Associations of Hair Biomarkers with Height, Weight, and Body Mass Index in Preschool Children
Abstract
1. Introduction
2. Methods
2.1. Hair Biomarkers Study—Phase I
2.2. Study Cohort
2.3. Hair Biomarker Assays
2.4. Parent Surveys
2.5. Outcomes
2.6. Covariates
2.7. Statistical Analysis
3. Results
3.1. Cohort Characteristics
3.2. Hair Biomarkers
3.3. Self-Reported Surveys
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Herzog, J.I.; Schmahl, C. Adverse Childhood Experiences and the Consequences on Neurobiological, Psychosocial, and Somatic Conditions Across the Lifespan. Front. Psychiatry 2018, 9, 420. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Cicchetti, D. Longitudinal pathways linking child maltreatment, emotion regulation, peer relations, and psychopathology. J. Child Psychol. Psychiatry 2010, 51, 706–716. [Google Scholar] [CrossRef] [PubMed]
- Monnat, S.M.; Chandler, R.F. Long Term Physical Health Consequences of Adverse Childhood Experiences. Sociol. Q. 2015, 56, 723–752. [Google Scholar] [CrossRef] [PubMed]
- Roettger, M.E.; Boardman, J.D. Parental incarceration and gender-based risks for increased body mass index: Evidence from the National Longitudinal Study of Adolescent Health in the United States. Am. J. Epidemiol. 2012, 175, 636–644. [Google Scholar] [CrossRef]
- Springer, K.W.; Sheridan, J.; Kuo, D.; Carnes, M. Long-term physical and mental health consequences of childhood physical abuse: Results from a large population-based sample of men and women. Child Abus. Negl. 2007, 31, 517–530. [Google Scholar] [CrossRef]
- Lopez, M.; Ruiz, M.O.; Rovnaghi, C.R.; Tam, G.K.; Hiscox, J.; Gotlib, I.H.; Barr, D.A.; Carrion, V.G.; Anand, K.J.S. The social ecology of childhood and early life adversity. Pediatr. Res. 2021, 89, 353–367. [Google Scholar] [CrossRef]
- Elsenburg, L.K.; van Wijk, K.J.E.; Liefbroer, A.C.; Smidt, N. Accumulation of adverse childhood events and overweight in children: A systematic review and meta-analysis. Obesity 2017, 25, 820–832. [Google Scholar] [CrossRef]
- Cook, S.; Kavey, R.E. Dyslipidemia and pediatric obesity. Pediatr. Clin. N. Am. 2011, 58, 1363–1373. [Google Scholar] [CrossRef]
- Pulgaron, E.R.; Delamater, A.M. Obesity and type 2 diabetes in children: Epidemiology and treatment. Curr. Diabetes Rep. 2014, 14, 508. [Google Scholar] [CrossRef]
- Kansra, A.R.; Lakkunarajah, S.; Jay, M.S. Childhood and Adolescent Obesity: A Review. Front. Pediatr. 2020, 8, 581461. [Google Scholar] [CrossRef]
- Taveras, E.M.; Gillman, M.W.; Kleinman, K.P.; Rich-Edwards, J.W.; Rifas-Shiman, S.L. Reducing racial/ethnic disparities in childhood obesity: The role of early life risk factors. JAMA Pediatr. 2013, 167, 731–738. [Google Scholar] [CrossRef]
- Slopen, N.; Shonkoff, J.P.; Albert, M.A.; Yoshikawa, H.; Jacobs, A.; Stoltz, R.; Williams, D.R. Racial Disparities in Child Adversity in the U.S.: Interactions With Family Immigration History and Income. Am. J. Prev. Med. 2016, 50, 47–56. [Google Scholar] [CrossRef] [PubMed]
