thin plate regression splines under gaussian with log link in stagewise selection of length |
0 | 50 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 50 | 0.757 | 0.724 | 10 | 21.570 | 101 | 0.444 | 0.429 | 39 | 22.141 | 116 | 0.755 | 0.739 | 106 | 27.693 | 182 |
20 | 50 | 0.401 | 0.383 | 1 | 10.278 | 23 | 0.359 | 0.347 | −35 | 9.154 | −28 | 0.362 | 0.354 | −1 | 8.110 | 7 |
30 | 50 | 0.396 | 0.379 | −5 | 11.249 | 43 | 0.438 | 0.424 | −53 | 7.692 | −20 | 0.339 | 0.332 | −19 | 6.803 | 14 |
40 | 50 | 0.382 | 0.365 | −5 | 11.036 | 45 | 0.470 | 0.454 | −60 | 7.846 | −25 | 0.351 | 0.344 | −31 | 6.234 | 4 |
50 | 50 | 0.370 | 0.353 | −8 | 10.487 | 39 | 0.464 | 0.448 | −60 | 8.000 | −28 | 0.340 | 0.333 | −32 | 5.901 | 0 |
8 Thin plate regression splines under gamma with identity link in stagewise selection of length |
0 | 100 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 100 | 0.637 | 0.609 | 29 | 22.743 | 123 | 0.334 | 0.323 | −3 | 14.941 | 77 | 0.510 | 0.500 | 72 | 22.871 | 151 |
20 | 100 | 0.370 | 0.354 | 4 | 9.537 | 27 | 0.324 | 0.313 | −31 | 8.076 | −22 | 0.340 | 0.333 | 1 | 7.725 | 10 |
30 | 100 | 0.359 | 0.344 | −8 | 10.558 | 44 | 0.414 | 0.400 | −52 | 6.415 | −15 | 0.305 | 0.298 | −22 | 5.909 | 16 |
40 | 100 | 0.329 | 0.314 | −9 | 9.643 | 37 | 0.402 | 0.388 | −51 | 6.673 | −21 | 0.321 | 0.314 | −26 | 5.702 | 4 |
50 | 100 | 0.342 | 0.327 | −7 | 9.631 | 33 | 0.409 | 0.395 | −52 | 7.553 | −27 | 0.326 | 0.320 | −28 | 5.863 | −3 |
60 | 100 | 0.324 | 0.310 | −6 | 9.114 | 28 | 0.409 | 0.395 | −52 | 8.421 | −32 | 0.327 | 0.320 | −28 | 6.067 | −9 |
70 | 100 | 0.328 | 0.314 | −6 | 9.617 | 41 | 0.451 | 0.435 | −59 | 7.631 | −26 | 0.349 | 0.342 | −35 | 5.796 | −2 |
80 | 100 | 0.270 | 0.258 | −9 | 7.944 | 37 | 0.324 | 0.313 | −38 | 5.068 | −7 | 0.221 | 0.217 | −2 | 5.461 | 29 |
90 | 100 | 0.279 | 0.267 | −10 | 8.926 | 47 | 0.341 | 0.329 | −40 | 4.595 | 2 | 0.224 | 0.219 | −2 | 6.713 | 41 |
100 | 100 | 0.272 | 0.260 | −11 | 8.654 | 44 | 0.335 | 0.324 | −40 | 4.532 | 0 | 0.216 | 0.211 | −2 | 6.397 | 38 |
8 Thin plate regression splines under gamma with log link in stagewise selection of length |
0 | 110 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 110 | 0.762 | 0.729 | 13 | 21.360 | 95 | 0.458 | 0.443 | 45 | 21.527 | 112 | 0.773 | 0.756 | 108 | 26.743 | 176 |
20 | 110 | 0.442 | 0.422 | 2 | 12.416 | 49 | 0.396 | 0.382 | −44 | 7.515 | −12 | 0.349 | 0.342 | −8 | 8.083 | 24 |
30 | 110 | 0.387 | 0.370 | −3 | 11.147 | 45 | 0.414 | 0.400 | −49 | 7.058 | −16 | 0.338 | 0.331 | −18 | 6.847 | 16 |
40 | 110 | 0.372 | 0.356 | −6 | 10.826 | 43 | 0.458 | 0.442 | −59 | 7.546 | −24 | 0.360 | 0.352 | −34 | 6.225 | 1 |
50 | 110 | 0.357 | 0.342 | −9 | 10.240 | 36 | 0.458 | 0.443 | −60 | 7.977 | −29 | 0.357 | 0.349 | −36 | 6.073 | −5 |
60 | 110 | 0.351 | 0.336 | −5 | 9.866 | 30 | 0.439 | 0.424 | −56 | 9.066 | −36 | 0.353 | 0.346 | −35 | 6.537 | −15 |
70 | 110 | 0.354 | 0.339 | −5 | 10.130 | 37 | 0.458 | 0.442 | −59 | 8.442 | −31 | 0.364 | 0.356 | −37 | 6.271 | −9 |
80 | 110 | 0.359 | 0.344 | −6 | 10.122 | 37 | 0.463 | 0.447 | −60 | 8.529 | −32 | 0.371 | 0.363 | −37 | 6.412 | −9 |
90 | 110 | 0.282 | 0.270 | −10 | 9.017 | 47 | 0.364 | 0.352 | −44 | 4.991 | −2 | 0.249 | 0.244 | −6 | 6.286 | 36 |
100 | 110 | 0.268 | 0.256 | −11 | 7.807 | 37 | 0.320 | 0.309 | −38 | 4.748 | −5 | 0.209 | 0.204 | −1 | 5.604 | 32 |
110 | 110 | 0.259 | 0.247 | −11 | 7.373 | 34 | 0.312 | 0.302 | −37 | 4.801 | −7 | 0.201 | 0.197 | 0 | 5.354 | 31 |
Table A21.
Out-of-sample validation figures of selected GAMs of BEL in adaptive forward stepwise and stagewise selection of length 5 under between 25–443 and 100–443 after each tenth and the finally selected smooth function.
Table A21.
Out-of-sample validation figures of selected GAMs of BEL in adaptive forward stepwise and stagewise selection of length 5 under between 25–443 and 100–443 after each tenth and the finally selected smooth function.
k | | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
8 Thin plate regression splines under gaussian with log link |
0 | 25 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 25 | 0.663 | 0.634 | 26 | 23.298 | 123 | 0.341 | 0.330 | 1 | 16.218 | 84 | 0.547 | 0.536 | 78 | 24.370 | 161 |
20 | 25 | 0.398 | 0.381 | 2 | 10.221 | 23 | 0.361 | 0.349 | −35 | 9.380 | −28 | 0.375 | 0.367 | −1 | 8.460 | 6 |
25 | 25 | 0.411 | 0.393 | 2 | 11.892 | 47 | 0.410 | 0.397 | −47 | 7.709 | −17 | 0.324 | 0.317 | −11 | 7.120 | 19 |
8 Thin plate regression splines under gaussian with log link in stagewise selection of length |
0 | 50 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 50 | 0.757 | 0.724 | 10 | 21.570 | 101 | 0.444 | 0.429 | 39 | 22.141 | 116 | 0.755 | 0.739 | 106 | 27.693 | 182 |
20 | 50 | 0.401 | 0.383 | 1 | 10.278 | 23 | 0.359 | 0.347 | −35 | 9.154 | −28 | 0.362 | 0.354 | −1 | 8.110 | 7 |
30 | 50 | 0.396 | 0.379 | −5 | 11.249 | 43 | 0.438 | 0.424 | −53 | 7.692 | −20 | 0.339 | 0.332 | −19 | 6.803 | 14 |
40 | 50 | 0.382 | 0.365 | −5 | 11.036 | 45 | 0.470 | 0.454 | −60 | 7.846 | −25 | 0.351 | 0.344 | −31 | 6.234 | 4 |
50 | 50 | 0.370 | 0.353 | −8 | 10.487 | 39 | 0.464 | 0.448 | −60 | 8.000 | −28 | 0.340 | 0.333 | −32 | 5.901 | 0 |
8 Thin plate regression splines under gamma with identity link |
0 | 71 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 71 | 0.637 | 0.609 | 29 | 22.743 | 123 | 0.334 | 0.323 | −3 | 14.941 | 77 | 0.510 | 0.500 | 72 | 22.871 | 151 |
20 | 71 | 0.386 | 0.369 | 8 | 10.141 | 31 | 0.310 | 0.299 | −26 | 7.904 | −18 | 0.358 | 0.350 | 8 | 8.140 | 16 |
30 | 71 | 0.359 | 0.344 | −8 | 10.558 | 44 | 0.414 | 0.400 | −52 | 6.415 | −15 | 0.305 | 0.298 | −22 | 5.909 | 16 |
40 | 71 | 0.329 | 0.314 | −9 | 9.643 | 37 | 0.402 | 0.388 | −51 | 6.673 | −21 | 0.321 | 0.314 | −26 | 5.702 | 4 |
50 | 71 | 0.338 | 0.324 | −7 | 9.543 | 32 | 0.412 | 0.399 | −53 | 7.748 | −28 | 0.324 | 0.318 | −29 | 5.805 | −4 |
60 | 71 | 0.324 | 0.310 | −6 | 9.114 | 28 | 0.409 | 0.395 | −52 | 8.421 | −32 | 0.327 | 0.320 | −28 | 6.067 | −9 |
70 | 71 | 0.327 | 0.313 | −5 | 9.417 | 36 | 0.434 | 0.419 | −56 | 8.017 | −29 | 0.342 | 0.335 | −32 | 5.967 | −5 |
71 | 71 | 0.291 | 0.278 | −4 | 8.639 | 41 | 0.341 | 0.329 | −43 | 5.205 | −12 | 0.196 | 0.192 | −17 | 3.898 | 14 |
8 Thin plate regression splines under gamma with identity link in stagewise selection of length |
0 | 100 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 100 | 0.637 | 0.609 | 29 | 22.743 | 123 | 0.334 | 0.323 | −3 | 14.941 | 77 | 0.510 | 0.500 | 72 | 22.871 | 151 |
20 | 100 | 0.370 | 0.354 | 4 | 9.537 | 27 | 0.324 | 0.313 | −31 | 8.076 | −22 | 0.340 | 0.333 | 1 | 7.725 | 10 |
30 | 100 | 0.359 | 0.344 | −8 | 10.558 | 44 | 0.414 | 0.400 | −52 | 6.415 | −15 | 0.305 | 0.298 | −22 | 5.909 | 16 |
40 | 100 | 0.329 | 0.314 | −9 | 9.643 | 37 | 0.402 | 0.388 | −51 | 6.673 | −21 | 0.321 | 0.314 | −26 | 5.702 | 4 |
50 | 100 | 0.342 | 0.327 | −7 | 9.631 | 33 | 0.409 | 0.395 | −52 | 7.553 | −27 | 0.326 | 0.320 | −28 | 5.863 | −3 |
60 | 100 | 0.324 | 0.310 | −6 | 9.114 | 28 | 0.409 | 0.395 | −52 | 8.421 | −32 | 0.327 | 0.320 | −28 | 6.067 | −9 |
70 | 100 | 0.328 | 0.314 | −6 | 9.617 | 41 | 0.451 | 0.435 | −59 | 7.631 | −26 | 0.349 | 0.342 | −35 | 5.796 | −2 |
80 | 100 | 0.270 | 0.258 | −9 | 7.944 | 37 | 0.324 | 0.313 | −38 | 5.068 | −7 | 0.221 | 0.217 | −2 | 5.461 | 29 |
90 | 100 | 0.279 | 0.267 | −10 | 8.926 | 47 | 0.341 | 0.329 | −40 | 4.595 | 2 | 0.224 | 0.219 | −2 | 6.713 | 41 |
100 | 100 | 0.272 | 0.260 | −11 | 8.654 | 44 | 0.335 | 0.324 | −40 | 4.532 | 0 | 0.216 | 0.211 | −2 | 6.397 | 38 |
Table A22.
Out-of-sample validation figures of selected GAMs of BEL with varying spline function number per dimension and fixed spline function type under between 91–443 and 150–443 after each tenth and the finally selected smooth function or after each dynamically stagewise selected smooth function block. Thereby furthermore a variation in the random component link function combination.
Table A22.
Out-of-sample validation figures of selected GAMs of BEL with varying spline function number per dimension and fixed spline function type under between 91–443 and 150–443 after each tenth and the finally selected smooth function or after each dynamically stagewise selected smooth function block. Thereby furthermore a variation in the random component link function combination.
k | | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
5 Eilers and Marx style P-splines under gaussian with identity link |
0 | 100 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 100 | 0.643 | 0.615 | 29 | 22.836 | 123 | 0.344 | 0.332 | −9 | 13.951 | 70 | 0.471 | 0.461 | 65 | 21.854 | 144 |
20 | 100 | 0.389 | 0.372 | 1 | 10.496 | 37 | 0.365 | 0.353 | −41 | 7.778 | −20 | 0.336 | 0.329 | −8 | 7.402 | 13 |
30 | 100 | 0.384 | 0.367 | −9 | 11.377 | 53 | 0.459 | 0.444 | −60 | 6.138 | −13 | 0.320 | 0.313 | −30 | 5.512 | 17 |
40 | 100 | 0.371 | 0.354 | −10 | 10.977 | 49 | 0.454 | 0.439 | −60 | 6.095 | −16 | 0.327 | 0.320 | −34 | 5.092 | 11 |
50 | 100 | 0.357 | 0.341 | −9 | 10.459 | 45 | 0.467 | 0.451 | −62 | 6.909 | −22 | 0.335 | 0.328 | −34 | 5.059 | 6 |
60 | 100 | 0.339 | 0.324 | −10 | 9.932 | 43 | 0.492 | 0.476 | −66 | 7.640 | −28 | 0.365 | 0.357 | −40 | 5.155 | −2 |
70 | 100 | 0.343 | 0.328 | −10 | 10.523 | 52 | 0.546 | 0.527 | −75 | 7.681 | −27 | 0.366 | 0.358 | −46 | 4.576 | 2 |
80 | 100 | 0.334 | 0.319 | −7 | 9.920 | 45 | 0.520 | 0.503 | −67 | 8.655 | −29 | 0.346 | 0.339 | −36 | 5.036 | 1 |
90 | 100 | 0.228 | 0.218 | −10 | 6.973 | 35 | 0.279 | 0.269 | −31 | 4.299 | 0 | 0.208 | 0.204 | 3 | 5.810 | 34 |
100 | 100 | 0.225 | 0.215 | −11 | 6.897 | 34 | 0.256 | 0.248 | −30 | 3.716 | 2 | 0.164 | 0.161 | 1 | 5.212 | 32 |
8 Eilers and Marx style P-splines under inverse gaussian withlink in dynamically stagewise selection of proportion |
0 | 91 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
5 | 91 | 1.574 | 1.505 | −18 | 41.688 | 233 | 0.732 | 0.708 | −75 | 30.201 | 161 | 0.384 | 0.376 | 42 | 42.135 | 278 |
11 | 91 | 0.817 | 0.781 | −3 | 22.381 | 113 | 0.396 | 0.383 | −34 | 13.475 | 68 | 0.412 | 0.404 | 23 | 19.322 | 124 |
21 | 91 | 0.679 | 0.650 | −9 | 24.203 | 138 | 0.763 | 0.738 | −102 | 8.222 | 31 | 0.424 | 0.415 | −44 | 13.548 | 89 |
37 | 91 | 0.525 | 0.502 | 1 | 15.485 | 79 | 0.521 | 0.504 | −63 | 6.154 | 0 | 0.397 | 0.389 | −30 | 7.461 | 33 |
62 | 91 | 0.505 | 0.482 | −1 | 14.208 | 64 | 0.507 | 0.490 | −61 | 6.842 | −10 | 0.418 | 0.410 | −33 | 7.405 | 18 |
91 | 91 | 0.309 | 0.296 | −11 | 9.688 | 45 | 0.335 | 0.324 | −36 | 5.239 | 6 | 0.279 | 0.273 | 2 | 7.420 | 43 |
10 Eilers and Marx style P-splines under gaussian with identity link in stagewise selection of length |
0 | 150 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 150 | 0.648 | 0.619 | 27 | 23.688 | 128 | 0.349 | 0.337 | −7 | 15.566 | 80 | 0.506 | 0.495 | 71 | 23.889 | 158 |
20 | 150 | 0.398 | 0.380 | 1 | 10.946 | 45 | 0.358 | 0.346 | −37 | 7.063 | −7 | 0.338 | 0.331 | 1 | 8.102 | 31 |
30 | 150 | 0.393 | 0.376 | −9 | 11.983 | 59 | 0.435 | 0.421 | −55 | 5.575 | −2 | 0.299 | 0.293 | −17 | 6.928 | 36 |
40 | 150 | 0.371 | 0.355 | −8 | 11.374 | 55 | 0.449 | 0.434 | −57 | 5.738 | −9 | 0.314 | 0.308 | −26 | 5.770 | 23 |
50 | 150 | 0.363 | 0.347 | −9 | 10.956 | 50 | 0.460 | 0.444 | −60 | 6.249 | −14 | 0.315 | 0.308 | −28 | 5.492 | 17 |
60 | 150 | 0.349 | 0.334 | −8 | 10.479 | 46 | 0.443 | 0.428 | −56 | 6.526 | −17 | 0.305 | 0.298 | −26 | 5.427 | 14 |
70 | 150 | 0.349 | 0.333 | −6 | 10.629 | 51 | 0.464 | 0.449 | −60 | 6.687 | −17 | 0.325 | 0.318 | −29 | 5.501 | 13 |
80 | 150 | 0.350 | 0.335 | −7 | 10.465 | 48 | 0.468 | 0.452 | −60 | 7.036 | −19 | 0.335 | 0.328 | −29 | 5.563 | 11 |
90 | 150 | 0.350 | 0.335 | −7 | 10.639 | 51 | 0.470 | 0.454 | −60 | 6.683 | −17 | 0.330 | 0.323 | −29 | 5.453 | 14 |
100 | 150 | 0.334 | 0.319 | −8 | 9.960 | 46 | 0.468 | 0.452 | −60 | 7.170 | −20 | 0.339 | 0.332 | −29 | 5.835 | 11 |
110 | 150 | 0.337 | 0.323 | −9 | 10.249 | 48 | 0.450 | 0.435 | −58 | 6.171 | −15 | 0.329 | 0.322 | −31 | 5.267 | 12 |
120 | 150 | 0.339 | 0.324 | −7 | 10.283 | 45 | 0.433 | 0.419 | −55 | 6.420 | −17 | 0.320 | 0.313 | −28 | 5.340 | 10 |
130 | 150 | 0.269 | 0.257 | −13 | 8.912 | 43 | 0.365 | 0.352 | −46 | 4.891 | −4 | 0.244 | 0.238 | −12 | 5.503 | 30 |
140 | 150 | 0.255 | 0.244 | −12 | 8.157 | 36 | 0.356 | 0.344 | −44 | 5.415 | −10 | 0.246 | 0.241 | −10 | 5.196 | 24 |
150 | 150 | 0.261 | 0.250 | −12 | 8.514 | 39 | 0.368 | 0.355 | −46 | 5.267 | −9 | 0.245 | 0.240 | −12 | 5.162 | 25 |
Table A23.
