Estimating Corporate Bond Market Volatility Using Asymmetric GARCH Models
Abstract
1. Introduction
2. Literature Review
3. Data
4. Methodology
5. Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
| 1 | |
| 2 | https://www.tase.co.il/en (accessed on 10 April 2025). |
References
- Abudy, Menachem Meni, and Avi Wohl. 2018. Corporate bond trading on a limit order book exchange. Review of Finance 22: 1413–40. [Google Scholar] [CrossRef]
- Abudy, Menachem Meni, and Efrat Shust. 2023. Does market design contribute to market stability? Indications from a corporate bond exchange during the COVID-19 crisis. Journal of Economics and Business 123: 106105. [Google Scholar] [CrossRef]
- Acharya, Viral V., and Lasse Heje Pedersen. 2005. Asset pricing with liquidity risk. Journal of Financial Economics 77: 375–410. [Google Scholar] [CrossRef]
- Alberg, Dima, Haim Shalit, and Rami Yosef. 2008. Estimating stock market volatility using asymmetric GARCH models. Applied Financial Economics 18: 1201–8. [Google Scholar] [CrossRef]
- Allen, David E., and Michael McAleer. 2018. Theoretical and empirical differences between diagonal and full BEKK for risk management. Energies 11: 1627. [Google Scholar] [CrossRef]
- Asai, Manabu, Chia-Lin Chang, Michael McAleer, and Laurent Pauwels. 2021. Asymptotic and finite sample properties for multivariate rotated garch models. Econometrics 9: 21. [Google Scholar] [CrossRef]
- Attarzadeh, Amirreza, and Mehmet Balcilar. 2022. On the Dynamic Connectedness of the Stock, Oil, Clean Energy, and Technology Markets. Energies 15: 1893. [Google Scholar] [CrossRef]
- Bai, Jennie, Turan G. Bali, and Quan Wen. 2021. Is there a risk-return tradeoff in the corporate bond market? Time-series and cross-sectional evidence. Journal of Financial Economics 142: 1017–37. [Google Scholar] [CrossRef]
- Baker, Malcolm, and Jeffrey Wurgler. 2006. Investor sentiment and the cross-section of stock returns. The Journal of Finance 61: 1645–80. [Google Scholar] [CrossRef]
- Baker, Malcolm, and Jeffrey Wurgler. 2007. Investor sentiment in the stock market. Journal of Economic Perspectives 21: 129–51. [Google Scholar] [CrossRef]
- Baker, Malcolm, Jeffrey Wurgler, and Yu Yuan. 2012. Global, local, and contagious investor sentiment. Journal of Financial Economics 104: 272–87. [Google Scholar] [CrossRef]
- Barberis, Nicholas, Andrei Shleifer, and Robert Vishny. 1998. A model of investor sentiment. Journal of Financial Economics 49: 307–43. [Google Scholar] [CrossRef]
- Bessembinder, Hendrik, and William Maxwell. 2008. Markets: Transparency and the corporate bond market. Journal of Economic Perspectives 22: 217–34. [Google Scholar] [CrossRef]
- Bethke, Sebastian, Monika Gehde-Trapp, and Alexander Kempf. 2017. Investor sentiment, flight-to-quality, and corporate bond comovement. Journal of Banking & Finance 82: 112–32. [Google Scholar] [CrossRef]
- Black, Fischer. 1986. Noise. The Journal of Finance 41: 528–43. [Google Scholar] [CrossRef]
- BM, Lithin, Suman Chakraborty, Vishwanathan Iyer, Nikhil MN, and Sanket Ledwani. 2023. Modelling asymmetric sovereign bond yield volatility with univariate GARCH models: Evidence from India. Cogent Economics & Finance 11: 2189589. [Google Scholar] [CrossRef]
- Bollerslev, Tim. 1987. A Conditionally Heteroskedastic Time Series Model for Speculative Prices and Rates of Return. The Review of Economics and Statistics 69: 542–47. [Google Scholar] [CrossRef]
- Brown, Gregory W., and Michael T. Cliff. 2004. Investor sentiment and the near-term stock market. Journal of Empirical Finance 11: 1–27. [Google Scholar] [CrossRef]
- Campbell, John Y., Carolin Pflueger, and Luis M. Viceira. 2020. Macroeconomic drivers of bond and equity risks. Journal of Political Economy 128: 3148–85. [Google Scholar] [CrossRef]