- McEwen, B.S.; Stellar, E. Stress and the individual. Mechanisms leading to disease. Arch. Intern. Med. 1993, 153, 2093–2101. [Google Scholar] [CrossRef] [PubMed]
- Rovnaghi, C.R.; Rigdon, J.; Roue, J.M.; Ruiz, M.O.; Carrion, V.G.; Anand, K.J.S. Longitudinal Trajectories of Hair Cortisol: Hypothalamic-Pituitary-Adrenal Axis Dysfunction in Early Childhood. Front. Pediatr. 2021, 9, 740343. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, A. The effects of chronic stress on health: New insights into the molecular mechanisms of brain-body communication. Future Sci. OA 2015, 1, FSO23. [Google Scholar] [CrossRef]
- Charmandari, E.; Tsigos, C.; Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 2005, 67, 259–284. [Google Scholar] [CrossRef]
- Lee, M.J.; Pramyothin, P.; Karastergiou, K.; Fried, S.K. Deconstructing the roles of glucocorticoids in adipose tissue biology and the development of central obesity. Biochim. Biophys. Acta 2014, 1842, 473–481. [Google Scholar] [CrossRef]
- Swarbrick, M.; Zhou, H.; Seibel, M. MECHANISMS IN ENDOCRINOLOGY: Local and systemic effects of glucocorticoids on metabolism: New lessons from animal models. Eur. J. Endocrinol. 2021, 185, R113–R129. [Google Scholar] [CrossRef]
- Crandall, A.; Broadbent, E.; Stanfill, M.; Magnusson, B.M.; Novilla, M.L.B.; Hanson, C.L.; Barnes, M.D. The influence of adverse and advantageous childhood experiences during adolescence on young adult health. Child Abus. Negl. 2020, 108, 104644. [Google Scholar] [CrossRef]
- Crandall, A.; Miller, J.R.; Cheung, A.; Novilla, L.K.; Glade, R.; Novilla, M.L.B.; Magnusson, B.M.; Leavitt, B.L.; Barnes, M.D.; Hanson, C.L. ACEs and counter-ACEs: How positive and negative childhood experiences influence adult health. Child Abus. Negl. 2019, 96, 104089. [Google Scholar] [CrossRef]
- Webster, E.M. The Impact of Adverse Childhood Experiences on Health and Development in Young Children. Glob. Pediatr. Health 2022, 9, 2333794x221078708. [Google Scholar] [CrossRef]
- Crouch, E.; Radcliff, E.; Strompolis, M.; Srivastav, A. Safe, Stable, and Nurtured: Protective Factors against Poor Physical and Mental Health Outcomes Following Exposure to Adverse Childhood Experiences (ACEs). J. Child Adolesc. Trauma. 2019, 12, 165–173. [Google Scholar] [CrossRef]
- Crouch, E.; Radcliff, E.; Brown, M.J.; Hung, P. Exploring the association between parenting stress and a child’s exposure to Positive Childhood Experiences (PCEs). J. Child Fam. Stud. 2024, 33, 3551–3558. [Google Scholar] [CrossRef]
- Creswell, J.D.; Welch, W.T.; Taylor, S.E.; Sherman, D.K.; Gruenewald, T.L.; Mann, T. Affirmation of personal values buffers neuroendocrine and psychological stress responses. Psychol. Sci. 2005, 16, 846–851. [Google Scholar] [CrossRef] [PubMed]