Maximum allowed numbers of smooth functions and out-of-sample validation figures of all derived GAMs of BEL under between 25–443 and 150–443 after the final iteration. Highlighted in green and red respectively the best and worst validation figures.
Table A23.
Maximum allowed numbers of smooth functions and out-of-sample validation figures of all derived GAMs of BEL under between 25–443 and 150–443 after the final iteration. Highlighted in green and red respectively the best and worst validation figures.
k | | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
4 Thin plate regression splines under gaussian with identity link |
150 | 150 | 0.240 | 0.229 | −15 | 8.192 | 46 | 0.291 | 0.281 | −35 | 3.907 | 13 | 0.176 | 0.172 | 3 | 7.641 | 50 |
5 Thin plate regression splines under gaussian with identity link |
100 | 100 | 0.287 | 0.274 | −11 | 9.431 | 48 | 0.397 | 0.383 | −50 | 5.402 | −5 | 0.202 | 0.198 | −9 | 5.945 | 36 |
8 Thin plate regression splines under gaussian with identity link |
150 | 150 | 0.217 | 0.208 | −11 | 6.477 | 32 | 0.239 | 0.231 | −26 | 3.652 | 2 | 0.179 | 0.175 | 6 | 5.578 | 34 |
10 Thin plate regression splines under gaussian with identity link |
150 | 150 | 0.212 | 0.203 | −10 | 7.070 | 37 | 0.230 | 0.223 | −24 | 3.575 | 8 | 0.173 | 0.170 | 8 | 6.337 | 40 |
5 Cubic regression splines under gaussian with identity link |
100 | 100 | 0.268 | 0.256 | −12 | 9.903 | 52 | 0.399 | 0.386 | −51 | 5.182 | −2 | 0.226 | 0.221 | −9 | 6.533 | 40 |
5 Duchon splines under gaussian with identity link |
56 | 100 | 0.666 | 0.636 | −18 | 18.532 | 86 | 0.288 | 0.279 | −14 | 14.643 | 75 | 0.406 | 0.397 | 40 | 19.757 | 129 |
5 Eilers and Marx style P-splines under gaussian with identity link |
100 | 100 | 0.225 | 0.215 | −11 | 6.897 | 34 | 0.256 | 0.248 | −30 | 3.716 | 2 | 0.164 | 0.161 | 1 | 5.212 | 32 |
10 Cubic regression splines under gaussian with identity link |
125 | 125 | 0.254 | 0.243 | −7 | 7.139 | 31 | 0.299 | 0.289 | −36 | 5.189 | −13 | 0.197 | 0.192 | −6 | 4.228 | 17 |
10 Duchon splines under gaussian with identity link |
53 | 100 | 0.821 | 0.785 | −44 | 21.348 | 94 | 0.545 | 0.526 | −61 | 12.593 | 62 | 0.446 | 0.437 | −8 | 18.091 | 116 |
10 Eilers and Marx style P-splines under gaussian with identity link in stagewise selection of length |
150 | 150 | 0.261 | 0.250 | −12 | 8.514 | −39 | 0.368 | 0.355 | −46 | 5.267 | 9 | 0.245 | 0.240 | −12 | 5.162 | −25 |
8 Thin plate regression splines under gaussian with log link |
25 | 25 | 0.411 | 0.393 | 2 | 11.892 | 47 | 0.410 | 0.397 | −47 | 7.709 | −17 | 0.324 | 0.317 | −11 | 7.120 | 19 |
8 Thin plate regression splines under gaussian with log link in stagewise selection of length |
50 | 50 | 0.370 | 0.353 | −8 | 10.487 | 39 | 0.464 | 0.448 | −60 | 8.000 | −28 | 0.340 | 0.333 | −32 | 5.901 | 0 |
8 Thin plate regression splines under gamma with identity link |
71 | 71 | 0.291 | 0.278 | −4 | 8.639 | 41 | 0.341 | 0.329 | −43 | 5.205 | −12 | 0.196 | 0.192 | −17 | 3.898 | 14 |
8 Thin plate regression splines under gamma with identity link in stagewise selection of length |
100 | 100 | 0.272 | 0.260 | −11 | 8.654 | 44 | 0.335 | 0.324 | −40 | 4.532 | 0 | 0.216 | 0.211 | −2 | 6.397 | 38 |
4 Thin plate regression splines under gaussian with identity link in stagewise selection of length |
150 | 150 | 0.240 | 0.229 | −15 | 8.192 | 46 | 0.291 | 0.281 | −35 | 3.907 | 13 | 0.176 | 0.172 | 3 | 7.641 | 50 |
4 Thin plate regression splines under gaussian with log link in stagewise selection of length |
40 | 40 | 0.438 | 0.419 | −7 | 13.382 | 66 | 0.523 | 0.506 | −69 | 6.189 | −10 | 0.373 | 0.365 | −39 | 5.913 | 20 |
4 Thin plate regression splines under gamma with identity link in stagewise selection of length |
70 | 70 | 0.270 | 0.259 | −16 | 9.999 | 57 | 0.325 | 0.314 | −36 | 5.280 | 23 | 0.245 | 0.240 | 10 | 10.416 | 69 |
4 Thin plate regression splines under gaussian with log link in stagewise selection of length |
120 | 120 | 0.252 | 0.241 | −16 | 8.368 | 47 | 0.263 | 0.254 | −29 | 4.585 | 20 | 0.171 | 0.167 | 9 | 8.830 | 58 |
4 Thin plate regression splines under inverse gaussian with identity link in stagewise selection of length |
85 | 85 | 0.250 | 0.239 | −17 | 8.739 | 50 | 0.325 | 0.314 | −38 | 4.585 | 14 | 0.218 | 0.213 | 6 | 8.871 | 58 |
4 Thin plate regression splines under inverse gaussian with log link in stagewise selection of length |
75 | 75 | 0.258 | 0.246 | −14 | 9.181 | 52 | 0.300 | 0.290 | −33 | 5.049 | 19 | 0.223 | 0.219 | 13 | 9.837 | 65 |
4 Thin plate regression splines under inverse gaussian withlink in stagewise selection of length |
55 | 55 | 0.328 | 0.314 | −9 | 10.595 | 56 | 0.328 | 0.317 | −35 | 5.325 | 15 | 0.241 | 0.236 | 16 | 10.249 | 67 |
8 Thin plate regression splines under gamma with log link in stagewise selection of length |
110 | 110 | 0.259 | 0.247 | −11 | 7.373 | 34 | 0.312 | 0.302 | −37 | 4.801 | −7 | 0.201 | 0.197 | 0 | 5.354 | 31 |
8 Eilers and Marx style P-splines under inverse gaussian withlink in dynamic stagewise selection of proportion |
91 | 91 | 0.309 | 0.296 | −11 | 9.688 | 45 | 0.335 | 0.324 | −36 | 5.239 | 6 | 0.279 | 0.273 | 2 | 7.420 | 43 |
Table A24.
Feasible generalized least-squares (FGLS) variance models of BEL corresponding to
derived by adaptive selection from the set of basis functions of the 150–443 OLS proxy function given in
Table A1 with exponents summing up to at max two. Furthermore,
p-values of Breusch-Pagan test, AIC scores and out-of-sample MAEs in % after each iteration.
Table A24.
Feasible generalized least-squares (FGLS) variance models of BEL corresponding to
derived by adaptive selection from the set of basis functions of the 150–443 OLS proxy function given in
Table A1 with exponents summing up to at max two. Furthermore,
p-values of Breusch-Pagan test, AIC scores and out-of-sample MAEs in % after each iteration.
m | | | | | | | | | | | | | | | | BP.p-val | AIC | v.mae | ns.mae | cr.mae |
---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 325,850 | 0.238 | 0.252 | 0.154 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 322,452 | 0.238 | 0.246 | 0.122 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 315,980 | 0.239 | 0.255 | 0.153 |
3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 314,077 | 0.237 | 0.226 | 0.165 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 312,280 | 0.231 | 0.206 | 0.184 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 312,114 | 0.231 | 0.205 | 0.185 |
6 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,949 | 0.231 | 0.203 | 0.186 |
7 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,794 | 0.232 | 0.202 | 0.187 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 311,700 | 0.235 | 0.200 | 0.190 |
9 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,610 | 0.233 | 0.198 | 0.190 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,363 | 0.227 | 0.194 | 0.195 |
11 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,293 | 0.229 | 0.194 | 0.197 |
12 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,237 | 0.228 | 0.193 | 0.198 |
13 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,196 | 0.230 | 0.193 | 0.198 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,161 | 0.231 | 0.193 | 0.200 |
15 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 311,136 | 0.231 | 0.191 | 0.202 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 311,091 | 0.228 | 0.189 | 0.201 |
17 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,067 | 0.228 | 0.188 | 0.203 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,048 | 0.228 | 0.187 | 0.204 |
19 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,030 | 0.228 | 0.188 | 0.204 |
20 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,003 | 0.230 | 0.188 | 0.205 |
21 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 310,988 | 0.230 | 0.188 | 0.206 |
22 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 310,974 | 0.230 | 0.187 | 0.207 |
Table A25.
FGLS variance models of BEL corresponding to
derived by adaptive selection from the set of basis functions of the 300–886 OLS proxy function given in
Table A3 with exponents summing up to at max two. Furthermore,
p-values of Breusch-Pagan test, AIC scores and out-of-sample MAEs in % after each iteration.
Table A25.
FGLS variance models of BEL corresponding to
derived by adaptive selection from the set of basis functions of the 300–886 OLS proxy function given in
Table A3 with exponents summing up to at max two. Furthermore,
p-values of Breusch-Pagan test, AIC scores and out-of-sample MAEs in % after each iteration.
m | | | | | | | | | | | | | | | | BP.p−val | AIC | v.mae | ns.mae | cr.mae |
---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 325,459 | 0.195 | 0.275 | 0.175 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 322,077 | 0.199 | 0.273 | 0.166 |
2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 315,615 | 0.196 | 0.275 | 0.175 |
3 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 313,659 | 0.195 | 0.255 | 0.175 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 311,864 | 0.198 | 0.239 | 0.182 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,704 | 0.198 | 0.236 | 0.182 |
6 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,554 | 0.200 | 0.240 | 0.183 |
7 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,454 | 0.199 | 0.241 | 0.183 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | | 311,360 | 0.199 | 0.238 | 0.186 |
9 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,318 | 0.201 | 0.236 | 0.188 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,287 | 0.203 | 0.234 | 0.189 |
11 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,260 | 0.203 | 0.233 | 0.189 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,237 | 0.203 | 0.232 | 0.189 |
13 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 311,001 | 0.200 | 0.223 | 0.192 |
14 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 310,980 | 0.200 | 0.222 | 0.194 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | | 310,934 | 0.200 | 0.220 | 0.196 |
16 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 310,912 | 0.200 | 0.218 | 0.197 |
17 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 310,895 | 0.200 | 0.219 | 0.198 |
18 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | | 310,881 | 0.200 | 0.217 | 0.198 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | | 310,867 | 0.200 | 0.218 | 0.197 |
20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 310,854 | 0.200 | 0.218 | 0.196 |
21 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | | 310,843 | 0.200 | 0.218 | 0.196 |
22 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | | 310,832 | 0.200 | 0.217 | 0.196 |
Table A26.
Iteration-wise out-of-sample validation figures in adaptive variance model selection of BEL corresponding to
based on the 150–443 OLS proxy function given in
Table A1 with exponents summing up to at max two. Simultaneously type I FGLS regression results.
Table A26.