- Cappiello, Lorenzo, Robert F. Engle, and Kevin Sheppard. 2006. Asymmetric dynamics in the correlations of global equity and bond returns. Journal of Financial Econometrics 4: 537–72. [Google Scholar] [CrossRef]
- Choi, Jaewon, and Yongjun Kim. 2018. Anomalies and market (dis)integration. Journal of Monetary Economics 100: 16–34. [Google Scholar] [CrossRef]
- Christiansen, Charlotte. 2000. Macroeconomic announcement effects on the covariance structure of government bond returns. Journal of Empirical Finance 7: 479–507. [Google Scholar] [CrossRef]
- Cici, Gjergji, Scott Gibson, and John J. Merrick, Jr. 2011. Missing the marks? Dispersion in corporate bond valuations across mutual funds. Journal of Financial Economics 101: 206–26. [Google Scholar] [CrossRef]
- Clayton, Jim, David C. Ling, and Andy Naranjo. 2009. Commercial real estate valuation: Fundamentals versus investor sentiment. The Journal of Real Estate Finance and Economics 38: 5–37. [Google Scholar] [CrossRef]
- de Goeij, Peter, and Wessel Marquering. 2004. Modeling the Conditional Covariance Between Stock and Bond Returns: A Multivariate GARCH Approach. Journal of Financial Econometrics 2: 531–64. [Google Scholar] [CrossRef]
- de Goeij, Peter, and Wessel Marquering. 2006. Macroeconomic announcements and asymmetric volatility in bond returns. Journal of Banking & Finance 30: 2659–80. [Google Scholar] [CrossRef]
- Denes, Matthew, Sabrina T. Howell, Filippo Mezzanotti, Xinxin Wang, and Ting Xu. 2023. Investor Tax Credits and Entrepreneurship: Evidence from U.S. States. The Journal of Finance 78: 2621–71. [Google Scholar] [CrossRef]
- Dickey, David A., and Wayne A. Fuller. 1981. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica: Journal of the Econometric Society 49: 1057–72. [Google Scholar] [CrossRef]
- Dick-Nielsen, Jens, Peter Feldhütter, and David Lando. 2012. Corporate bond liquidity before and after the onset of the subprime crisis. Journal of Financial Economics 103: 471–92. [Google Scholar] [CrossRef]
- Ding, Zhuanxin, Clive W. J. Granger, and Robert F. Engle. 1993. A long memory property of stock market returns and a new model. Journal of Empirical Finance 1: 83–106. [Google Scholar] [CrossRef]
- Ederington, Louis, Wei Guan, and Lisa Zongfei Yang. 2015. Bond market event study methods. Journal of Banking & Finance 58: 281–93. [Google Scholar] [CrossRef]
- Edwards, Amy K., Lawrence E. Harris, and Michael S. Piwowar. 2007. Corporate bond market transaction costs and transparency. The Journal of Finance 62: 1421–51. [Google Scholar] [CrossRef]
- Engelberg, Joseph, R. David McLean, and Jeffrey Pontiff. 2018. Anomalies and News. The Journal of Finance 73: 1971–2001. [Google Scholar] [CrossRef]
- Engle, Robert F. 1982. Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation. Econometrica: Journal of the Econometric Society 50: 987–1007. [Google Scholar] [CrossRef]
- Feldman, Todd, and Shuming Liu. 2017. Contagious investor sentiment and international markets. Journal of Portfolio Management 43: 125. [Google Scholar] [CrossRef]
- Foucault, Thierry, David Sraer, and David J. Thesmar. 2011. Individual Investors and Volatility. The Journal of Finance 66: 1369–406. [Google Scholar] [CrossRef]
- Friewald, Nils, Rainer Jankowitsch, and Marti G. Subrahmanyam. 2012. Illiquidity or credit deterioration: A study of liquidity in the US corporate bond market during financial crises. Journal of Financial Economics 105: 18–36. [Google Scholar] [CrossRef]
- Glosten, Lawrence R., Ravi Jagannathan, and David E. Runkle. 1993. On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks. The Journal of Finance 48: 1779–801. [Google Scholar] [CrossRef]
- Goldstein, Michael A., and Elmira Shekari Namin. 2023. Corporate bond liquidity and yield spreads: A review. Research in International Business and Finance 65: 101925. [Google Scholar] [CrossRef]