- Surkan, P.J.; Schnaas, L.; Wright, R.J.; Téllez-Rojo, M.M.; Lamadrid-Figueroa, H.; Hu, H.; Hernández-Avila, M.; Bellinger, D.C.; Schwartz, J.; Perroni, E.; et al. Maternal self-esteem, exposure to lead, and child neurodevelopment. Neurotoxicology 2008, 29, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Owen, B.; Lauver, D.R. Different types of parental stress and childhood obesity: A systematic review of observational studies. Obes. Rev. 2019, 20, 1740–1758. [Google Scholar] [CrossRef]
- Li, Y.; Jia, W.; Yan, N.; Hua, Y.; Han, T.; Yang, J.; Ma, L.; Ma, L. Associations between chronic stress and hair cortisol in children: A systematic review and meta-analysis. J. Affect. Disord. 2023, 329, 438–447. [Google Scholar] [CrossRef]
- Simmons, J.G.; Badcock, P.B.; Whittle, S.L.; Byrne, M.L.; Mundy, L.; Patton, G.C.; Olsson, C.A.; Allen, N.B. The lifetime experience of traumatic events is associated with hair cortisol concentrations in community-based children. Psychoneuroendocrinology 2016, 63, 276–281. [Google Scholar] [CrossRef]
- Johnson, J.L.; Buisman-Pijlman, F.T. Adversity impacting on oxytocin and behaviour: Timing matters. Behav. Pharmacol. 2016, 27, 659–671. [Google Scholar] [CrossRef]
- Kuppusamy, T.; Ramaswamy, P.; Perumal, M.; Silambanan, S.; Prabu Kumar, A. A short note on oxytocin and stress attenuation. Bioinformation 2021, 17, 921–923. [Google Scholar] [CrossRef]
- Uvnäs-Moberg, K.; Gross, M.M.; Calleja-Agius, J.; Turner, J.D. The Yin and Yang of the oxytocin and stress systems: Opposites, yet interdependent and intertwined determinants of lifelong health trajectories. Front. Endocrinol. 2024, 15, 1272270. [Google Scholar] [CrossRef]
- Lawson, E.A. The effects of oxytocin on eating behaviour and metabolism in humans. Nat. Rev. Endocrinol. 2017, 13, 700–709. [Google Scholar] [CrossRef]
- Jessop, D.S.; Turner-Cobb, J.M. Measurement and meaning of salivary cortisol: A focus on health and disease in children. Stress. 2008, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.C.; Dougherty, L.R. Noisy spit: Parental noncompliance with child salivary cortisol sampling. Dev. Psychobiol. 2014, 56, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Ling, J.; Xu, D.; Robbins, L.B.; Kao, T.A. Obesity and Hair Cortisol: Relationships Varied Between Low-Income Preschoolers and Mothers. Matern. Child Health J. 2020, 24, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Distel, L.M.L.; Egbert, A.H.; Bohnert, A.M.; Santiago, C.D. Chronic Stress and Food Insecurity: Examining Key Environmental Family Factors Related to Body Mass Index Among Low-Income Mexican-Origin Youth. Fam. Community Health 2019, 42, 213–220. [Google Scholar] [CrossRef]
- Foster, B.A.; Alvarez, H.O.; Padilla, T.; Meyer, J.S. Longitudinal Examination of Hair Cortisol Concentrations and Weight Changes in Preschool-Aged Children of Latino Farmworkers. Child. Obes. 2023, 19, 399–407. [Google Scholar] [CrossRef]