Iteration-wise out-of-sample validation figures in adaptive variance model selection of BEL corresponding to
based on the 150–443 OLS proxy function given in
Table A1 with exponents summing up to at max two. Simultaneously type I FGLS regression results.
m | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
0 | 0.238 | 0.228 | −15 | 8.103 | 45 | 0.252 | 0.243 | −30 | 3.984 | 16 | 0.154 | 0.151 | 3 | 7.379 | 49 |
1 | 0.238 | 0.228 | −15 | 8.668 | 49 | 0.246 | 0.238 | −30 | 4.120 | 19 | 0.122 | 0.120 | 3 | 7.873 | 52 |
2 | 0.239 | 0.229 | −16 | 8.147 | 46 | 0.255 | 0.246 | −30 | 4.032 | 17 | 0.153 | 0.149 | 2 | 7.489 | 49 |
3 | 0.237 | 0.226 | −15 | 7.789 | 43 | 0.226 | 0.218 | −24 | 4.423 | 20 | 0.165 | 0.162 | 10 | 8.117 | 54 |
4 | 0.231 | 0.221 | −13 | 7.684 | 42 | 0.206 | 0.199 | −18 | 4.817 | 22 | 0.184 | 0.180 | 17 | 8.756 | 58 |
5 | 0.231 | 0.221 | −13 | 7.666 | 42 | 0.205 | 0.198 | −18 | 4.803 | 22 | 0.185 | 0.181 | 17 | 8.740 | 58 |
6 | 0.231 | 0.221 | −13 | 7.577 | 41 | 0.203 | 0.196 | −18 | 4.762 | 22 | 0.186 | 0.183 | 17 | 8.637 | 57 |
7 | 0.232 | 0.222 | −12 | 7.661 | 42 | 0.202 | 0.195 | −17 | 4.787 | 22 | 0.187 | 0.183 | 18 | 8.691 | 57 |
8 | 0.235 | 0.225 | −12 | 7.774 | 42 | 0.200 | 0.193 | −17 | 4.914 | 23 | 0.190 | 0.186 | 19 | 8.912 | 59 |
9 | 0.233 | 0.223 | −11 | 7.692 | 42 | 0.198 | 0.191 | −16 | 4.838 | 23 | 0.190 | 0.186 | 19 | 8.763 | 58 |
10 | 0.227 | 0.217 | −10 | 7.460 | 40 | 0.194 | 0.188 | −15 | 4.708 | 21 | 0.195 | 0.191 | 20 | 8.537 | 56 |
11 | 0.229 | 0.219 | −10 | 7.447 | 40 | 0.194 | 0.187 | −15 | 4.686 | 21 | 0.197 | 0.193 | 20 | 8.455 | 56 |
12 | 0.228 | 0.218 | −10 | 7.426 | 40 | 0.193 | 0.186 | −14 | 4.687 | 21 | 0.198 | 0.194 | 20 | 8.444 | 56 |
13 | 0.230 | 0.220 | −9 | 7.513 | 41 | 0.193 | 0.187 | −14 | 4.696 | 21 | 0.198 | 0.194 | 21 | 8.491 | 56 |
14 | 0.231 | 0.221 | −9 | 7.527 | 41 | 0.193 | 0.186 | −14 | 4.701 | 21 | 0.200 | 0.195 | 21 | 8.497 | 56 |
15 | 0.231 | 0.221 | −9 | 7.523 | 41 | 0.191 | 0.185 | −13 | 4.742 | 21 | 0.202 | 0.197 | 22 | 8.569 | 57 |
16 | 0.228 | 0.218 | −9 | 7.437 | 40 | 0.189 | 0.182 | −13 | 4.730 | 21 | 0.201 | 0.197 | 22 | 8.557 | 56 |
17 | 0.228 | 0.218 | −9 | 7.421 | 40 | 0.188 | 0.182 | −13 | 4.747 | 21 | 0.203 | 0.199 | 22 | 8.568 | 56 |
18 | 0.228 | 0.218 | −9 | 7.433 | 40 | 0.187 | 0.181 | −13 | 4.780 | 22 | 0.204 | 0.200 | 22 | 8.621 | 57 |
19 | 0.228 | 0.218 | −9 | 7.435 | 40 | 0.188 | 0.182 | −13 | 4.786 | 22 | 0.204 | 0.200 | 22 | 8.628 | 57 |
20 | 0.230 | 0.219 | −9 | 7.442 | 40 | 0.188 | 0.182 | −13 | 4.796 | 22 | 0.205 | 0.201 | 22 | 8.650 | 57 |
21 | 0.230 | 0.220 | −9 | 7.466 | 40 | 0.188 | 0.181 | −13 | 4.800 | 22 | 0.206 | 0.201 | 23 | 8.648 | 57 |
22 | 0.230 | 0.220 | −8 | 7.436 | 40 | 0.187 | 0.180 | −12 | 4.802 | 22 | 0.207 | 0.203 | 23 | 8.639 | 57 |
Table A27.
Iteration-wise out-of-sample validation figures in adaptive variance model selection of BEL corresponding to
based on the 300–886 OLS proxy function given in
Table A3 with exponents summing up to at max two. Simultaneously type I FGLS regression results.
Table A27.
Iteration-wise out-of-sample validation figures in adaptive variance model selection of BEL corresponding to
based on the 300–886 OLS proxy function given in
Table A3 with exponents summing up to at max two. Simultaneously type I FGLS regression results.
m | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
0 | 0.195 | 0.186 | −9 | 6.468 | 33 | 0.275 | 0.266 | −30 | 4.601 | −3 | 0.175 | 0.171 | 5 | 5.315 | 32 |
1 | 0.199 | 0.190 | −9 | 6.648 | 34 | 0.273 | 0.263 | −31 | 4.272 | −3 | 0.166 | 0.162 | 1 | 5.005 | 30 |
2 | 0.196 | 0.187 | −9 | 6.527 | 33 | 0.275 | 0.266 | −30 | 4.564 | −3 | 0.175 | 0.171 | 5 | 5.401 | 32 |
3 | 0.195 | 0.186 | −9 | 6.487 | 33 | 0.255 | 0.247 | −27 | 4.350 | 1 | 0.175 | 0.171 | 9 | 5.916 | 37 |
4 | 0.198 | 0.189 | −9 | 6.305 | 32 | 0.239 | 0.231 | −23 | 4.262 | 4 | 0.182 | 0.178 | 13 | 6.303 | 40 |
5 | 0.198 | 0.190 | −9 | 6.298 | 32 | 0.236 | 0.228 | −22 | 4.252 | 4 | 0.182 | 0.178 | 14 | 6.336 | 40 |
6 | 0.200 | 0.191 | −9 | 6.399 | 33 | 0.240 | 0.232 | −23 | 4.292 | 4 | 0.183 | 0.179 | 13 | 6.389 | 40 |
7 | 0.199 | 0.190 | −9 | 6.364 | 32 | 0.241 | 0.233 | −23 | 4.304 | 4 | 0.183 | 0.179 | 13 | 6.324 | 40 |
8 | 0.199 | 0.190 | −8 | 6.381 | 32 | 0.238 | 0.230 | −22 | 4.313 | 4 | 0.186 | 0.182 | 14 | 6.407 | 40 |
9 | 0.201 | 0.193 | −8 | 6.432 | 33 | 0.236 | 0.228 | −22 | 4.313 | 5 | 0.188 | 0.184 | 15 | 6.521 | 41 |
10 | 0.203 | 0.194 | −8 | 6.473 | 33 | 0.234 | 0.226 | −21 | 4.310 | 5 | 0.189 | 0.185 | 16 | 6.621 | 42 |
11 | 0.203 | 0.195 | −8 | 6.492 | 33 | 0.233 | 0.225 | −21 | 4.303 | 5 | 0.189 | 0.185 | 16 | 6.628 | 42 |
12 | 0.203 | 0.194 | −8 | 6.476 | 33 | 0.232 | 0.224 | −21 | 4.294 | 5 | 0.189 | 0.186 | 16 | 6.641 | 42 |
13 | 0.200 | 0.191 | −7 | 6.254 | 32 | 0.223 | 0.216 | −19 | 4.252 | 5 | 0.192 | 0.188 | 17 | 6.615 | 42 |
14 | 0.200 | 0.191 | −7 | 6.246 | 31 | 0.222 | 0.214 | −19 | 4.257 | 6 | 0.194 | 0.190 | 18 | 6.697 | 42 |
15 | 0.200 | 0.191 | −7 | 6.216 | 31 | 0.220 | 0.213 | −18 | 4.243 | 6 | 0.196 | 0.192 | 19 | 6.773 | 43 |
16 | 0.200 | 0.191 | −7 | 6.180 | 31 | 0.218 | 0.211 | −18 | 4.239 | 6 | 0.197 | 0.193 | 19 | 6.753 | 43 |
17 | 0.200 | 0.192 | −7 | 6.197 | 31 | 0.219 | 0.211 | −18 | 4.249 | 6 | 0.198 | 0.194 | 19 | 6.804 | 43 |
18 | 0.200 | 0.191 | −7 | 6.194 | 31 | 0.217 | 0.210 | −18 | 4.250 | 6 | 0.198 | 0.194 | 19 | 6.801 | 43 |
19 | 0.200 | 0.191 | −7 | 6.207 | 31 | 0.218 | 0.210 | −18 | 4.238 | 6 | 0.197 | 0.193 | 19 | 6.787 | 43 |
20 | 0.200 | 0.191 | −7 | 6.229 | 32 | 0.218 | 0.211 | −18 | 4.226 | 6 | 0.196 | 0.192 | 19 | 6.793 | 43 |
21 | 0.200 | 0.192 | −7 | 6.240 | 32 | 0.218 | 0.211 | −18 | 4.224 | 7 | 0.196 | 0.192 | 19 | 6.814 | 43 |
22 | 0.200 | 0.192 | −7 | 6.256 | 32 | 0.217 | 0.210 | −18 | 4.223 | 7 | 0.196 | 0.192 | 19 | 6.844 | 44 |
Table A28.
AIC scores and out-of-sample validation figures of type II FGLS proxy functions of BEL under 150–443 with variance models of varying complexity after each tenth iteration.
Table A28.
AIC scores and out-of-sample validation figures of type II FGLS proxy functions of BEL under 150–443 with variance models of varying complexity after each tenth iteration.
k | AIC | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
in variance model selection |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 336,390 | 1.786 | 1.708 | 184 | 44.082 | 198 | 1.402 | 1.354 | 209 | 39.152 | 209 | 2.290 | 2.242 | 344 | 52.033 | 344 |
20 | 323,883 | 0.826 | 0.790 | 25 | 22.007 | 111 | 0.424 | 0.409 | −28 | 10.764 | 44 | 0.437 | 0.428 | 28 | 16.424 | 99 |
30 | 319,958 | 0.465 | 0.445 | 3 | 12.876 | 55 | 0.288 | 0.278 | 2 | 9.650 | 40 | 0.467 | 0.457 | 57 | 15.234 | 96 |
40 | 318,945 | 0.401 | 0.384 | −16 | 11.036 | 51 | 0.357 | 0.345 | −37 | 7.158 | 16 | 0.330 | 0.323 | 3 | 10.127 | 55 |
50 | 318,206 | 0.355 | 0.339 | −24 | 9.270 | 35 | 0.336 | 0.324 | −36 | 6.611 | 8 | 0.339 | 0.332 | −8 | 8.602 | 36 |
60 | 317,485 | 0.323 | 0.309 | −25 | 8.407 | 36 | 0.309 | 0.298 | −36 | 5.548 | 11 | 0.279 | 0.273 | −11 | 7.244 | 36 |
70 | 317,197 | 0.306 | 0.293 | −28 | 7.631 | 28 | 0.345 | 0.334 | −43 | 5.405 | −1 | 0.272 | 0.266 | −17 | 5.899 | 25 |
80 | 316,263 | 0.272 | 0.260 | −24 | 6.946 | 32 | 0.320 | 0.310 | −42 | 4.051 | 0 | 0.227 | 0.222 | −17 | 4.898 | 25 |
90 | 316,021 | 0.260 | 0.249 | −23 | 7.143 | 39 | 0.298 | 0.288 | −37 | 3.854 | 10 | 0.173 | 0.169 | −5 | 6.461 | 42 |
100 | 315,871 | 0.256 | 0.245 | −23 | 7.424 | 41 | 0.294 | 0.284 | −35 | 4.078 | 14 | 0.186 | 0.182 | 0 | 7.443 | 49 |
110 | 315,784 | 0.256 | 0.245 | −22 | 7.396 | 41 | 0.302 | 0.292 | −37 | 3.962 | 12 | 0.189 | 0.185 | −3 | 7.013 | 46 |
120 | 315,719 | 0.257 | 0.245 | −23 | 6.923 | 38 | 0.296 | 0.286 | −36 | 3.870 | 11 | 0.181 | 0.177 | −2 | 6.872 | 45 |
130 | 315,675 | 0.258 | 0.247 | −25 | 6.506 | 35 | 0.295 | 0.285 | −36 | 3.760 | 9 | 0.188 | 0.184 | −3 | 6.461 | 42 |
140 | 315,649 | 0.252 | 0.241 | −23 | 6.424 | 34 | 0.283 | 0.274 | −34 | 3.749 | 9 | 0.184 | 0.180 | −1 | 6.399 | 42 |
150 | 315,629 | 0.239 | 0.229 | −21 | 6.467 | 34 | 0.261 | 0.252 | −30 | 3.796 | 10 | 0.177 | 0.173 | 3 | 6.654 | 44 |
in variance model selection |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 332,479 | 2.014 | 1.926 | 259 | 49.098 | 213 | 2.000 | 1.933 | 298 | 44.745 | 238 | 2.964 | 2.901 | 445 | 58.341 | 385 |
20 | 320,873 | 0.881 | 0.842 | 51 | 22.821 | 115 | 0.341 | 0.329 | 16 | 13.428 | 66 | 0.622 | 0.609 | 84 | 20.790 | 134 |
30 | 316,187 | 0.429 | 0.410 | 19 | 10.875 | 32 | 0.308 | 0.297 | 29 | 8.537 | 28 | 0.561 | 0.549 | 73 | 12.633 | 72 |
40 | 315,132 | 0.366 | 0.350 | 6 | 10.243 | 45 | 0.254 | 0.246 | 1 | 7.853 | 25 | 0.401 | 0.393 | 36 | 11.221 | 61 |
50 | 314,473 | 0.303 | 0.289 | 3 | 9.346 | 46 | 0.229 | 0.222 | 0 | 7.543 | 28 | 0.361 | 0.353 | 34 | 10.776 | 62 |
60 | 313,643 | 0.307 | 0.293 | −18 | 7.567 | 28 | 0.251 | 0.242 | −21 | 5.808 | 11 | 0.266 | 0.261 | 9 | 7.676 | 41 |