- Goldstein, Michael A., Edith S. Hotchkiss, and Erik R. Sirri. 2007. Transparency and liquidity: A controlled experiment on corporate bonds. The Review of Financial Studies 20: 235–73. [Google Scholar] [CrossRef]
- Gong, Xiao-Li, Jian-Min Liu, Xiong Xiong, and Wei Zhang. 2022. Research on stock volatility risk and investor sentiment contagion from the perspective of multi-layer dynamic network. International Review of Financial Analysis 84: 102359. [Google Scholar] [CrossRef]
- Graham, John R., Mark T. Leary, and Michael R. Roberts. 2015. A century of capital structure: The leveraging of corporate America. Journal of Financial Economics 118: 658–83. [Google Scholar] [CrossRef]
- Gur-Gershgoren, Gitit, Haim Kedar-Levy, and Elroi Hadad. 2020. Deep-Market by IAS-19: A Unified Cross-Country Approach for Discount Rate Selection. Multinational Finance Journal 24: 119–54. [Google Scholar]
- Hadad, Elroi. 2025. Does trading mechanism shape cross-market integration? Evidence from stocks and corporate bonds on the Tel Aviv Stock Exchange. Journal of Economics, Finance and Administrative Science 30: 169–88. [Google Scholar] [CrossRef]
- Hadad, Elroi, and Haim Kedar-Levy. 2024. The impact of retail investor sentiment on the conditional volatility of stocks and bonds: Evidence from the Tel-Aviv stock exchange. International Review of Economics & Finance 89: 1303–13. [Google Scholar] [CrossRef]
- Hansen, Bruce E. 1994. Autoregressive Conditional Density Estimation. International Economic Review 35: 705–30. [Google Scholar] [CrossRef]
- Harris, Richard D. F., C. Coskun Küçüközmen, and Fatih Yilmaz. 2004. Skewness in the conditional distribution of daily equity returns. Applied Financial Economics 14: 195–202. [Google Scholar] [CrossRef]
- Huang, Jing-Zhi, Marco Rossi, and Yuan Wang. 2015. Sentiment and corporate bond valuations before and after the onset of the credit crisis. The Journal of Fixed Income 25: 34. [Google Scholar] [CrossRef]
- Huerta-Sanchez, Daniel, and Diego Escobari. 2018. Changes in sentiment on REIT industry excess returns and volatility. Financial Markets and Portfolio Management 32: 239–74. [Google Scholar] [CrossRef]
- Jarque, Carlos M., and Anil K. Bera. 1980. Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Economics Letters 6: 255–59. [Google Scholar] [CrossRef]
- Jones, Charles M., Owen Lamont, and Robin L. Lumsdaine. 1998. Macroeconomic news and bond market volatility. Journal of Financial Economics 47: 315–37. [Google Scholar] [CrossRef]
- Kang, Johnny, and Carolin E. Pflueger. 2015. Inflation risk in corporate bonds. The Journal of Finance 70: 115–62. [Google Scholar] [CrossRef]
- Kumar, Alok, and Charles M. C. Lee. 2006. Retail investor sentiment and return comovements. The Journal of Finance 61: 2451–86. [Google Scholar] [CrossRef]
- Kyle, Albert S. 1985. Continuous Auctions and Insider Trading. Econometrica: Journal of the Econometric Society 53: 1315–35. [Google Scholar] [CrossRef]
- Lama, Achal, Girish K. Jha, Ranjit K. Paul, and Bishal Gurung. 2015. Modelling and Forecasting of Price Volatility: An Application of GARCH and EGARCH Models. Agricultural Economics Research Review 28: 73–82. [Google Scholar] [CrossRef]
- Lee, Byung-Joo. 2019. Asian financial market integration and the role of Chinese financial market. International Review of Economics & Finance 59: 490–99. [Google Scholar] [CrossRef]
- Lee, Wayne Y., Christine X. Jiang, and Daniel C. Indro. 2002. Stock market volatility, excess returns, and the role of investor sentiment. Journal of Banking & Finance 26: 2277–99. [Google Scholar] [CrossRef]
- Li, Li, and Robert F. Engle. 1998. Macroeconomic Announcements and Volatility of Treasury Futures. UCSD Economics Discussion Paper 98-27. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=145828 (accessed on 1 October 2025).