- Vehmeijer, F.O.L.; Santos, S.; Gaillard, R.; de Rijke, Y.B.; Voortman, T.; van den Akker, E.L.T.; Felix, J.F.; van Rossum, E.F.C.; Jaddoe, V.W.V. Associations of Hair Cortisol Concentrations with General and Organ Fat Measures in Childhood. J. Clin. Endocrinol. Metab. 2021, 106, e551–e561. [Google Scholar] [CrossRef]
- Bryson, H.E.; Mensah, F.; Goldfeld, S.; Price, A.M.H. Using Hair Cortisol to Examine the Role of Stress in Children’s Health Inequalities at 3 Years. Acad. Pediatr. 2020, 20, 193–202. [Google Scholar] [CrossRef]
- Veldhorst, M.A.; Noppe, G.; Jongejan, M.H.; Kok, C.B.; Mekic, S.; Koper, J.W.; van Rossum, E.F.; van den Akker, E.L. Increased scalp hair cortisol concentrations in obese children. J. Clin. Endocrinol. Metab. 2014, 99, 285–290. [Google Scholar] [CrossRef]
- Papafotiou, C.; Christaki, E.; van den Akker, E.L.; Wester, V.L.; Apostolakou, F.; Papassotiriou, I.; Chrousos, G.P.; Pervanidou, P. Hair cortisol concentrations exhibit a positive association with salivary cortisol profiles and are increased in obese prepubertal girls. Stress 2017, 20, 217–222. [Google Scholar] [CrossRef]
- Kitani, R.A.; Letsou, K.; Kokka, I.; Kanaka-Gantenbein, C.; Bacopoulou, F. Difference in Hair Cortisol Concentrations between Obese and Non-Obese Children and Adolescents: A Systematic Review. Children 2022, 9, 715. [Google Scholar] [CrossRef]
- Olstad, D.L.; Ball, K.; Wright, C.; Abbott, G.; Brown, E.; Turner, A.I. Hair cortisol levels, perceived stress and body mass index in women and children living in socioeconomically disadvantaged neighborhoods: The READI study. Stress 2016, 19, 158–167. [Google Scholar] [CrossRef]
- Larsen, S.C.; Fahrenkrug, J.; Olsen, N.J.; Heitmann, B.L. Association between Hair Cortisol Concentration and Adiposity Measures among Children and Parents from the “Healthy Start” Study. PLoS ONE 2016, 11, e0163639. [Google Scholar] [CrossRef] [PubMed]
- Slominski, R.; Rovnaghi, C.R.; Anand, K.J. Methodological Considerations for Hair Cortisol Measurements in Children. Ther. Drug Monit. 2015, 37, 812–820. [Google Scholar] [CrossRef] [PubMed]
- Berry, J.O.; Jones, W.H. The Parental Stress Scale: Initial Psychometric Evidence. J. Soc. Pers. Relatsh. 1995, 12, 463–472. [Google Scholar] [CrossRef]
- Schmitt, D.P.; Allik, J. Simultaneous Administration of the Rosenberg Self-Esteem Scale in 53 Nations: Exploring the Universal and Culture-Specific Features of Global Self-Esteem. J. Personal. Soc. Psychol. 2005, 89, 623–642. [Google Scholar] [CrossRef]
- Felitti, V.J.; Anda, R.F.; Nordenberg, D.; Williamson, D.F.; Spitz, A.M.; Edwards, V.; Koss, M.P.; Marks, J.S. Relationship of childhood abuse and household dysfunction to many of the leading causes of death in adults. The Adverse Childhood Experiences (ACE) Study. Am. J. Prev. Med. 1998, 14, 245–258. [Google Scholar] [CrossRef]