70 | 313,301 | 0.280 | 0.268 | −17 | 7.768 | 30 | 0.222 | 0.214 | −12 | 6.229 | 21 | 0.268 | 0.262 | 23 | 9.315 | 56 |
80 | 313,060 | 0.270 | 0.258 | −20 | 7.092 | 28 | 0.230 | 0.222 | −13 | 6.273 | 22 | 0.280 | 0.274 | 25 | 9.554 | 59 |
90 | 312,883 | 0.262 | 0.251 | −22 | 6.754 | 29 | 0.239 | 0.231 | −17 | 5.977 | 20 | 0.253 | 0.248 | 19 | 9.077 | 56 |
100 | 312,100 | 0.246 | 0.235 | −19 | 6.177 | 29 | 0.202 | 0.195 | −14 | 4.814 | 18 | 0.221 | 0.216 | 21 | 8.305 | 54 |
110 | 311,656 | 0.231 | 0.221 | −16 | 6.446 | 33 | 0.189 | 0.182 | −12 | 4.827 | 22 | 0.211 | 0.206 | 25 | 8.964 | 59 |
120 | 311,574 | 0.236 | 0.225 | −16 | 6.545 | 34 | 0.209 | 0.202 | −16 | 4.594 | 19 | 0.207 | 0.202 | 22 | 8.637 | 57 |
130 | 311,511 | 0.238 | 0.227 | −17 | 6.551 | 35 | 0.207 | 0.200 | −16 | 4.797 | 21 | 0.204 | 0.200 | 23 | 9.104 | 60 |
140 | 311,461 | 0.231 | 0.221 | −16 | 6.026 | 31 | 0.189 | 0.183 | −12 | 4.726 | 21 | 0.216 | 0.212 | 25 | 8.853 | 58 |
150 | 311,426 | 0.224 | 0.215 | −14 | 5.904 | 31 | 0.177 | 0.171 | −9 | 4.756 | 22 | 0.226 | 0.221 | 29 | 9.005 | 59 |
in variance model selection |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 328,519 | 2.120 | 2.027 | 288 | 50.524 | 221 | 2.206 | 2.132 | 329 | 46.563 | 248 | 3.194 | 3.127 | 480 | 60.396 | 399 |
20 | 319,481 | 0.971 | 0.928 | 95 | 24.185 | 105 | 0.439 | 0.424 | 53 | 11.839 | 49 | 0.821 | 0.803 | 117 | 18.086 | 112 |
30 | 316,529 | 0.655 | 0.627 | 56 | 16.560 | 74 | 0.420 | 0.406 | 57 | 12.301 | 61 | 0.780 | 0.764 | 113 | 18.285 | 117 |
40 | 314,460 | 0.379 | 0.362 | 19 | 10.089 | 42 | 0.268 | 0.259 | 19 | 8.120 | 28 | 0.473 | 0.463 | 54 | 11.608 | 63 |
50 | 313,842 | 0.324 | 0.310 | 2 | 8.422 | 33 | 0.229 | 0.221 | −4 | 6.420 | 12 | 0.339 | 0.331 | 20 | 8.600 | 36 |
60 | 313,022 | 0.297 | 0.284 | −13 | 7.619 | 31 | 0.223 | 0.215 | −13 | 6.123 | 17 | 0.277 | 0.271 | 14 | 8.292 | 43 |
70 | 312,692 | 0.282 | 0.269 | −17 | 7.494 | 26 | 0.221 | 0.213 | −5 | 6.762 | 24 | 0.326 | 0.319 | 35 | 10.467 | 64 |
80 | 312,443 | 0.271 | 0.259 | −19 | 7.171 | 27 | 0.218 | 0.211 | −7 | 6.625 | 25 | 0.303 | 0.297 | 33 | 10.306 | 65 |
90 | 312,264 | 0.261 | 0.249 | −21 | 6.610 | 27 | 0.222 | 0.215 | −11 | 6.300 | 23 | 0.278 | 0.272 | 28 | 9.806 | 62 |
100 | 312,187 | 0.262 | 0.250 | −21 | 6.568 | 26 | 0.216 | 0.208 | −10 | 6.265 | 23 | 0.272 | 0.266 | 28 | 9.707 | 61 |
110 | 312,108 | 0.256 | 0.244 | −21 | 6.031 | 23 | 0.203 | 0.196 | −5 | 6.324 | 25 | 0.288 | 0.282 | 31 | 9.754 | 61 |
120 | 312,043 | 0.261 | 0.250 | −23 | 5.989 | 20 | 0.200 | 0.194 | −4 | 6.287 | 25 | 0.293 | 0.287 | 33 | 9.857 | 62 |
130 | 311,078 | 0.226 | 0.216 | −18 | 5.466 | 25 | 0.160 | 0.155 | −4 | 5.115 | 24 | 0.244 | 0.239 | 32 | 9.192 | 60 |
140 | 310,918 | 0.220 | 0.210 | −16 | 5.451 | 25 | 0.153 | 0.148 | −4 | 4.820 | 23 | 0.233 | 0.228 | 31 | 8.859 | 58 |
150 | 310,868 | 0.212 | 0.203 | −14 | 5.375 | 25 | 0.148 | 0.143 | 0 | 5.098 | 25 | 0.256 | 0.250 | 36 | 9.296 | 61 |
in variance model selection |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 326,308 | 2.12 | 2.027 | 290 | 50.306 | 220 | 2.215 | 2.141 | 331 | 46.129 | 246 | 3.197 | 3.13 | 480 | 59.909 | 396 |
20 | 319,199 | 1.024 | 0.979 | 100 | 26.049 | 137 | 0.527 | 0.509 | 75 | 18.639 | 98 | 1.044 | 1.022 | 155 | 27.142 | 178 |
30 | 316,093 | 0.702 | 0.671 | 67 | 17.574 | 79 | 0.503 | 0.486 | 73 | 13.745 | 70 | 0.901 | 0.882 | 133 | 20.208 | 131 |
40 | 314,155 | 0.393 | 0.376 | 24 | 10.363 | 44 | 0.282 | 0.273 | 25 | 8.426 | 31 | 0.505 | 0.494 | 62 | 12.131 | 68 |
50 | 313,562 | 0.327 | 0.313 | 6 | 8.561 | 34 | 0.225 | 0.217 | 1 | 6.535 | 15 | 0.352 | 0.345 | 27 | 8.936 | 41 |
60 | 312,811 | 0.298 | 0.285 | −10 | 7.608 | 29 | 0.203 | 0.196 | 4 | 7.086 | 29 | 0.336 | 0.329 | 37 | 10.283 | 62 |
70 | 312,455 | 0.289 | 0.276 | −15 | 7.409 | 26 | 0.219 | 0.211 | −2 | 6.863 | 25 | 0.343 | 0.335 | 38 | 10.612 | 65 |
80 | 312,235 | 0.273 | 0.261 | −17 | 7.222 | 28 | 0.215 | 0.208 | −4 | 6.738 | 26 | 0.322 | 0.316 | 37 | 10.662 | 67 |
90 | 312,057 | 0.264 | 0.253 | −22 | 6.68 | 27 | 0.222 | 0.214 | −10 | 6.406 | 24 | 0.283 | 0.277 | 28 | 9.981 | 63 |
100 | 311,953 | 0.255 | 0.244 | −21 | 6.117 | 24 | 0.201 | 0.194 | −5 | 6.381 | 25 | 0.29 | 0.284 | 31 | 9.78 | 61 |
110 | 311,898 | 0.252 | 0.241 | −20 | 5.929 | 22 | 0.200 | 0.193 | −4 | 6.236 | 24 | 0.293 | 0.287 | 32 | 9.583 | 60 |
120 | 311,832 | 0.263 | 0.251 | −23 | 5.962 | 19 | 0.198 | 0.192 | −3 | 6.300 | 25 | 0.303 | 0.296 | 34 | 9.878 | 62 |
130 | 310,916 | 0.223 | 0.213 | −17 | 5.363 | 23 | 0.154 | 0.149 | −1 | 5.233 | 25 | 0.263 | 0.257 | 36 | 9.305 | 61 |
140 | 310,757 | 0.215 | 0.206 | −15 | 5.339 | 24 | 0.147 | 0.142 | 0 | 4.954 | 24 | 0.251 | 0.246 | 35 | 8.972 | 59 |
150 | 310,714 | 0.214 | 0.205 | −14 | 5.368 | 25 | 0.146 | 0.141 | −1 | 4.857 | 23 | 0.244 | 0.239 | 34 | 8.906 | 59 |
in variance model selection |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 326,125 | 2.127 | 2.034 | 292 | 50.425 | 220 | 2.226 | 2.151 | 332 | 46.222 | 246 | 3.209 | 3.142 | 482 | 60.019 | 396 |
20 | 318,762 | 1.036 | 0.991 | 111 | 25.668 | 113 | 0.538 | 0.52 | 75 | 13.429 | 64 | 0.983 | 0.962 | 144 | 20.708 | 133 |
30 | 315,995 | 0.71 | 0.679 | 69 | 17.741 | 80 | 0.523 | 0.505 | 76 | 13.963 | 72 | 0.925 | 0.906 | 137 | 20.465 | 133 |
40 | 314,060 | 0.401 | 0.383 | 27 | 10.529 | 45 | 0.292 | 0.282 | 28 | 8.56 | 33 | 0.521 | 0.51 | 66 | 12.341 | 70 |
50 | 313,483 | 0.329 | 0.315 | 9 | 8.687 | 35 | 0.225 | 0.217 | 4 | 6.62 | 16 | 0.362 | 0.354 | 31 | 9.12 | 43 |
60 | 312,938 | 0.316 | 0.302 | −5 | 7.84 | 30 | 0.209 | 0.202 | 5 | 6.855 | 26 | 0.347 | 0.34 | 41 | 10.297 | 62 |
70 | 312,363 | 0.27 | 0.258 | −10 | 6.96 | 21 | 0.215 | 0.207 | 11 | 7.089 | 28 | 0.389 | 0.381 | 48 | 10.795 | 65 |
80 | 312,166 | 0.259 | 0.248 | −12 | 6.558 | 22 | 0.204 | 0.198 | 9 | 7.008 | 29 | 0.369 | 0.361 | 47 | 10.718 | 67 |
90 | 311,963 | 0.234 | 0.223 | −15 | 6.141 | 24 | 0.196 | 0.189 | 1 | 6.432 | 26 | 0.313 | 0.306 | 37 | 9.844 | 61 |
100 | 311,883 | 0.241 | 0.231 | −18 | 6.031 | 24 | 0.194 | 0.187 | −1 | 6.449 | 26 | 0.299 | 0.293 | 34 | 9.777 | 61 |
110 | 311,830 | 0.239 | 0.229 | −18 | 5.836 | 22 | 0.193 | 0.187 | 0 | 6.298 | 25 | 0.303 | 0.296 | 35 | 9.61 | 60 |
120 | 311,766 | 0.244 | 0.234 | −19 | 5.713 | 18 | 0.191 | 0.184 | 3 | 6.34 | 26 | 0.321 | 0.314 | 39 | 9.866 | 62 |
130 | 311,045 | 0.225 | 0.215 | −15 | 5.396 | 23 | 0.148 | 0.143 | 0 | 5.061 | 24 | 0.259 | 0.254 | 35 | 8.95 | 59 |
140 | 310,694 | 0.213 | 0.204 | −13 | 5.314 | 24 | 0.139 | 0.134 | 1 | 4.855 | 24 | 0.245 | 0.24 | 34 | 8.672 | 57 |
150 | 310,644 | 0.211 | 0.202 | −14 | 5.131 | 23 | 0.139 | 0.135 | 1 | 4.816 | 23 | 0.25 | 0.245 | 35 | 8.618 | 57 |
in variance model selection |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 325,988 | 2.127 | 2.034 | 292 | 50.414 | 220 | 2.226 | 2.151 | 332 | 46.259 | 246 | 3.21 | 3.143 | 482 | 60.061 | 397 |
20 | 318,926 | 1.034 | 0.988 | 105 | 26.16 | 137 | 0.569 | 0.55 | 83 | 19.043 | 101 | 1.098 | 1.075 | 163 | 27.621 | 181 |
30 | 315,805 | 0.712 | 0.681 | 71 | 17.763 | 79 | 0.537 | 0.519 | 78 | 14.063 | 72 | 0.943 | 0.923 | 140 | 20.603 | 134 |
40 | 313,973 | 0.409 | 0.391 | 29 | 10.73 | 46 | 0.301 | 0.291 | 31 | 8.709 | 34 | 0.539 | 0.527 | 70 | 12.589 | 72 |
50 | 313,411 | 0.349 | 0.334 | 7 | 8.95 | 34 | 0.223 | 0.216 | 3 | 6.618 | 16 | 0.357 | 0.349 | 30 | 9.081 | 42 |
60 | 312,873 | 0.308 | 0.295 | −2 | 8.205 | 37 | 0.203 | 0.196 | 8 | 7.49 | 33 | 0.35 | 0.343 | 43 | 10.853 | 67 |
70 | 312,286 | 0.271 | 0.26 | −9 | 6.95 | 21 | 0.217 | 0.21 | 12 | 7.124 | 28 | 0.398 | 0.389 | 50 | 10.856 | 66 |
80 | 312,091 | 0.261 | 0.249 | −11 | 6.557 | 22 | 0.207 | 0.200 | 10 | 7.051 | 29 | 0.377 | 0.369 | 48 | 10.793 | 68 |
90 | 311,893 | 0.235 | 0.225 | −15 | 6.043 | 23 | 0.196 | 0.189 | 1 | 6.367 | 25 | 0.314 | 0.307 | 36 | 9.683 | 60 |
100 | 311,815 | 0.238 | 0.228 | −17 | 5.97 | 23 | 0.194 | 0.187 | 1 | 6.462 | 26 | 0.311 | 0.304 | 37 | 9.829 | 61 |
110 | 311,761 | 0.237 | 0.227 | −17 | 5.78 | 21 | 0.194 | 0.188 | 2 | 6.364 | 25 | 0.313 | 0.307 | 37 | 9.694 | 60 |
120 | 311,697 | 0.243 | 0.232 | −19 | 5.818 | 18 | 0.191 | 0.185 | 2 | 6.325 | 25 | 0.32 | 0.313 | 39 | 9.885 | 62 |
130 | 311,655 | 0.232 | 0.222 | −17 | 5.688 | 18 | 0.195 | 0.188 | 8 | 6.714 | 29 | 0.353 | 0.346 | 46 | 10.509 | 67 |
140 | 310,748 | 0.215 | 0.206 | −14 | 5.206 | 23 | 0.148 | 0.143 | 5 | 5.578 | 27 | 0.293 | 0.287 | 42 | 9.788 | 64 |
150 | 310,590 | 0.208 | 0.199 | −13 | 5.209 | 23 | 0.139 | 0.134 | 5 | 5.193 | 26 | 0.275 | 0.27 | 40 | 9.256 | 61 |
Table A29.
AIC scores and out-of-sample validation figures of type II FGLS proxy functions of BEL under 300–886 with variance models of varying complexity after each tenth and the final iteration.
Table A29.
AIC scores and out-of-sample validation figures of type II FGLS proxy functions of BEL under 300–886 with variance models of varying complexity after each tenth and the final iteration.