- Liu, Feng, Deli Kong, Zilong Xiao, Xiaohui Zhang, Aimin Zhou, and Jiayin Qi. 2022. Effect of economic policies on the stock and bond market under the impact of COVID-19. Journal of Safety Science and Resilience 3: 24–38. [Google Scholar] [CrossRef]
- Liu, Hung-Chun, and Jui-Cheng Hung. 2010. Forecasting S&P-100 stock index volatility: The role of volatility asymmetry and distributional assumption in GARCH models. Expert Systems with Applications 37: 4928–34. [Google Scholar] [CrossRef]
- López-Cabarcos, M. Ángeles, Ada M. Pérez-Pico, Juan Piñeiro-Chousa, and Aleksandar Šević. 2021. Bitcoin volatility, stock market and investor sentiment. Are they connected? Finance Research Letters 38: 101399. [Google Scholar] [CrossRef]
- Lu, Chia-Wu, Tsung-Kang Chen, and Hsien-Hsing Liao. 2010. Information uncertainty, information asymmetry and corporate bond yield spreads. Journal of Banking & Finance 34: 2265–79. [Google Scholar] [CrossRef]
- Mahmood, Farrukh, and Saud Ahmed Khan. 2020. Multi-modality in the likelihood function of GARCH model. Review of Pacific Basin Financial Markets and Policies 23: 2050018. [Google Scholar] [CrossRef]
- Mukherjee, Kedar Nath. 2019. Demystifying Yield Spread on Corporate Bonds Trades in India. Asia-Pacific Financial Markets 26: 253–84. [Google Scholar] [CrossRef]
- Nayak, Subhankar. 2010. Investor sentiment and corporate bond yield spreads. Review of Behavioural Finance 2: 59–80. [Google Scholar] [CrossRef]
- Nelson, Daniel B. 1991. Conditional Heteroskedasticity in Asset Returns: A New Approach. Econometrica: Journal of the Econometric Society 59: 347–70. [Google Scholar] [CrossRef]
- Opschoor, Anne, Pawel Janus, André Lucas, and Dick Van Dijk. 2018. New HEAVY Models for Fat-Tailed Realized Covariances and Returns. Journal of Business & Economic Statistics 36: 643–57. [Google Scholar] [CrossRef]
- Park, Beum-Jo. 2002. An outlier robust GARCH model and forecasting volatility of exchange rate returns. Journal of Forecasting 21: 381–93. [Google Scholar] [CrossRef]
- Pham, Linh, and Oguzhan Cepni. 2022. Extreme directional spillovers between investor attention and green bond markets. International Review of Economics & Finance 80: 186–210. [Google Scholar] [CrossRef]
- Phillips, Peter C.B., and Pierre Perron. 1988. Testing for a unit root in time series regression. Biometrika 75: 335–46. [Google Scholar] [CrossRef]
- Piazzesi, Monika. 2005. Bond yields and the federal reserve. Journal of Political Economy 113: 311–44. [Google Scholar] [CrossRef]
- Piñeiro-Chousa, Juan, M. Ángeles López-Cabarcos, and Aleksandar Šević. 2022. Green bond market and Sentiment: Is there a switching Behaviour? Journal of Business Research 141: 520–27. [Google Scholar] [CrossRef]
- Rath, Prabhas Kumar. 2023. Nexus Between Indian Financial Markets and Macro-economic Shocks: A VAR Approach. Asia-Pacific Financial Markets 30: 131–64. [Google Scholar] [CrossRef]
- Reilly, Frank K., David J. Wright, and Kam C. Chan. 2000. Bond Market Volatility Compared to Stock Market Volatility. Journal of Portfolio Management 27: 82. [Google Scholar] [CrossRef]