- Koita, K.; Long, D.; Hessler, D.; Benson, M.; Daley, K.; Bucci, M.; Thakur, N.; Burke Harris, N. Development and implementation of a pediatric adverse childhood experiences (ACEs) and other determinants of health questionnaire in the pediatric medical home: A pilot study. PLoS ONE 2018, 13, e0208088. [Google Scholar] [CrossRef]
- Flegal, K.M.; Cole, T.J. Construction of LMS parameters for the Centers for Disease Control and Prevention 2000 growth charts. Natl. Health Stat. Rep. 2013, 63, 1–3. [Google Scholar]
- Sidote, M.N.; Bornkamp, N.; Rifas-Shiman, S.L.; Hivert, M.F.; Oken, E.; Nichols, A.R.; Zhang, M. Hair cortisol concentrations are associated with greater adiposity in late adolescence amongst non-Hispanic White individuals. Pediatr. Obes. 2024, 19, e13164. [Google Scholar] [CrossRef]
- van der Valk, E.S.; van der Voorn, B.; Iyer, A.M.; Mohseni, M.; Leenen, P.J.M.; Dik, W.A.; van den Berg, S.A.A.; de Rijke, Y.B.; van den Akker, E.L.T.; Penninx, B.; et al. Hair cortisol, obesity and the immune system: Results from a 3 year longitudinal study. Psychoneuroendocrinology 2021, 134, 105422. [Google Scholar] [CrossRef]
- Genitsaridi, S.M.; Karampatsou, S.; Papageorgiou, I.; Mantzou, A.; Papathanasiou, C.; Kassari, P.; Paltoglou, G.; Kourkouti, C.; Charmandari, E. Hair Cortisol Concentrations in Overweight and Obese Children and Adolescents. Horm. Res. Paediatr. 2019, 92, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Binay, Ç.; Paketçi, C.; Güzel, S.; Samancı, N. Serum Irisin and Oxytocin Levels as Predictors of Metabolic Parameters in Obese Children. J. Clin. Res. Pediatr. Endocrinol. 2017, 9, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Leow, M.K.; Magkos, F. Oxytocin in metabolic homeostasis: Implications for obesity and diabetes management. Obes. Rev. 2019, 20, 22–40. [Google Scholar] [CrossRef]
- Keane, J.N.; Shelleby, E.C. Routines and warmth as protective factors on the relation between housing instability and child outcomes. J. Fam. Psychol. 2024, 38, 1146–1157. [Google Scholar] [CrossRef] [PubMed]
- Rhee, K.E.; Jelalian, E.; Boutelle, K.; Dickstein, S.; Seifer, R.; Wing, R. Warm Parenting Associated with Decreasing or Stable Child BMI during Treatment. Child. Obes. 2016, 12, 94–102. [Google Scholar] [CrossRef]
- Scatliffe, N.; Casavant, S.; Vittner, D.; Cong, X. Oxytocin and early parent-infant interactions: A systematic review. Int. J. Nurs. Sci. 2019, 6, 445–453. [Google Scholar] [CrossRef]
- Taylor, A.E.; Lee, H.E.; Buisman-Pijlman, F.T. Oxytocin treatment in pediatric populations. Front. Behav. Neurosci. 2014, 8, 360. [Google Scholar] [CrossRef]
- Tarsha, M.S.; Narvaez, D. The evolved nest, oxytocin functioning, and prosocial development. Front. Psychol. 2023, 14, 1113944. [Google Scholar] [CrossRef]
- Rietschel, L.; Streit, F.; Zhu, G.; McAloney, K.; Frank, J.; Couvy-Duchesne, B.; Witt, S.H.; Binz, T.M.; Bolton, J.L.; Hayward, C.; et al. Hair Cortisol in Twins: Heritability and Genetic Overlap with Psychological Variables and Stress-System Genes. Sci. Rep. 2017, 7, 15351. [Google Scholar] [CrossRef]