k | AIC | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
in variance model selection |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 336,390 | 1.786 | 1.708 | 184 | 44.082 | 198 | 1.402 | 1.354 | 209 | 39.152 | 209 | 2.290 | 2.242 | 344 | 52.033 | 344 |
20 | 323,883 | 0.826 | 0.790 | 25 | 22.007 | 111 | 0.424 | 0.409 | −28 | 10.764 | 44 | 0.437 | 0.428 | 28 | 16.424 | 99 |
30 | 319,958 | 0.465 | 0.445 | 3 | 12.876 | 55 | 0.288 | 0.278 | 2 | 9.650 | 40 | 0.467 | 0.457 | 57 | 15.234 | 96 |
40 | 318,945 | 0.401 | 0.384 | −16 | 11.036 | 51 | 0.357 | 0.345 | −37 | 7.158 | 16 | 0.330 | 0.323 | 3 | 10.127 | 55 |
50 | 318,206 | 0.355 | 0.339 | −24 | 9.270 | 35 | 0.336 | 0.324 | −36 | 6.611 | 8 | 0.339 | 0.332 | −8 | 8.602 | 36 |
60 | 317,485 | 0.323 | 0.309 | −25 | 8.407 | 36 | 0.309 | 0.298 | −36 | 5.548 | 11 | 0.279 | 0.273 | −11 | 7.244 | 36 |
70 | 317,197 | 0.306 | 0.293 | −28 | 7.631 | 28 | 0.345 | 0.334 | −43 | 5.405 | −1 | 0.272 | 0.266 | −17 | 5.899 | 25 |
80 | 316,263 | 0.272 | 0.260 | −24 | 6.946 | 32 | 0.320 | 0.310 | −42 | 4.051 | 0 | 0.227 | 0.222 | −17 | 4.898 | 25 |
90 | 316,021 | 0.260 | 0.249 | −23 | 7.143 | 39 | 0.298 | 0.288 | −37 | 3.854 | 10 | 0.173 | 0.169 | −5 | 6.461 | 42 |
100 | 315,871 | 0.256 | 0.245 | −23 | 7.424 | 41 | 0.294 | 0.284 | −35 | 4.078 | 14 | 0.186 | 0.182 | 0 | 7.443 | 49 |
110 | 315,784 | 0.256 | 0.245 | −22 | 7.396 | 41 | 0.302 | 0.292 | −37 | 3.962 | 12 | 0.189 | 0.185 | −3 | 7.013 | 46 |
120 | 315,719 | 0.257 | 0.245 | −23 | 6.923 | 38 | 0.296 | 0.286 | −36 | 3.870 | 11 | 0.181 | 0.177 | −2 | 6.872 | 45 |
130 | 315,675 | 0.258 | 0.247 | −25 | 6.506 | 35 | 0.295 | 0.285 | −36 | 3.760 | 9 | 0.188 | 0.184 | −3 | 6.461 | 42 |
140 | 315,641 | 0.250 | 0.239 | −23 | 6.441 | 34 | 0.284 | 0.275 | −34 | 3.741 | 9 | 0.182 | 0.178 | −2 | 6.338 | 41 |
150 | 315,622 | 0.238 | 0.228 | −20 | 6.433 | 34 | 0.258 | 0.250 | −29 | 3.821 | 11 | 0.177 | 0.174 | 4 | 6.740 | 44 |
160 | 315,599 | 0.233 | 0.223 | −20 | 6.578 | 35 | 0.256 | 0.247 | −28 | 3.920 | 12 | 0.183 | 0.179 | 6 | 6.988 | 46 |
170 | 315,573 | 0.232 | 0.222 | −19 | 6.616 | 35 | 0.254 | 0.246 | −28 | 3.880 | 12 | 0.181 | 0.178 | 5 | 6.927 | 45 |
180 | 315,535 | 0.225 | 0.215 | −19 | 6.502 | 35 | 0.252 | 0.243 | −28 | 3.773 | 11 | 0.172 | 0.169 | 5 | 6.797 | 44 |
190 | 315,523 | 0.229 | 0.219 | −19 | 6.809 | 37 | 0.244 | 0.236 | −26 | 4.020 | 15 | 0.164 | 0.161 | 9 | 7.607 | 50 |
200 | 315,507 | 0.215 | 0.206 | −18 | 6.738 | 36 | 0.243 | 0.235 | −26 | 3.969 | 14 | 0.164 | 0.161 | 9 | 7.387 | 49 |
210 | 315,500 | 0.214 | 0.205 | −18 | 6.704 | 35 | 0.234 | 0.226 | −24 | 3.989 | 14 | 0.162 | 0.159 | 10 | 7.323 | 48 |
220 | 315,492 | 0.217 | 0.207 | −18 | 6.769 | 35 | 0.239 | 0.231 | −26 | 3.930 | 14 | 0.159 | 0.155 | 9 | 7.277 | 48 |
224 | 315,491 | 0.209 | 0.199 | −17 | 6.584 | 34 | 0.226 | 0.219 | −22 | 3.999 | 14 | 0.165 | 0.161 | 12 | 7.290 | 48 |
in variance model selection |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 332,479 | 2.014 | 1.926 | 259 | 49.098 | 213 | 2.000 | 1.933 | 298 | 44.745 | 238 | 2.964 | 2.901 | 445 | 58.341 | 385 |
20 | 320,873 | 0.881 | 0.842 | 51 | 22.821 | 115 | 0.341 | 0.329 | 16 | 13.428 | 66 | 0.622 | 0.609 | 84 | 20.790 | 134 |
30 | 316,187 | 0.429 | 0.410 | 19 | 10.875 | 32 | 0.308 | 0.297 | 29 | 8.537 | 28 | 0.561 | 0.549 | 73 | 12.633 | 72 |
40 | 315,132 | 0.366 | 0.350 | 6 | 10.243 | 45 | 0.254 | 0.246 | 1 | 7.853 | 25 | 0.401 | 0.393 | 36 | 11.221 | 61 |
50 | 314,473 | 0.303 | 0.289 | 3 | 9.346 | 46 | 0.229 | 0.222 | 0 | 7.543 | 28 | 0.361 | 0.353 | 34 | 10.776 | 62 |
60 | 313,643 | 0.307 | 0.293 | −18 | 7.567 | 28 | 0.251 | 0.242 | −21 | 5.808 | 11 | 0.266 | 0.261 | 9 | 7.676 | 41 |
70 | 313,301 | 0.280 | 0.268 | −17 | 7.768 | 30 | 0.222 | 0.214 | −12 | 6.229 | 21 | 0.268 | 0.262 | 23 | 9.315 | 56 |
80 | 313,060 | 0.270 | 0.258 | −20 | 7.092 | 28 | 0.230 | 0.222 | −13 | 6.273 | 22 | 0.280 | 0.274 | 25 | 9.554 | 59 |
90 | 312,883 | 0.262 | 0.251 | −22 | 6.754 | 29 | 0.239 | 0.231 | −17 | 5.977 | 20 | 0.253 | 0.248 | 19 | 9.077 | 56 |
100 | 312,100 | 0.246 | 0.235 | −19 | 6.177 | 29 | 0.202 | 0.195 | −14 | 4.814 | 18 | 0.221 | 0.216 | 21 | 8.305 | 54 |
110 | 311,656 | 0.231 | 0.221 | −16 | 6.446 | 33 | 0.189 | 0.182 | −12 | 4.827 | 22 | 0.211 | 0.206 | 25 | 8.964 | 59 |
120 | 311,574 | 0.236 | 0.225 | −16 | 6.545 | 34 | 0.209 | 0.202 | −16 | 4.594 | 19 | 0.207 | 0.202 | 22 | 8.637 | 57 |
130 | 311,507 | 0.234 | 0.223 | −16 | 6.706 | 36 | 0.206 | 0.199 | −16 | 4.801 | 21 | 0.204 | 0.200 | 23 | 9.094 | 60 |
140 | 311,456 | 0.226 | 0.216 | −16 | 6.102 | 32 | 0.189 | 0.182 | −12 | 4.717 | 21 | 0.215 | 0.211 | 25 | 8.827 | 58 |
150 | 311,419 | 0.224 | 0.214 | −15 | 5.899 | 31 | 0.178 | 0.172 | −10 | 4.712 | 22 | 0.213 | 0.209 | 27 | 8.971 | 59 |
160 | 311,355 | 0.217 | 0.207 | −15 | 5.536 | 29 | 0.160 | 0.154 | −4 | 5.013 | 25 | 0.246 | 0.241 | 33 | 9.420 | 62 |
170 | 311,308 | 0.198 | 0.189 | −13 | 5.090 | 23 | 0.141 | 0.137 | −4 | 4.144 | 19 | 0.221 | 0.216 | 27 | 7.491 | 49 |
180 | 311,266 | 0.202 | 0.193 | −14 | 5.112 | 24 | 0.132 | 0.127 | −3 | 4.433 | 22 | 0.218 | 0.213 | 27 | 7.868 | 52 |
190 | 311,248 | 0.208 | 0.198 | −16 | 5.287 | 23 | 0.143 | 0.138 | −5 | 4.163 | 19 | 0.213 | 0.208 | 25 | 7.630 | 50 |
200 | 311,228 | 0.202 | 0.193 | −14 | 5.269 | 24 | 0.137 | 0.133 | −4 | 4.148 | 20 | 0.213 | 0.209 | 27 | 7.639 | 50 |
210 | 311,196 | 0.192 | 0.184 | −14 | 5.032 | 20 | 0.125 | 0.121 | 4 | 4.655 | 23 | 0.253 | 0.248 | 32 | 7.919 | 52 |
220 | 311,164 | 0.195 | 0.187 | −15 | 5.079 | 21 | 0.122 | 0.118 | 1 | 4.620 | 23 | 0.237 | 0.232 | 31 | 8.070 | 53 |
230 | 311,148 | 0.194 | 0.185 | −15 | 5.146 | 22 | 0.122 | 0.118 | 1 | 4.571 | 23 | 0.236 | 0.231 | 29 | 7.949 | 52 |
237 | 311,144 | 0.196 | 0.188 | −15 | 5.342 | 23 | 0.125 | 0.121 | 0 | 4.765 | 24 | 0.235 | 0.230 | 30 | 8.243 | 54 |
in variance model selection |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 331,056 | 2.073 | 1.982 | 273 | 50.085 | 216 | 2.113 | 2.041 | 315 | 45.714 | 244 | 3.090 | 3.025 | 464 | 59.451 | 393 |
20 | 320,199 | 0.924 | 0.884 | 76 | 23.133 | 101 | 0.375 | 0.362 | 25 | 10.921 | 35 | 0.655 | 0.641 | 82 | 15.999 | 92 |
30 | 316,044 | 0.543 | 0.519 | 31 | 14.068 | 56 | 0.372 | 0.359 | 45 | 11.729 | 56 | 0.742 | 0.727 | 107 | 18.450 | 118 |
40 | 314,821 | 0.385 | 0.368 | 11 | 10.626 | 47 | 0.256 | 0.248 | 6 | 8.118 | 28 | 0.424 | 0.415 | 43 | 11.685 | 65 |
50 | 314,201 | 0.327 | 0.313 | 2 | 9.206 | 41 | 0.240 | 0.232 | −8 | 6.713 | 17 | 0.336 | 0.329 | 21 | 9.103 | 45 |
60 | 313,386 | 0.269 | 0.257 | −5 | 7.831 | 34 | 0.220 | 0.213 | 6 | 7.506 | 31 | 0.365 | 0.357 | 46 | 11.223 | 71 |
70 | 312,986 | 0.290 | 0.278 | −17 | 7.316 | 26 | 0.210 | 0.203 | −4 | 6.646 | 25 | 0.310 | 0.304 | 33 | 9.955 | 61 |
80 | 312,722 | 0.280 | 0.268 | −18 | 7.425 | 31 | 0.223 | 0.215 | −8 | 6.792 | 27 | 0.300 | 0.293 | 33 | 10.652 | 68 |
90 | 312,545 | 0.270 | 0.259 | −22 | 7.110 | 32 | 0.233 | 0.225 | −13 | 6.634 | 26 | 0.273 | 0.267 | 27 | 10.450 | 67 |
100 | 312,469 | 0.265 | 0.253 | −21 | 6.800 | 29 | 0.224 | 0.217 | −11 | 6.420 | 25 | 0.274 | 0.268 | 29 | 10.128 | 64 |
110 | 312,397 | 0.254 | 0.243 | −19 | 6.136 | 25 | 0.202 | 0.195 | −4 | 6.360 | 25 | 0.290 | 0.284 | 33 | 9.940 | 63 |
120 | 312,346 | 0.247 | 0.236 | −19 | 5.940 | 22 | 0.193 | 0.187 | 1 | 6.468 | 27 | 0.307 | 0.301 | 38 | 10.078 | 64 |
130 | 312,299 | 0.240 | 0.230 | −17 | 5.784 | 21 | 0.192 | 0.185 | 4 | 6.563 | 28 | 0.329 | 0.322 | 43 | 10.369 | 66 |
140 | 312,274 | 0.247 | 0.236 | −18 | 5.811 | 22 | 0.193 | 0.186 | 5 | 6.870 | 31 | 0.338 | 0.331 | 45 | 10.944 | 71 |
150 | 312,243 | 0.249 | 0.238 | −19 | 5.950 | 24 | 0.193 | 0.186 | 3 | 6.872 | 31 | 0.324 | 0.317 | 43 | 10.984 | 71 |
160 | 312,222 | 0.255 | 0.244 | −19 | 6.162 | 25 | 0.198 | 0.191 | 1 | 6.859 | 30 | 0.324 | 0.318 | 42 | 11.092 | 72 |
170 | 311,204 | 0.228 | 0.218 | −14 | 5.957 | 31 | 0.161 | 0.156 | −1 | 5.874 | 30 | 0.276 | 0.270 | 40 | 10.703 | 71 |
180 | 311,040 | 0.223 | 0.213 | −13 | 6.021 | 31 | 0.154 | 0.149 | −1 | 5.594 | 29 | 0.265 | 0.259 | 39 | 10.356 | 68 |
190 | 310,996 | 0.222 | 0.213 | −13 | 6.152 | 32 | 0.154 | 0.149 | −2 | 5.584 | 28 | 0.258 | 0.253 | 38 | 10.311 | 68 |
200 | 310,968 | 0.206 | 0.197 | −10 | 6.163 | 32 | 0.144 | 0.139 | 3 | 5.924 | 31 | 0.285 | 0.279 | 42 | 10.568 | 70 |
210 | 310,953 | 0.211 | 0.202 | −10 | 5.930 | 30 | 0.143 | 0.138 | 3 | 5.615 | 29 | 0.276 | 0.270 | 41 | 10.153 | 67 |
220 | 310,927 | 0.208 | 0.199 | −11 | 6.353 | 33 | 0.147 | 0.142 | −1 | 5.602 | 29 | 0.252 | 0.247 | 37 | 10.225 | 67 |
230 | 310,919 | 0.211 | 0.202 | −11 | 6.454 | 34 | 0.149 | 0.144 | −1 | 5.702 | 29 | 0.259 | 0.253 | 38 | 10.376 | 69 |
240 | 310,908 | 0.210 | 0.201 | −11 | 6.559 | 35 | 0.152 | 0.147 | −3 | 5.570 | 28 | 0.251 | 0.245 | 36 | 10.218 | 67 |
244 | 310,905 | 0.208 | 0.199 | −11 | 6.577 | 35 | 0.153 | 0.147 | −2 | 5.617 | 29 | 0.252 | 0.247 | 37 | 10.259 | 68 |
in variance model selection |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 327,049 | 2.133 | 2.039 | 292 | 50.561 | 222 | 2.233 | 2.157 | 333 | 46.686 | 249 | 3.222 | 3.154 | 484 | 60.524 | 400 |
20 | 318,965 | 1.020 | 0.976 | 108 | 25.288 | 111 | 0.507 | 0.490 | 69 | 12.759 | 57 | 0.931 | 0.912 | 136 | 19.634 | 124 |