- Shittu, Olanrewaju Ismail, and M. J. Asemota. 2009. Comparison of criteria for estimating the order of autoregressive process: A Monte Carlo approach. European Journal of Scientific Research 30: 409–16. [Google Scholar]
- Spyrou, Spyros. 2013. Investor sentiment and yield spread determinants: Evidence from European markets. Journal of Economic Studies 40: 739–62. [Google Scholar] [CrossRef]
- Tan, Dijun, and Yixiang Tian. 2009. The role of asymmetry: Evidence from Chinese Treasury bond market. Statistics and Its Interface 2: 57–69. [Google Scholar] [CrossRef]
- Turkmen Muldur, Gozde, Serkan Yılmaz Kandir, and Yıldırım Beyazıt Onal. 2019. Investor sentiment and speculative bond yield spreads. Foundations of Management 11: 177–86. [Google Scholar] [CrossRef]
- Verma, Rahul, and Priti Verma. 2007. Noise trading and stock market volatility. Journal of Multinational Financial Management 17: 231–43. [Google Scholar] [CrossRef]
- Villar-Rubio, Elena, María-Dolores Huete-Morales, and Federico Galán-Valdivieso. 2023. Using EGARCH models to predict volatility in unconsolidated financial markets: The case of European carbon allowances. Journal of Environmental Studies and Sciences 13: 500–9. [Google Scholar] [CrossRef]
- Wang, Honglin. 2023. Research on the Corporate Bond Risk Factors. BCP Business & Management 44: 577–83. [Google Scholar] [CrossRef]
- Yong, Jordan Ngu Chuan, Sayyed Mahdi Ziaei, and Kenneth R. Szulczyk. 2021. The impact of COVID-19 pandemic on stock market return volatility: Evidence from Malaysia and Singapore. Asian Economic and Financial Review 11: 191. [Google Scholar] [CrossRef]
- Yu, Jianfeng, and Yu Yuan. 2011. Investor sentiment and the mean-variance relation. Journal of Financial Economics 100: 367–81. [Google Scholar] [CrossRef]
- Yung, Kenneth, and Nadia Nafar. 2017. Investor attention and the expected returns of reits. International Review of Economics & Finance 48: 423–39. [Google Scholar] [CrossRef]
| Index | Mean | Median | Max | Min | Std. Dev. | Skewness | Kurtosis |
|---|---|---|---|---|---|---|---|
| Tel-Bond-20 | 0.000012 | 0.0002 | 0.0340 | −0.0258 | 0.0039 | 0.6443 | 25.6379 |
| Tel-Bond-60 | 0.000015 | 0.0002 | 0.0312 | −0.0234 | 0.0036 | 0.5124 | 26.3665 |
| Index | Jarque–Bera | LM Statistic |
|---|---|---|
| Tel-Bond-20 | 15,788.27 *** | 59.1581 *** |
| Tel-Bond-60 | 16,798.75 *** | 91.8002 *** |
| Estimation Results of the Variance Equation: | ||||
|---|---|---|---|---|
| Variable | Normal | Student’s t | ||
| Tel-Bond-20 | Tel-Bond-60 | Tel-Bond-20 | Tel-Bond-60 | |
| 2.43 × 10−7 *** | 2.04 × 10−7 *** | 2.50 × 10−7 *** | 2.23 × 10−7 *** | |
| 0.201152 *** | 0.199625 *** | 0.223436 *** | 0.231301 *** | |
| 0.779118 *** | 0.781201 *** | 0.765361 *** | 0.758634 *** | |
| Adjusted R-squared | 0.040581 | 0.040827 | 0.039660 | 0.039538 |
| Log likelihood | 3411.521 | 3478.030 | 3424.784 | 3495.102 |
| Akaike Info Criterion | −9.256851 | −9.437582 | −9.290173 | −9.481255 |
| Schwarz Criterion | −9.225593 | −9.406324 | −9.252663 | −9.443745 |
| Hannan–Quinn Criterion | −9.244796 | −9.425527 | −9.275707 | −9.466788 |
| Estimation Results of the Variance Equation: | ||||
|---|---|---|---|---|
| Variable | Normal | Student’s t | ||