- Gnanadesikan, G.E.; Bray, E.E.; Cook, E.N.; Levy, K.M.; Douglas, L.E.L.C.; Kennedy, B.S.; Tecot, S.R.; MacLean, E.L. Basal plasma oxytocin & fecal cortisol concentrations are highly heritable and associated with individual differences in behavior & cognition in dog puppies. Horm. Behav. 2024, 165, 105612. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, C.; Kingdon, D.; Ellenbogen, M.A. A meta-analytic review of the impact of intranasal oxytocin administration on cortisol concentrations during laboratory tasks: Moderation by method and mental health. Psychoneuroendocrinology 2014, 49, 161–170. [Google Scholar] [CrossRef] [PubMed]
- McClain, A.C.; Evans, G.W.; Dickin, K.L. Maternal Stress Moderates the Relationship of Food Insufficiency with Body Mass Index Trajectories from Childhood to Early Adulthood among U.S. Rural Youth. Child. Obes. 2021, 17, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Wood, C.T.; Churchill, M.L.; McGrath, M.; Aschner, J.; Brunwasser, S.M.; Geiger, S.; Gogcu, S.; Hartert, T.V.; Hipwell, A.E.; Lee-Sarwar, K.; et al. Maternal stress and early childhood BMI among US children from the Environmental influences on Child Health Outcomes (ECHO) program. Pediatr. Res. 2023, 94, 2085–2091. [Google Scholar] [CrossRef]
- Leppert, B.; Junge, K.M.; Röder, S.; Borte, M.; Stangl, G.I.; Wright, R.J.; Hilbert, A.; Lehmann, I.; Trump, S. Early maternal perceived stress and children’s BMI: Longitudinal impact and influencing factors. BMC Public Health 2018, 18, 1211. [Google Scholar] [CrossRef]
- Palmer, F.B.; Anand, K.J.S.; Graff, J.C.; Murphy, L.E.; Qu, Y.; Volgyi, E.; Rovnaghi, C.R.; Moore, A.; Tran, Q.T.; Tylavsky, F.A. Early adversity, social-emotional development, and stress in urban 1-year-old children. J. Pediatr. 2013, 163, 1733–1739.e1. [Google Scholar] [CrossRef]
- Giano, Z.; Wheeler, D.L.; Hubach, R.D. The frequencies and disparities of adverse childhood experiences in the U.S. BMC Public Health 2020, 20, 1327. [Google Scholar] [CrossRef]
- Merrick, M.T.; Ford, D.C.; Ports, K.A.; Guinn, A.S. Prevalence of Adverse Childhood Experiences From the 2011-2014 Behavioral Risk Factor Surveillance System in 23 States. JAMA Pediatr. 2018, 172, 1038–1044. [Google Scholar] [CrossRef]
No. Participants | N (%) | |
---|---|---|
Demographics | ||
Age (mo.; median, IQR) | 1189 | 39.09 (23.52, 52.95) |
Sex | 1189 | |
Male | 669 (56.3) | |
Female | 520 (43.7) | |
Self-Reported Race | 1178 | |
Hispanic | 134 (11.4) | |
White | 422 (35.8) | |
Asian | 327 (27.8) | |
Mixed/Other | 295 (25.0) | |
SES Category | 1178 | |
1 | 81 (6.9) | |
2 | 130 (11.0) | |
3 | 360 (30.6) | |
4 | 607 (51.5) | |
Mother’s Marital Status | 1176 | |
Married/Living with Partner | 1115 (94.8) | |
Divorced/Separated | 17 (1.5) | |
Single/Widowed | 44 (3.7) | |
Anthropometric Measurements | ||