30 | 316,262 | 0.694 | 0.663 | 65 | 17.386 | 78 | 0.484 | 0.468 | 69 | 13.341 | 68 | 0.872 | 0.853 | 128 | 19.643 | 127 |
40 | 314,272 | 0.392 | 0.375 | 23 | 10.373 | 44 | 0.277 | 0.268 | 23 | 8.322 | 30 | 0.493 | 0.483 | 59 | 11.941 | 66 |
50 | 313,691 | 0.349 | 0.333 | 1 | 8.772 | 32 | 0.228 | 0.220 | −5 | 6.440 | 12 | 0.335 | 0.328 | 19 | 8.633 | 36 |
60 | 312,860 | 0.289 | 0.276 | −10 | 7.475 | 30 | 0.204 | 0.197 | −2 | 6.583 | 24 | 0.302 | 0.295 | 28 | 9.218 | 53 |
70 | 312,542 | 0.286 | 0.273 | −16 | 7.501 | 26 | 0.219 | 0.211 | −3 | 6.802 | 24 | 0.334 | 0.327 | 37 | 10.548 | 64 |
80 | 312,337 | 0.281 | 0.269 | −18 | 7.254 | 27 | 0.215 | 0.207 | −4 | 6.834 | 27 | 0.323 | 0.316 | 37 | 10.655 | 67 |
90 | 312,126 | 0.261 | 0.250 | −21 | 6.672 | 27 | 0.221 | 0.213 | −10 | 6.384 | 23 | 0.286 | 0.280 | 29 | 9.942 | 62 |
100 | 312,046 | 0.268 | 0.256 | −22 | 6.695 | 27 | 0.222 | 0.215 | −12 | 6.317 | 24 | 0.270 | 0.265 | 26 | 9.779 | 61 |
110 | 311,961 | 0.257 | 0.245 | −22 | 5.979 | 23 | 0.200 | 0.193 | −5 | 6.316 | 25 | 0.284 | 0.278 | 31 | 9.695 | 61 |
120 | 311,903 | 0.252 | 0.241 | −21 | 5.892 | 19 | 0.193 | 0.186 | 1 | 6.411 | 26 | 0.311 | 0.304 | 37 | 9.977 | 63 |
130 | 311,860 | 0.244 | 0.233 | −19 | 5.886 | 20 | 0.190 | 0.184 | 3 | 6.562 | 28 | 0.322 | 0.315 | 41 | 10.344 | 66 |
140 | 311,824 | 0.243 | 0.232 | −20 | 5.880 | 19 | 0.190 | 0.183 | 5 | 6.758 | 30 | 0.335 | 0.328 | 44 | 10.696 | 69 |
150 | 311,800 | 0.247 | 0.236 | −21 | 6.011 | 20 | 0.185 | 0.179 | 2 | 6.452 | 28 | 0.309 | 0.303 | 40 | 10.365 | 66 |
160 | 310,806 | 0.218 | 0.208 | −16 | 5.451 | 25 | 0.140 | 0.135 | 0 | 5.234 | 27 | 0.255 | 0.249 | 37 | 9.596 | 63 |
170 | 310,710 | 0.210 | 0.201 | −15 | 5.473 | 25 | 0.137 | 0.132 | 0 | 5.077 | 26 | 0.249 | 0.244 | 36 | 9.359 | 62 |
180 | 310,682 | 0.206 | 0.197 | −14 | 5.303 | 24 | 0.136 | 0.131 | 2 | 5.064 | 26 | 0.266 | 0.260 | 39 | 9.492 | 63 |
190 | 310,661 | 0.200 | 0.191 | −13 | 5.285 | 23 | 0.144 | 0.139 | 5 | 5.163 | 26 | 0.298 | 0.292 | 44 | 9.843 | 65 |
200 | 310,639 | 0.201 | 0.192 | −13 | 5.413 | 22 | 0.143 | 0.138 | 4 | 5.088 | 25 | 0.293 | 0.287 | 44 | 9.726 | 64 |
210 | 310,606 | 0.203 | 0.194 | −13 | 5.599 | 23 | 0.145 | 0.141 | 6 | 5.459 | 27 | 0.314 | 0.307 | 47 | 10.294 | 68 |
220 | 310,525 | 0.183 | 0.174 | −13 | 4.672 | 12 | 0.148 | 0.143 | −3 | 3.744 | 7 | 0.221 | 0.217 | 30 | 6.238 | 40 |
230 | 310,513 | 0.179 | 0.171 | −14 | 4.668 | 13 | 0.153 | 0.148 | −6 | 3.729 | 7 | 0.206 | 0.202 | 27 | 6.113 | 40 |
240 | 310,475 | 0.172 | 0.164 | −14 | 4.347 | 10 | 0.130 | 0.126 | −1 | 3.523 | 9 | 0.219 | 0.214 | 30 | 6.154 | 39 |
250 | 310,462 | 0.171 | 0.163 | −14 | 4.307 | 10 | 0.134 | 0.130 | −2 | 3.480 | 8 | 0.211 | 0.206 | 28 | 5.958 | 38 |
258 | 310,443 | 0.172 | 0.165 | −14 | 4.371 | 10 | 0.134 | 0.129 | −2 | 3.504 | 8 | 0.214 | 0.210 | 28 | 6.063 | 39 |
in variance model selection |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 325,846 | 2.112 | 2.020 | 290 | 50.142 | 221 | 2.201 | 2.127 | 328 | 46.153 | 246 | 3.183 | 3.116 | 478 | 59.925 | 396 |
20 | 318,985 | 1.027 | 0.982 | 104 | 25.991 | 136 | 0.566 | 0.547 | 82 | 18.748 | 99 | 1.089 | 1.066 | 162 | 27.261 | 179 |
30 | 315,896 | 0.705 | 0.674 | 69 | 17.595 | 79 | 0.526 | 0.508 | 76 | 13.871 | 71 | 0.928 | 0.908 | 137 | 20.356 | 132 |
40 | 314,044 | 0.404 | 0.386 | 28 | 10.602 | 45 | 0.296 | 0.286 | 30 | 8.630 | 34 | 0.531 | 0.519 | 68 | 12.462 | 71 |
50 | 313,483 | 0.330 | 0.316 | 9 | 8.715 | 35 | 0.225 | 0.217 | 5 | 6.643 | 17 | 0.365 | 0.358 | 32 | 9.177 | 44 |
60 | 312,939 | 0.316 | 0.302 | −5 | 7.833 | 31 | 0.210 | 0.203 | 5 | 6.895 | 26 | 0.352 | 0.345 | 42 | 10.382 | 63 |
70 | 312,359 | 0.270 | 0.258 | −10 | 6.927 | 21 | 0.216 | 0.208 | 11 | 7.084 | 27 | 0.393 | 0.385 | 49 | 10.781 | 65 |
80 | 312,165 | 0.260 | 0.248 | −12 | 6.555 | 22 | 0.206 | 0.199 | 10 | 7.018 | 29 | 0.373 | 0.365 | 48 | 10.721 | 67 |
90 | 311,964 | 0.233 | 0.223 | −15 | 6.130 | 24 | 0.196 | 0.189 | 1 | 6.433 | 26 | 0.313 | 0.307 | 37 | 9.838 | 61 |
100 | 311,882 | 0.237 | 0.227 | −17 | 5.756 | 20 | 0.190 | 0.183 | 2 | 6.218 | 24 | 0.305 | 0.298 | 36 | 9.431 | 58 |
110 | 311,827 | 0.239 | 0.229 | −18 | 5.733 | 21 | 0.190 | 0.184 | 1 | 6.305 | 25 | 0.303 | 0.296 | 36 | 9.588 | 60 |
120 | 311,769 | 0.245 | 0.234 | −20 | 5.762 | 18 | 0.189 | 0.183 | 3 | 6.425 | 27 | 0.319 | 0.313 | 39 | 9.924 | 62 |
130 | 311,716 | 0.224 | 0.214 | −16 | 5.502 | 15 | 0.190 | 0.183 | 10 | 6.403 | 27 | 0.350 | 0.342 | 46 | 9.993 | 63 |
140 | 311,005 | 0.216 | 0.206 | −13 | 5.222 | 21 | 0.142 | 0.137 | 6 | 5.361 | 26 | 0.291 | 0.285 | 42 | 9.416 | 62 |
150 | 310,660 | 0.203 | 0.194 | −12 | 5.094 | 21 | 0.133 | 0.129 | 7 | 5.158 | 26 | 0.284 | 0.278 | 42 | 9.129 | 60 |
160 | 310,611 | 0.201 | 0.192 | −12 | 5.033 | 21 | 0.137 | 0.133 | 8 | 5.360 | 27 | 0.303 | 0.297 | 45 | 9.568 | 63 |
170 | 310,586 | 0.196 | 0.187 | −11 | 4.994 | 21 | 0.136 | 0.132 | 10 | 5.548 | 28 | 0.316 | 0.310 | 47 | 9.821 | 65 |
180 | 310,550 | 0.193 | 0.184 | −12 | 4.987 | 21 | 0.135 | 0.130 | 1 | 4.264 | 20 | 0.241 | 0.236 | 35 | 8.200 | 54 |
190 | 310,535 | 0.196 | 0.187 | −14 | 5.087 | 21 | 0.139 | 0.135 | −3 | 4.049 | 18 | 0.217 | 0.212 | 31 | 7.884 | 52 |
200 | 310,511 | 0.182 | 0.174 | −11 | 4.965 | 21 | 0.131 | 0.127 | 0 | 3.992 | 18 | 0.231 | 0.226 | 34 | 7.810 | 52 |
210 | 310,467 | 0.185 | 0.177 | −12 | 5.011 | 20 | 0.131 | 0.127 | 0 | 3.967 | 17 | 0.231 | 0.226 | 34 | 7.741 | 51 |
220 | 310,463 | 0.181 | 0.173 | −12 | 5.059 | 20 | 0.130 | 0.125 | 2 | 4.181 | 19 | 0.246 | 0.241 | 36 | 8.110 | 54 |
230 | 310,454 | 0.181 | 0.173 | −11 | 5.409 | 23 | 0.138 | 0.133 | 1 | 4.405 | 20 | 0.246 | 0.241 | 36 | 8.436 | 56 |
240 | 310,440 | 0.182 | 0.174 | −11 | 5.398 | 23 | 0.138 | 0.133 | 1 | 4.457 | 21 | 0.250 | 0.245 | 37 | 8.559 | 57 |
250 | 310,431 | 0.181 | 0.173 | −11 | 5.509 | 23 | 0.138 | 0.133 | 1 | 4.525 | 21 | 0.251 | 0.246 | 37 | 8.638 | 57 |
252 | 310,425 | 0.185 | 0.176 | −11 | 5.515 | 23 | 0.138 | 0.133 | 1 | 4.548 | 22 | 0.253 | 0.248 | 37 | 8.700 | 57 |
in variance model selection |
0 | 437,251 | 4.557 | 4.357 | −238 | 100.000 | 38 | 3.231 | 3.121 | 0 | 100.000 | 261 | 4.027 | 3.942 | 106 | 100.000 | 367 |
10 | 325,796 | 2.115 | 2.023 | 290 | 50.203 | 222 | 2.206 | 2.131 | 329 | 46.238 | 246 | 3.189 | 3.121 | 479 | 60.021 | 396 |
20 | 318,940 | 1.026 | 0.981 | 112 | 25.965 | 135 | 0.666 | 0.644 | 98 | 20.243 | 107 | 1.199 | 1.174 | 179 | 28.606 | 188 |
30 | 315,849 | 0.708 | 0.677 | 70 | 17.681 | 79 | 0.532 | 0.514 | 77 | 14.005 | 72 | 0.936 | 0.917 | 139 | 20.526 | 133 |
40 | 314,001 | 0.407 | 0.389 | 28 | 10.712 | 46 | 0.299 | 0.289 | 31 | 8.710 | 34 | 0.536 | 0.524 | 69 | 12.589 | 73 |
50 | 313,413 | 0.348 | 0.332 | 10 | 9.025 | 36 | 0.223 | 0.216 | 5 | 6.616 | 17 | 0.364 | 0.356 | 32 | 9.225 | 44 |
60 | 312,897 | 0.316 | 0.302 | −4 | 7.866 | 31 | 0.211 | 0.203 | 6 | 6.983 | 27 | 0.358 | 0.351 | 44 | 10.549 | 65 |
70 | 312,317 | 0.271 | 0.259 | −9 | 6.969 | 22 | 0.217 | 0.210 | 12 | 7.185 | 28 | 0.399 | 0.391 | 50 | 10.961 | 67 |
80 | 312,120 | 0.260 | 0.249 | −11 | 6.565 | 23 | 0.207 | 0.200 | 10 | 7.119 | 30 | 0.379 | 0.371 | 49 | 10.896 | 69 |
90 | 311,920 | 0.235 | 0.224 | −15 | 6.091 | 24 | 0.196 | 0.189 | 1 | 6.427 | 26 | 0.313 | 0.306 | 37 | 9.791 | 61 |
100 | 311,842 | 0.238 | 0.228 | −16 | 6.034 | 23 | 0.194 | 0.187 | 1 | 6.531 | 27 | 0.311 | 0.304 | 37 | 9.949 | 63 |
110 | 311,784 | 0.241 | 0.230 | −18 | 5.900 | 24 | 0.192 | 0.185 | 1 | 6.554 | 28 | 0.304 | 0.297 | 36 | 10.004 | 63 |
120 | 311,737 | 0.241 | 0.230 | −18 | 5.809 | 21 | 0.189 | 0.182 | 2 | 6.395 | 27 | 0.310 | 0.303 | 38 | 9.924 | 63 |
130 | 311,690 | 0.227 | 0.217 | −16 | 5.653 | 18 | 0.187 | 0.181 | 8 | 6.468 | 28 | 0.339 | 0.332 | 45 | 10.100 | 64 |
140 | 310,925 | 0.213 | 0.203 | −13 | 5.206 | 22 | 0.140 | 0.136 | 7 | 5.430 | 27 | 0.293 | 0.286 | 43 | 9.548 | 63 |
150 | 310,604 | 0.202 | 0.193 | −11 | 5.131 | 22 | 0.133 | 0.129 | 7 | 5.286 | 27 | 0.289 | 0.283 | 42 | 9.321 | 61 |
160 | 310,559 | 0.200 | 0.192 | −11 | 5.063 | 22 | 0.139 | 0.134 | 9 | 5.507 | 28 | 0.310 | 0.304 | 46 | 9.791 | 65 |
170 | 310,532 | 0.189 | 0.181 | −10 | 4.999 | 22 | 0.134 | 0.129 | 8 | 5.194 | 26 | 0.297 | 0.291 | 44 | 9.438 | 62 |
180 | 310,503 | 0.193 | 0.185 | −12 | 5.222 | 24 | 0.132 | 0.128 | 4 | 5.137 | 26 | 0.270 | 0.264 | 40 | 9.462 | 62 |
190 | 310,481 | 0.194 | 0.186 | −13 | 5.113 | 22 | 0.140 | 0.136 | −2 | 4.124 | 19 | 0.220 | 0.215 | 32 | 8.019 | 53 |
200 | 310,454 | 0.189 | 0.181 | −13 | 5.164 | 21 | 0.135 | 0.130 | −1 | 4.033 | 18 | 0.224 | 0.220 | 33 | 7.836 | 52 |
210 | 310,412 | 0.185 | 0.177 | −12 | 5.038 | 20 | 0.132 | 0.128 | 0 | 4.019 | 18 | 0.231 | 0.226 | 34 | 7.805 | 52 |
220 | 310,406 | 0.185 | 0.176 | −12 | 5.067 | 20 | 0.132 | 0.128 | 1 | 4.062 | 18 | 0.239 | 0.234 | 35 | 7.981 | 53 |
224 | 310,404 | 0.184 | 0.176 | −12 | 5.112 | 20 | 0.132 | 0.128 | 1 | 4.076 | 18 | 0.239 | 0.234 | 35 | 7.934 | 52 |
Table A30.
AIC scores and out-of-sample validation figures of all derived FGLS proxy functions of BEL under 150–443 and 300–886 after the final iteration. Highlighted in green and red respectively the best and worst AIC scores and validation figures.
Table A30.