| Tel-Bond-20 | Tel-Bond-60 | Tel-Bond-20 | Tel-Bond-60 | |
| −11.80657 *** | −11.58546 *** | −0.680550 *** | −0.721949 *** | |
| 1.107948 *** | 1.153876 *** | 0.321036 *** | 0.334494 *** | |
| 0.055067 | 0.093176 | 0.963587 *** | 0.961363 *** | |
| −0.019139 | −0.103186 | −0.101851 *** | −0.092911 *** | |
| Adjusted R-squared | 0.039736 | 0.042865 | 0.042187 | 0.041403 |
| Log likelihood | 3260.014 | 3336.649 | 3425.896 | 3495.751 |
| Akaike Info Criterion | −8.842429 | −9.050678 | −9.290478 | −9.480302 |
| Schwarz Criterion | −8.804919 | −9.013168 | −9.246717 | −9.436540 |
| Hannan–Quinn Criterion | −8.827963 | −9.036212 | −9.273601 | −9.463424 |
| Estimation Results of the Variance Equation: | ||||
|---|---|---|---|---|
| Variable | Normal | Student’s t | ||
| Tel-Bond-20 | Tel-Bond-60 | Tel-Bond-20 | Tel-Bond-60 | |
| 2.60 × 10−7 *** | 2.23 × 10−7 *** | 2.62 × 10−7 *** | 2.32 × 10−7 *** | |
| 0.072221 | 0.080696 * | 0.087298 ** | 0.104001 ** | |
| 0.194331 *** | 0.184904 *** | 0.203293 *** | 0.189128 *** | |
| 0.798634 *** | 0.794868 *** | 0.784243 *** | 0.775620 *** | |
| Adjusted R-squared | 0.042801 | 0.042593 | 0.041522 | 0.040910 |
| Log likelihood | 3419.856 | 3485.336 | 3430.154 | 3499.254 |
| Akaike Info Criterion | −9.276783 | −9.454718 | −9.302048 | −9.489822 |
| Schwarz Criterion | −9.239273 | −9.417208 | −9.258286 | −9.446060 |
| Hannan–Quinn Criterion | −9.262317 | −9.440252 | −9.285170 | −9.472945 |
| Estimation Results of the Variance Equation: | ||
|---|---|---|
| Variable | Student’s t | |
| Tel-Bond-20 | Tel-Bond-60 | |
| 2.29 × 10−8 | 4.29 × 10−8 | |
| 0.166892 *** | 0.181514 *** | |
| 0.263686 *** | 0.236297 ** | |
| 0.764342 *** | 0.762282 *** | |
| 2.398791 *** | 2.273031 *** | |
| Adjusted R-squared | 0.041453 | 0.04960 |
| Log likelihood | 3430.362 | 3499.351 |
| Akaike Info Criterion | −9.299896 | −9.487368 |
| Schwarz Criterion | −9.249883 | −9.437354 |
| Hannan–Quinn Criterion | −9.280608 | −9.468080 |
| Student’s t GARCH | Student’s t EGARCH | Student’s t GJR | Student’s t APARCH | |
|---|---|---|---|---|
| Tel-Bond-20 | ||||
| AIC | −9.290 | −9.290 | −9.302 | −9.299 |
| Schwarz | −9.253 | −9.247 | −9.258 | −9.225 |
| Hannan–Quinn | −9.276 | −9.274 | −9.285 | −9.280 |
| Tel-Bond-60 | ||||
| AIC | −9.481 | −9.480 | −9.490 | −9.487 |
| Schwarz | −9.444 | −9.437 | −9.446 | −9.437 |
| Hannan–Quinn | −9.467 | −9.463 | −9.473 | −9.468 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadad, E.; Fridman, A.M.; Yosef, R. Estimating Corporate Bond Market Volatility Using Asymmetric GARCH Models. Risks 2025, 13, 224. https://doi.org/10.3390/risks13110224
Hadad E, Fridman AM, Yosef R. Estimating Corporate Bond Market Volatility Using Asymmetric GARCH Models. Risks. 2025; 13(11):224. https://doi.org/10.3390/risks13110224
Chicago/Turabian StyleHadad, Elroi, Amit Malka Fridman, and Rami Yosef. 2025. "Estimating Corporate Bond Market Volatility Using Asymmetric GARCH Models" Risks 13, no. 11: 224. https://doi.org/10.3390/risks13110224
APA StyleHadad, E., Fridman, A. M., & Yosef, R. (2025). Estimating Corporate Bond Market Volatility Using Asymmetric GARCH Models. Risks, 13(11), 224. https://doi.org/10.3390/risks13110224