Height Percentile (median, IQR) | 1181 | 0.58 (0.29, 0.84) |
Weight Percentile (median, IQR) | 1187 | 0.50 (0.24, 0.77) |
BMI Percentile (median, IQR) | 1177 | 0.49 (0.19, 0.80) |
Weight Category | 1177 | |
Underweight (<5th percentile) | 160 (13.6) | |
Normal Weight | 794 (67.5) | |
Overweight (≥85th percentile) | 223 (19.0) | |
Hair Biomarkers | ||
Child LN-HCC (median, IQR) | 1183 | 1.53 (0.56, 2.30) |
Child LN-HOC (median, IQR) | 863 | −7.47 (−8.90, −6.38) |
Mother LN-HCC (median, IQR) | 507 | 0.81 (−0.02, 1.54) |
Mother LN-HOC (median, IQR) | 428 | −7.90 (−9.29, −6.79) |
Child Wellness Index (median, IQR) 1 | 857 | 0.06 (0.01, 0.35) |
Survey Items | ||
RSE Score (median, IQR) | 819 | 25.0 (20.0, 28.0) |
PSS Score (median, IQR) | 824 | 38.0 (31.0, 44.0) |
Child ACEs | 909 | |
0 | 691 (76.0) | |
1+ | 218 (24.0) | |
Parental ACEs | 736 | |
0–1 | 459 (62.4) | |
2–3 | 152 (20.7) | |
≥4 | 125 (17.0) |
Height Percentile 1 Est. (95% CI) | ||||
Unadjusted | Sociodemographic-Adjusted a | Mutually Adjusted b | Sociodemographic/Mutually Adjusted a,b | |
Child Oxytocin | 0.009 (−0.003, 0.020) | 0.005 (−0.006, 0.017) | −0.005 (−0.025, 0.015) | −0.009 (−0.029, 0.011) |
Child Cortisol | −0.031 (−0.044, −0.019) | −0.025 (−0.038, −0.012) | −0.049 (−0.079, −0.019) | −0.032 (−0.064, 0.0005) |
Mother Oxytocin | 0.013 (−0.003, 0.028) | 0.017 (0.001, 0.033) | −0.003 (−0.015, 0.021) | 0.010 (−0.009, 0.028) |
Mother Cortisol | −0.030 (−0.052, −0.010) | −0.027 (−0.048, −0.006) | −0.005 (−0.039, 0.029) | −0.016 (−0.049, 0.018) |
Child Wellness Index | 0.006 (0.0003, 0.011) | 0.004 (−0.001, 0.010) | ||
Weight Percentile 1 Est. (95% CI) | ||||
Unadjusted | Sociodemographic-Adjusted a | Mutually Adjusted b | Sociodemographic/Mutually Adjusted a,b | |
Child Oxytocin | −0.007 (−0.017, 0.004) | −0.009 (−0.019, 0.002) | −0.007 (−0.025, 0.012) | −0.013 (−0.032, 0.005) |
Child Cortisol | −0.004 (−0.016, 0.007) | 0.003 (−0.009, 0.015) | −0.018 (−0.046, 0.010) | −0.009 (−0.038, 0.021) |
Mother Oxytocin | −0.010 (−0.024, 0.005) | −0.008 (−0.022, 0.006) | −0.014 (−0.031, 0.003) | −0.015 (−0.031, 0.002) |
Mother Cortisol | 0.008 (−0.012, 0.027) | 0.007 (−0.012, 0.027) | 0.022 (−0.010, 0.053) | 0.017 (−0.014, 0.048) |
Child Wellness Index | 0.003 (−0.001, 0.007) | 0.002 (−0.002, 0.006) | ||
BMI Percentile 1 Est. (95% CI) | ||||
Unadjusted | Sociodemographic-Adjusted a | Mutually Adjusted b | Sociodemographic/Mutually Adjusted a,b | |
Child Oxytocin | −0.017 (−0.029, −0.005) | −0.016 (−0.028, −0.005) | −0.005 (−0.025, 0.015) | −0.008 (−0.028, 0.011) |
Child Cortisol | 0.029 (0.016, 0.042) | 0.027 (0.013, 0.040) | 0.028 (−0.003, 0.058) | 0.012 (−0.019, 0.044) |
Mother Oxytocin | −0.029 (−0.045, −0.013) | −0.031 (−0.047, −0.014) | −0.027 (−0.045, −0.009) | −0.034 (−0.052, −0.016) |
Mother Cortisol | 0.042 (0.021, 0.064) | 0.036 (0.015, 0.058) | 0.028 (−0.006, 0.062) | 0.036 (0.003, 0.069) |