AIC scores and out-of-sample validation figures of all derived FGLS proxy functions of BEL under 150–443 and 300–886 after the final iteration. Highlighted in green and red respectively the best and worst AIC scores and validation figures.
k | | AIC | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
Type I algorithm under 150-443 |
150 | 2 | 315,980 | 0.239 | 0.229 | −16 | 8.147 | 46 | 0.255 | 0.246 | -30 | 4.032 | 17 | 0.153 | 0.149 | 2 | 7.489 | 49 |
150 | 6 | 311,949 | 0.231 | 0.221 | −13 | 7.577 | 41 | 0.203 | 0.196 | −18 | 4.762 | 22 | 0.186 | 0.183 | 17 | 8.637 | 57 |
150 | 10 | 311,363 | 0.227 | 0.217 | −10 | 7.460 | 40 | 0.194 | 0.188 | −15 | 4.708 | 21 | 0.195 | 0.191 | 20 | 8.537 | 56 |
150 | 14 | 311,161 | 0.231 | 0.221 | −9 | 7.527 | 41 | 0.193 | 0.186 | −14 | 4.701 | 21 | 0.200 | 0.195 | 21 | 8.497 | 56 |
150 | 18 | 311,048 | 0.228 | 0.218 | −9 | 7.433 | 40 | 0.187 | 0.181 | −13 | 4.780 | 22 | 0.204 | 0.200 | 22 | 8.621 | 57 |
150 | 22 | 310,974 | 0.230 | 0.220 | −8 | 7.436 | 40 | 0.187 | 0.180 | −12 | 4.802 | 22 | 0.207 | 0.203 | 23 | 8.639 | 57 |
Type I algorithm under 300-886 |
224 | 2 | 315,615 | 0.196 | 0.187 | −9 | 6.527 | 33 | 0.275 | 0.266 | −30 | 4.564 | -3 | 0.175 | 0.171 | 5 | 5.401 | 32 |
224 | 6 | 311,554 | 0.200 | 0.191 | −9 | 6.399 | 33 | 0.240 | 0.232 | −23 | 4.292 | 4 | 0.183 | 0.179 | 13 | 6.389 | 40 |
224 | 10 | 311,287 | 0.203 | 0.194 | −8 | 6.473 | 33 | 0.234 | 0.226 | −21 | 4.310 | 5 | 0.189 | 0.185 | 16 | 6.621 | 42 |
224 | 14 | 310,980 | 0.200 | 0.191 | −7 | 6.246 | 31 | 0.222 | 0.214 | −19 | 4.257 | 6 | 0.194 | 0.190 | 18 | 6.697 | 42 |
224 | 18 | 310,881 | 0.200 | 0.191 | −7 | 6.194 | 31 | 0.217 | 0.210 | −18 | 4.250 | 6 | 0.198 | 0.194 | 19 | 6.801 | 43 |
224 | 22 | 310,832 | 0.200 | 0.192 | −7 | 6.256 | 32 | 0.217 | 0.210 | −18 | 4.223 | 7 | 0.196 | 0.192 | 19 | 6.844 | 44 |
Type II algorithm under 150-443 |
150 | 2 | 315,629 | 0.239 | 0.229 | -21 | 6.467 | 34 | 0.261 | 0.252 | −30 | 3.796 | 10 | 0.177 | 0.173 | 3 | 6.654 | 44 |
150 | 6 | 311,426 | 0.224 | 0.215 | −14 | 5.904 | 31 | 0.177 | 0.171 | −9 | 4.756 | 22 | 0.226 | 0.221 | 29 | 9.005 | 59 |
150 | 10 | 310,868 | 0.212 | 0.203 | −14 | 5.375 | 25 | 0.148 | 0.143 | 0 | 5.098 | 25 | 0.256 | 0.250 | 36 | 9.296 | 61 |
150 | 14 | 310,714 | 0.214 | 0.205 | −14 | 5.368 | 25 | 0.146 | 0.141 | −1 | 4.857 | 23 | 0.244 | 0.239 | 34 | 8.906 | 59 |
150 | 18 | 310,644 | 0.211 | 0.202 | −14 | 5.131 | 23 | 0.139 | 0.135 | 1 | 4.816 | 23 | 0.250 | 0.245 | 35 | 8.618 | 57 |
150 | 22 | 310,590 | 0.208 | 0.199 | −13 | 5.209 | 23 | 0.139 | 0.134 | 5 | 5.193 | 26 | 0.275 | 0.270 | 40 | 9.256 | 61 |
Type II algorithm under 300-886 |
224 | 2 | 315,491 | 0.209 | 0.199 | −17 | 6.584 | 34 | 0.226 | 0.219 | −22 | 3.999 | 14 | 0.165 | 0.161 | 12 | 7.290 | 48 |
237 | 6 | 311,144 | 0.196 | 0.188 | −15 | 5.342 | 23 | 0.125 | 0.121 | 0 | 4.765 | 24 | 0.235 | 0.230 | 30 | 8.243 | 54 |
244 | 10 | 310,905 | 0.208 | 0.199 | −11 | 6.577 | 35 | 0.153 | 0.147 | −2 | 5.617 | 29 | 0.252 | 0.247 | 37 | 10.259 | 68 |
258 | 14 | 310,443 | 0.172 | 0.165 | −14 | 4.371 | 10 | 0.134 | 0.129 | −2 | 3.504 | 8 | 0.214 | 0.210 | 28 | 6.063 | 39 |
252 | 18 | 310,425 | 0.185 | 0.176 | −11 | 5.515 | 23 | 0.138 | 0.133 | 1 | 4.548 | 22 | 0.253 | 0.248 | 37 | 8.700 | 57 |
224 | 22 | 310,404 | 0.184 | 0.176 | −12 | 5.112 | 20 | 0.132 | 0.128 | 1 | 4.076 | 18 | 0.239 | 0.234 | 35 | 7.934 | 52 |
Table A31.
Settings and out-of-sample validation figures of best performing multivariate adaptive regression splines (MARS) models derived in a two-step approach sorted by first and second step validation sets. Highlighted in green and red respectively the best and worst validation figures.
Table A31.
Settings and out-of-sample validation figures of best performing multivariate adaptive regression splines (MARS) models derived in a two-step approach sorted by first and second step validation sets. Highlighted in green and red respectively the best and worst validation figures.
k | | | o | p | glm | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
|
148 | 206 | 0 | 6 | s | inv.g, id | 0.265 | 0.253 | −24 | 10.317 | 55 | 0.575 | 0.555 | −40 | 16.234 | −56 | 0.822 | 0.805 | 80 | 17.657 | 64 |
49 | 50 | 0 | 3 | n | inv.g, log | 0.37 | 0.354 | 0 | 9.168 | 19 | 0.705 | 0.681 | −12 | 29.477 | −102 | 0.525 | 0.514 | 25 | 16.891 | −65 |
60 | 66 | 0 | 4 | s | inv.g, id | 0.324 | 0.31 | −11 | 8.517 | 16 | 1.712 | 1.654 | 151 | 44.504 | 132 | 0.917 | 0.897 | 102 | 19.877 | 83 |
45 | 50 | 0 | 4 | b | inv.g, id | 0.347 | 0.332 | −2 | 8.686 | 11 | 0.447 | 0.431 | −36 | 22.702 | −125 | 0.511 | 0.500 | 35 | 15.785 | −54 |
Sobol set and nested simulations set |
45 | 50 | 0 | 4 | b | inv.g, id | 0.347 | 0.332 | −2 | 8.686 | 11 | 0.447 | 0.431 | −36 | 22.702 | −125 | 0.511 | 0.500 | 35 | 15.785 | −54 |
17 | 19 | 0 | 4 | b | inv.g, id | 0.834 | 0.797 | 25 | 24.673 | 124 | 0.48 | 0.464 | −4 | 41.356 | -243 | 0.763 | 0.747 | 108 | 21.398 | −132 |
70 | 81 | 0 | 4 | b | inv.g, id | 0.335 | 0.32 | −22 | 10.872 | 52 | 0.554 | 0.535 | −35 | 14.073 | −38 | 0.875 | 0.857 | 102 | 18.25 | 99 |
33 | 34 | 0 | 3 | n | inv.g, id | 0.426 | 0.407 | −10 | 10.871 | 21 | 1.565 | 1.512 | 108 | 52.384 | 1 | 0.662 | 0.648 | 32 | 20.997 | −75 |
Sobol set and capital region set |
45 | 50 | 0 | 3 | b | pois, log | 0.379 | 0.362 | 0 | 9.556 | 28 | 0.48 | 0.464 | −43 | 24.878 | −139 | 0.51 | 0.500 | 28 | 16.938 | −69 |
31 | 34 | 0 | 3 | b | pois, log | 0.476 | 0.455 | −13 | 12.752 | 46 | 0.593 | 0.573 | −54 | 31.148 | −175 | 0.661 | 0.647 | 18 | 23.088 | −103 |
45 | 50 | 0 | 4 | b | inv.g, id | 0.347 | 0.332 | −2 | 8.686 | 11 | 0.447 | 0.431 | −36 | 22.702 | −125 | 0.511 | 0.500 | 35 | 15.785 | −54 |
59 | 66 | 0 | 3 | b | pois, log | 0.428 | 0.439 | 40 | 16.674 | 98 | 0.76 | 0.734 | −12 | 22.511 | −41 | 0.809 | 0.792 | 68 | 18.403 | 39 |
Nested simulations set and Sobol set |
134 | 144 | | 5 | n | gaus, log | 0.273 | 0.261 | −22 | 10.255 | 54 | 1.025 | 0.99 | −1 | 28.192 | −23 | 1.515 | 1.484 | 179 | 32.616 | 157 |
45 | 50 | 0 | 4 | s | inv.g, id | 0.347 | 0.332 | −2 | 8.686 | 11 | 0.447 | 0.431 | −36 | 22.702 | −125 | 0.511 | 0.500 | 35 | 15.785 | −54 |
60 | 66 | 0 | 4 | s | inv.g, id | 0.324 | 0.31 | −11 | 8.517 | 16 | 1.712 | 1.654 | 151 | 44.504 | 132 | 0.917 | 0.897 | 102 | 19.877 | 83 |
45 | 50 | 0 | 4 | b | inv.g, id | 0.347 | 0.332 | −2 | 8.686 | 11 | 0.447 | 0.431 | −36 | 22.702 | −125 | 0.511 | 0.500 | 35 | 15.785 | −54 |
|
45 | 50 | 0 | 4 | b | inv.g, id | 0.347 | 0.332 | −2 | 8.686 | 11 | 0.447 | 0.431 | −36 | 22.702 | −125 | 0.511 | 0.500 | 35 | 15.785 | −54 |
146 | 159 | | 5 | n | gaus, log | 0.279 | 0.267 | −24 | 10.008 | 53 | 1.025 | 0.99 | 0 | 26.779 | −11 | 1.498 | 1.467 | 174 | 31.702 | 163 |
76 | 97 | | 4 | b | inv.g, log | 0.344 | 0.329 | −17 | 10.676 | 52 | 0.538 | 0.52 | −37 | 11.874 | −24 | 0.804 | 0.787 | 88 | 16.584 | 100 |
107 | 113 | 0 | 4 | n | gaus, log | 0.321 | 0.307 | −20 | 11.976 | 63 | 0.997 | 0.963 | 8 | 25.694 | 0 | 1.529 | 1.496 | 191 | 32.148 | 182 |
Nested simulations set and capital region set |
45 | 50 | 0 | 4 | s | pois, id | 0.353 | 0.338 | −3 | 8.891 | 18 | 0.449 | 0.434 | −36 | 23.634 | −131 | 0.504 | 0.493 | 36 | 16.079 | −58 |
31 | 34 | 0 | 4 | s | pois, id | 0.437 | 0.418 | −11 | 11.254 | 32 | 0.548 | 0.53 | −45 | 28.444 | −157 | 0.648 | 0.634 | 29 | 21.374 | −84 |
72 | 82 | | 4 | b | inv.g, inv | 0.365 | 0.349 | −16 | 11.181 | 53 | 0.579 | 0.56 | −49 | 14.528 | −51 | 0.700 | 0.685 | 65 | 14.619 | 64 |
45 | 50 | 0 | 4 | b | inv.g, id | 0.347 | 0.332 | −2 | 8.686 | 11 | 0.447 | 0.431 | −36 | 22.702 | −125 | 0.511 | 0.500 | 35 | 15.785 | −54 |
Capital region set and Sobol set |
125 | 144 | 0 | 5 | f | inv.g, inv | 0.283 | 0.271 | −20 | 10.336 | 54 | 0.63 | 0.608 | −63 | 17.245 | −76 | 0.675 | 0.66 | 45 | 14.737 | 32 |
45 | 50 | 0 | 4 | s | gaus, log | 0.382 | 0.365 | −1 | 9.916 | 32 | 0.469 | 0.453 | −41 | 25.487 | −144 | 0.495 | 0.485 | 32 | 16.868 | −71 |
114 | 144 | | 5 | s | inv.g, | 0.313 | 0.299 | −12 | 9.414 | 40 | 0.708 | 0.684 | −77 | 20.115 | −97 | 0.626 | 0.612 | 36 | 14.095 | 17 |
45 | 50 | 0 | 4 | b | gaus, log | 0.382 | 0.365 | −1 | 9.916 | 32 | 0.469 | 0.453 | −41 | 25.487 | −144 | 0.495 | 0.485 | 32 | 16.868 | −71 |
Capital region set and nested simulations set |
45 | 50 | 0 | 4 | f | gaus, log | 0.386 | 0.369 | −1 | 10.095 | 34 | 0.468 | 0.452 | −41 | 25.709 | −145 | 0.496 | 0.486 | 32 | 17.077 | −73 |
64 | 66 | 0 | 4 | n | inv.g, | 0.42 | 0.401 | −3 | 11.506 | 39 | 0.84 | 0.811 | 3 | 25.969 | −38 | 1.298 | 1.271 | 146 | 29.11 | 105 |
148 | 175 | 0 | 6 | s | inv.g, | 0.311 | 0.297 | −16 | 10.447 | 52 | 0.576 | 0.556 | −55 | 14.565 | −57 | 0.611 | 0.598 | 30 | 12.844 | 27 |
77 | 81 | 0 | 4 | n | inv.g, | 0.387 | 0.37 | −11 | 11.519 | 52 | 1.029 | 0.994 | −28 | 25.831 | −32 | 1.279 | 1.252 | 148 | 26.700 | 145 |
|
45 | 50 | 0 | 4 | s | gaus, log | 0.382 | 0.365 | −1 | 9.916 | 32 | 0.469 | 0.453 | −41 | 25.487 | −144 | 0.495 | 0.485 | 32 | 16.868 | −71 |
33 | 34 | 0 | 3 | n | inv.g, | 0.564 | 0.539 | −14 | 15.693 | 64 | 0.827 | 0.800 | −54 | 38.645 | −185 | 0.745 | 0.729 | -2 | 26.338 | −134 |
148 | 175 | 0 | 6 | s | inv.g, | 0.311 | 0.297 | −16 | 10.447 | 52 | 0.576 | 0.556 | −55 | 14.565 | −57 | 0.611 | 0.598 | 30 | 12.844 | 27 |
148 | 175 | | 5 | f | inv.g, inv | 0.296 | 0.283 | −20 | 10.416 | 53 | 0.549 | 0.53 | −54 | 18.26 | −87 | 0.664 | 0.65 | 32 | 16.307 | −1 |
Table A32.
Best MARS model of BEL derived in a two-step approach with the final coefficients.
Table A32.
Best MARS model of BEL derived in a two-step approach with the final coefficients.
k | | |
---|
0 | 1 | 15,397.13 |
1 | | 7901.89 |
2 | | −8165.64 |
3 | | 688.83 |
4 | | 265.08 |
5 | | −280.94 |
6 | | −2.11 |
7 | | 1.16 |
8 | | −60.90 |
9 | | −334.77 |
10 | | 3183.07 |
11 | | −9.48 |
12 | | 29.85 |
13 | | −64.88 |
14 | | 124.45 |
15 | | −815.20 |
16 | | 1085.80 |
17 | | −60.23 |
18 | | −233.14 |
19 | | 415.92 |
20 | | 8.94 |
21 | | 47.99 |
22 | | 47.7215432 |
23 | | −82.5804328 |
24 | | −63.6091725 |
25 | | −12.58 |
26 | | −42.25 |
27 | | 2124.93 |
28 | | 1510.41 |
29 | | 948.86 |
30 | | −577.61 |
31 | | 101.15 |
32 | | −10.00 |
33 | | 109.76 |
34 | | −37.89 |
35 | | 216.62 |
36 | | 2076.18 |
37 | | −156.79 |
38 | | 1262.56 |
39 | | 137.60 |
40 | | −4.87 |
41 | | 2.11 |
42 | | 24003.07 |
43 | | −161.88 |
44 | | −224.18 |
45 | | −987.47 |
Table A33.
Basis function sets of LC and LL proxy functions of BEL corresponding to derived by adaptive OLS selection.
Table A33.
Basis function sets of LC and LL proxy functions of BEL corresponding to derived by adaptive OLS selection.
k | | | | | | | | | | | | | | | |
---|
in adaptive basis function selection |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
5 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
11 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
13 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
in adaptive basis function selection |
17 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
19 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
20 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
21 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 |
23 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
24 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
25 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
26 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
27 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table A34.
Basis function sets of LC and LL proxy functions of BEL corresponding to derived by risk factor wise or combined risk factor wise and adaptive OLS selection.
Table A34.
Basis function sets of LC and LL proxy functions of BEL corresponding to derived by risk factor wise or combined risk factor wise and adaptive OLS selection.
k | | | | | | | | | | | | | | | |
---|
in risk factor wise basis function selection |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
13 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
14 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
in combined risk factor wise and adaptive selection |
16 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
17 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
18 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
19 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
20 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
21 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
22 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Table A35.
Settings and out-of-sample validation figures of LC and LL proxy functions of BEL using basis function sets from
Table A33 and
Table A34. Highlighted in green and red respectively the best and worst validation figures.
Table A35.
Settings and out-of-sample validation figures of LC and LL proxy functions of BEL using basis function sets from
Table A33 and
Table A34. Highlighted in green and red respectively the best and worst validation figures.
k | bw | o | v.mae | | v.res | | | ns.mae | | ns.res | | | cr.mae | | cr.res | | |
---|
LC regression with gaussian kernel and LOO-CV |
16 | 0.1 | 2 | 0.55 | 0.52 | −44 | 13 | 50 | 0.7 | 0.68 | −86 | 12 | −7 | 0.55 | 0.54 | −35 | 12 | 45 |
16 | 0.2 | 2 | 0.4 | 0.38 | −26 | 11 | 47 | 0.52 | 0.5 | −51 | 11 | 7 | 0.44 | 0.43 | 5 | 13 | 63 |
16 | 0.3 | 2 | 0.37 | 0.35 | −25 | 11 | 45 | 0.45 | 0.44 | −37 | 11 | 19 | 0.44 | 0.43 | 5 | 12 | 60 |
27 | 0.2 | 2 | 0.39 | 0.38 | −26 | 11 | 43 | 0.51 | 0.49 | −51 | 11 | 3 | 0.43 | 0.43 | 4 | 12 | 58 |
16 | 0.1 | 4 | 2.8 | 2.68 | −155 | 84 | −407 | 8.05 | 7.78 | −558 | 247 | −825 | 5.04 | 4.94 | −96 | 128 | −363 |
LL regression with gaussian kernel and LOO-CV |
16 | 0.1 | 2 | 0.38 | 0.36 | −11 | 12 | 57 | 0.57 | 0.55 | −68 | 10 | −15 | 0.41 | 0.4 | −22 | 9 | 31 |
16 | 0.2 | 2 | 0.34 | 0.33 | −6 | 11 | 59 | 0.45 | 0.43 | −49 | 8 | 2 | 0.37 | 0.36 | 5 | 10 | 55 |
27 | 0.1 | 2 | 210.3 | 201.06 | −30,682 | 5209 | −30,589 | 131.04 | 126.61 | −18,981 | 3670 | −18,902 | 4.09 | 4.0 | −82 | 92 | −3 |
27 | 0.2 | 2 | 2726.47 | 2606.74 | 400,254 | 67,487 | 400,306 | 3502.24 | 3383.85 | 422,443 | 98,081 | 422,481 | 1.85 | 1.81 | −25 | 41 | 13 |
LC regression with gaussian kernel and AIC |
16 | 0.1 | 2 | 0.57 | 0.55 | −43 | 14 | 55 | 0.65 | 0.62 | −72 | 12 | 12 | 0.5 | 0.49 | −12 | 14 | 72 |
16 | 0.2 | 2 | 1.63 | 1.55 | 38 | 41 | 73 | 1.94 | 1.88 | 266 | 57 | 286 | 2.57 | 2.51 | 384 | 61 | 404 |
27 | 0.1 | 2 | 0.56 | 0.54 | −42 | 14 | 56 | 0.64 | 0.62 | −72 | 12 | 12 | 0.5 | 0.49 | −12 | 14 | 72 |
LC regression with Epanechnikov kernel and LOO-CV |
15 | 0.1 | 2 | 0.53 | 0.5 | −36 | 13 | 41 | 1.05 | 1.02 | −38 | 22 | 24 | 0.51 | 0.5 | −29 | 11 | 33 |
15 | 0.2 | 2 | 0.41 | 0.39 | −31 | 10 | 33 | 1.14 | 1.1 | 3 | 26 | 53 | 1.18 | 1.16 | 97 | 27 | 146 |
15 | 0.3 | 2 | 0.4 | 0.38 | −30 | 9 | 23 | 0.96 | 0.93 | 16 | 23 | 54 | 0.46 | 0.45 | −6 | 11 | 33 |
15 | 0.4 | 2 | 0.35 | 0.33 | −22 | 9 | 18 | 1.11 | 1.08 | 12 | 28 | 39 | 0.47 | 0.46 | −2 | 11 | 25 |
15 | 0.5 | 2 | 0.34 | 0.33 | −18 | 9 | 37 | 1.24 | 1.2 | 6 | 30 | 46 | 0.51 | 0.5 | −22 | 11 | 18 |
15 | 0.6 | 2 | 0.33 | 0.32 | −17 | 10 | 50 | 1.16 | 1.12 | 21 | 27 | 74 | 0.46 | 0.45 | −2 | 11 | 50 |
15 | 0.7 | 2 | 0.33 | 0.32 | −16 | 10 | 41 | 1.17 | 1.13 | 18 | 28 | 61 | 0.44 | 0.43 | −14 | 9 | 28 |
15 | 0.8 | 2 | 0.33 | 0.31 | −16 | 10 | 45 | 1.21 | 1.17 | 29 | 29 | 76 | 1.16 | 1.13 | 101 | 26 | 148 |
15 | 0.9 | 2 | 0.32 | 0.3 | −20 | 12 | 61 | 1.14 | 1.1 | 40 | 27 | 107 | 1.14 | 1.11 | 111 | 29 | 178 |
15 | 1.0 | 2 | 0.32 | 0.31 | −22 | 10 | 49 | 1.19 | 1.15 | 52 | 29 | 109 | 1.13 | 1.11 | 106 | 27 | 163 |
16 | 0.1 | 2 | 0.53 | 0.5 | −40 | 13 | 43 | 1.2 | 1.16 | 2 | 28 | 71 | 0.51 | 0.5 | −20 | 12 | 49 |
16 | 0.2 | 2 | 0.41 | 0.39 | −26 | 11 | 50 | 1.16 | 1.12 | 27 | 28 | 88 | 0.44 | 0.43 | 2 | 12 | 64 |
16 | 0.3 | 2 | 0.36 | 0.34 | −27 | 9 | 29 | 1.07 | 1.03 | 41 | 27 | 83 | 0.44 | 0.43 | 1 | 11 | 43 |
16 | 0.4 | 2 | 0.33 | 0.32 | −19 | 8 | 22 | 1.16 | 1.12 | 27 | 30 | 53 | 0.45 | 0.44 | 4 | 10 | 30 |
16 | 0.5 | 2 | 0.32 | 0.31 | −16 | 9 | 36 | 1.34 | 1.3 | 30 | 33 | 67 | 1.22 | 1.19 | 101 | 27 | 138 |
16 | 0.1 | 4 | 0.45 | 0.43 | −26 | 13 | 34 | 0.74 | 0.71 | −68 | 16 | −23 | 0.59 | 0.57 | 5 | 15 | 51 |
16 | 0.2 | 4 | 3.29 | 3.15 | −104 | 160 | 891 | 7.5 | 7.24 | −14 | 329 | 966 | 8.06 | 7.89 | 176 | 295 | 1157 |
16 | 0.1 | 6 | 3.31 | 3.16 | −32 | 84 | 68 | 5.74 | 5.55 | −96 | 158 | −10 | 6.62 | 6.48 | −53 | 148 | 32 |
16 | 0.2 | 6 | 3.32 | 3.18 | −71 | 85 | −217 | 9.37 | 9.06 | 73 | 268 | −87 | 13.18 | 12.9 | 246 | 304 | 86 |
16 | 0.1 | 8 | 3.94 | 3.77 | 146 | 105 | −119 | 10.71 | 10.35 | −191 | 308 | −470 | 8.84 | 8.65 | −312 | 205 | −591 |
16 | 0.2 | 8 | 8.53 | 8.16 | 397 | 286 | −639 | 7.79 | 7.52 | 70 | 347 | −980 | 12.37 | 12.11 | 1365 | 390 | 315 |
22 | 0.1 | 2 | 0.5 | 0.48 | −37 | 12 | 44 | 1.07 | 1.03 | −41 | 22 | 25 | 0.52 | 0.5 | −30 | 11 | 37 |
22 | 0.2 | 2 | 0.42 | 0.4 | −28 | 10 | 39 | 1.07 | 1.03 | −3 | 25 | 50 | 1.2 | 1.17 | 106 | 29 | 159 |
22 | 0.3 | 2 | 0.39 | 0.37 | −29 | 9 | 23 | 0.89 | 0.86 | 6 | 22 | 43 | 0.45 | 0.44 | −3 | 11 | 34 |
22 | 0.4 | 2 | 0.35 | 0.33 | −21 | 8 | 16 | 1.05 | 1.02 | 3 | 27 | 26 | 0.49 | 0.48 | −4 | 11 | 19 |
22 | 0.5 | 2 | 0.33 | 0.31 | −14 | 9 | 32 | 1.17 | 1.13 | −2 | 28 | 29 | 0.47 | 0.46 | −15 | 10 | 16 |
22 | 0.6 | 2 | 0.33 | 0.32 | −17 | 10 | 46 | 1.09 | 1.06 | 11 | 25 | 60 | 0.45 | 0.44 | −1 | 11 | 48 |
22 | 0.7 | 2 | 0.32 | 0.31 | −15 | 9 | 39 | 1.23 | 1.18 | 26 | 29 | 66 | 1.17 | 1.14 | 99 | 26 | 139 |
22 | 0.8 | 2 | 0.32 | 0.3 | −15 | 10 | 46 | 1.19 | 1.15 | 32 | 28 | 78 | 1.12 | 1.1 | 106 | 26 | 152 |
22 | 0.9 | 2 | 0.31 | 0.3 | −19 | 11 | 58 | 1.15 | 1.11 | 39 | 27 | 102 | 1.12 | 1.1 | 111 | 28 | 174 |
22 | 1.0 | 2 | 0.31 | 0.3 | −21 | 10 | 48 | 1.13 | 1.09 | 41 | 27 | 96 | 1.12 | 1.1 | 107 | 27 | 162 |
27 | 0.2 | 2 | 0.4 | 0.38 | −26 | 11 | 45 | 1.15 | 1.12 | 26 | 28 | 83 | 0.44 | 0.43 | 1 | 12 | 58 |
27 | 0.3 | 2 | 0.38 | 0.36 | −28 | 9 | 24 | 0.9 | 0.87 | 7 | 22 | 45 | 0.46 | 0.45 | −2 | 11 | 36 |
27 | 0.4 | 2 | 0.35 | 0.33 | −21 | 9 | 17 | 1.05 | 1.02 | 2 | 27 | 26 | 0.48 | 0.47 | −4 | 11 | 11 |
LL regression with Epanechnikov kernel and LOO-CV |
15 | 0.1 | 2 | 0.45 | 0.43 | −49 | 10 | 40 | 1.22 | 1.18 | −100 | 22 | −26 | 0.78 | 0.77 | −104 | 11 | −30 |
15 | 0.2 | 2 | 0.36 | 0.34 | −34 | 8 | 13 | 1.59 | 1.53 | −145 | 40 | −112 | 0.6 | 0.58 | −54 | 11 | −21 |
15 | 0.3 | 2 | 0.32 | 0.31 | −36 | 7 | 17 | 1.91 | 1.85 | 134 | 48 | 173 | 0.6 | 0.58 | −36 | 11 | 3 |
15 | 0.4 | 2 | 0.34 | 0.33 | −40 | 8 | 33 | 1.83 | 1.76 | −164 | 42 | −106 | 0.43 | 0.42 | −49 | 6 | 9 |
15 | 0.5 | 2 | 0.33 | 0.31 | −40 | 8 | 34 | 2.2 | 2.12 | −219 | 53 | −160 | 0.41 | 0.41 | −45 | 6 | 15 |
15 | 0.6 | 2 | 0.3 | 0.29 | −33 | 7 | 29 | 0.94 | 0.91 | 8 | 19 | 56 | 0.33 | 0.32 | −28 | 5 | 21 |
15 | 0.7 | 2 | 0.31 | 0.3 | −40 | 7 | 23 | 0.94 | 0.91 | −13 | 19 | 36 | 0.36 | 0.35 | −40 | 5 | 8 |
15 | 0.8 | 2 | 0.29 | 0.28 | −38 | 5 | 8 | 0.86 | 0.83 | 4 | 19 | 36 | 0.32 | 0.32 | −29 | 5 | 3 |
22 | 0.1 | 2 | 731.51 | 699.39 | 2738 | 85,172 | 479,612 | 1564.87 | 1511.98 | −111,628 | 127,410 | 365,231 | 492.49 | 482.11 | −19,404 | 76,575 | 457,455 |
22 | 0.2 | 2 | 0.34 | 0.33 | −34 | 8 | 0 | 0.83 | 0.8 | −15 | 21 | 4 | 0.42 | 0.41 | −25 | 8 | −5 |
22 | 0.3 | 2 | 98.03 | 93.73 | 14,396 | 148 | −250 | 101.69 | 98.25 | 15,174 | 147 | 513 | 100.0 | 97.89 | 15,028 | 100 | 367 |
22 | 0.4 | 2 | 98.05 | 93.75 | 14,399 | 147 | −248 | 113.99 | 110.14 | 13,158 | 495 | −1503 | 100.0 | 97.89 | 15,028 | 100 | 367 |
22 | 0.5 | 2 | 100.0 | 95.61 | 14,685 | 100 | 38 | 118.95 | 114.93 | 14,984 | 651 | 323 | 100.0 | 97.89 | 15,028 | 100 | 367 |
22 | 0.6 | 2 | 99.72 | 95.34 | 14,644 | 106 | −3 | 100.59 | 97.19 | 15,004 | 120 | 343 | 100.0 | 97.89 | 15,028 | 100 | 367 |
22 | 0.7 | 2 | 100.0 | 95.61 | 14,685 | 100 | 38 | 100.0 | 96.62 | 14,922 | 100 | 261 | 100.0 | 97.89 | 15,028 | 100 | 367 |
22 | 0.8 | 2 | 0.29 | 0.28 | −39 | 5 | 9 | 152.43 | 147.27 | 22,622 | 4264 | 22,655 | 0.31 | 0.30 | −35 | 5 | −2 |
LC regression with uniform kernel and LOO-CV |
16 | 0.1 | 2 | 0.75 | 0.71 | −56 | 18 | 46 | 1.53 | 1.48 | −52 | 32 | 36 | 0.73 | 0.72 | −59 | 15 | 29 |
16 | 0.5 | 2 | 1.22 | 1.17 | −78 | 29 | 16 | 2.6 | 2.51 | 301 | 82 | 381 | 10.45 | 10.23 | 1419 | 242 | 1498 |
27 | 0.1 | 2 | 0.64 | 0.61 | −38 | 16 | 31 | 1.3 | 1.26 | 13 | 32 | 68 | 0.59 | 0.58 | −2 | 15 | 53 |
27 | 0.5 | 2 | 0.35 | 0.34 | −16 | 12 | 53 | 1.34 | 1.3 | 25 | 33 | 79 | 1.4 | 1.37 | 117 | 32 | 171 |
16 | 0.1 | 4 | 0.71 | 0.68 | −33 | 17 | 47 | 1.27 | 1.23 | -1 | 31 | 65 | 0.67 | 0.65 | −23 | 15 | 43 |
16 | 0.5 | 4 | 1.85 | 1.76 | −139 | 39 | 50 | 2.29 | 2.22 | 18 | 51 | 193 | 7.09 | 6.94 | 769 | 157 | 943 |
27 | 0.1 | 4 | 0.66 | 0.63 | −38 | 15 | 32 | 1.32 | 1.27 | 7 | 32 | 63 | 0.58 | 0.57 | −15 | 14 | 40 |
27 | 0.5 | 4 | 0.39 | 0.37 | −13 | 13 | 67 | 1.26 | 1.21 | 16 | 31 | 82 | 0.52 | 0.51 | −10 | 13 | 56 |
16 | 0.1 | 6 | 1.83 | 1.75 | −165 | 38 | 100 | 1.95 | 1.88 | −178 | 29 | 72 | 1.55 | 1.51 | −190 | 24 | 60 |
16 | 0.5 | 6 | 1.83 | 1.75 | −6 | 56 | 271 | 1.08 | 1.04 | 80 | 65 | 344 | 1.66 | 1.63 | 225 | 74 | 488 |