Child Wellness Index | 0.001 (−0.004, 0.007) | 0.002 (−0.003, 0.007) | ||
BMI Category: Overweight vs. Normal Weight 2 Odds Ratio (95% Cl) | ||||
Unadjusted | Sociodemographic-Adjusted a | Mutually Adjusted b | Sociodemographic/Mutually Adjusted a,b | |
Child Oxytocin | 0.96 (0.88, 1.06) | 0.99 (0.90, 1.09) | 1.00 (0.85, 1.18) | 1.04 (0.86, 1.26) |
Child Cortisol | 1.10 (0.99, 1.22) | 1.06 (0.94, 1.19) | 1.15 (0.90, 1.48) | 1.10 (0.82, 1.49) |
Mother Oxytocin | 0.95 (0.84, 1.08) | 0.98 (0.85, 1.12) | 0.95 (0.82, 1.10) | 0.92 (0.78, 1.08) |
Mother Cortisol | 1.08 (0.90, 1.28) | 1.04 (0.87, 1.25) | 0.91 (0.69, 1.20) | 0.90 (0.66, 1.22) |
Child Wellness Index | 1.03 (0.99, 1.07) | 1.04 (0.99, 1.08) | ||
BMI Category: Underweight vs. Normal Weight 2 Odds Ratio (95% Cl) | ||||
Unadjusted | Sociodemographic-Adjusted a | Mutually Adjusted b | Sociodemographic/Mutually Adjusted a,b | |
Child Oxytocin | 1.16 (1.04, 1.30) | 1.18 (1.05, 1.33) | 1.07 (0.88, 1.30) | 1.14 (0.92, 1.41) |
Child Cortisol | 0.77 (0.69, 0.86) | 0.77 (0.68, 0.87) | 0.95 (0.72, 1.24) | 0.95 (0.69, 1.31) |
Mother Oxytocin | 1.16 (1.01, 1.34) | 1.21 (1.04, 1.40) | 1.24 (1.03, 1.49) | 1.28 (1.04, 1.57) |
Mother Cortisol | 0.72 (0.59, 0.86) | 0.73 (0.60, 0.88) | 0.61 (0.44, 0.85) | 0.58 (0.40, 0.83) |
Child Wellness Index | 1.07 (0.99, 1.15) | 1.07 (0.99, 1.15) | ||
BMI Category: Overweight vs. Underweight 2 Odds Ratio (95% Cl) | ||||
Unadjusted | Sociodemographic-Adjusted a | Mutually Adjusted b | Sociodemographic/Mutually Adjusted a,b | |
Child Oxytocin | 0.83 (0.73, 0.95) | 0.84 (0.73, 0.98) | 0.94 (0.74, 1.19) | 0.92 (0.70, 1.22) |
Child Cortisol | 1.40 (1.21, 1.61) | 1.33 (1.14, 1.55) | 1.38 (0.90, 2.10) | 1.34 (0.77, 2.32) |
Mother Oxytocin | 0.80 (0.66, 0.97) | 0.79 (0.64, 0.97) | 0.74 (0.57, 0.97) | 0.58 (0.40, 0.85) |
Mother Cortisol | 1.49 (1.17, 1.88) | 1.38 (1.07, 1.78) | 1.35 (0.88, 2.09) | 1.56 (0.91, 2.68) |
Child Wellness Index | 1.01 (0.97, 1.05) | 1.01 (0.97, 1.06) |
Height Percentile 1 Est. (95% CI) | ||
Unadjusted | Sociodemographic-Adjusted a | |
RSE Score | 0.004 (−0.001, 0.008) | 0.003 (−0.001, 0.008) |
PSS Score | −0.002 (−0.004, 0.0005) | −0.002 (−0.004, 0.0006) |
Child ACE (≥1 vs. 0) | 0.030 (−0.018, 0.078) | 0.032 (−0.019, 0.083) |
Mother ACE | ||
0–1 | Ref. | Ref. |
2–3 | −0.022 (−0.080, 0.036) | −0.023 (−0.082, 0.036) |
≥4 | 0.045 (−0.018, 0.108) | 0.052 (−0.014, 0.117) |
Weight Percentile 1 Est. (95% CI) | ||
Unadjusted | Sociodemographic-Adjusted a | |
RSE Score | 0.001 (−0.003, 0.005) | 0.0002 (−0.004, 0.004) |
PSS Score | 0.0003 (−0.002, 0.003) | 0.001 (−0.001, 0.003) |
Child ACE (≥1 vs. 0) | 0.0003 (−0.043, 0.049) | −0.019 (−0.067, 0.028) |
Mother ACE | ||
0–1 | Ref. | Ref. |
2–3 | 0.072 (0.017, 0.127) | 0.057 (0.003, 0.112) |
≥4 | 0.047 (−0.012, 0.106) | 0.023 (−0.037, 0.083) |
BMI Percentile 1 Est. (95% CI) | ||
Unadjusted | Sociodemographic-Adjusted a | |
RSE Score | 0.0004 (−0.004, 0.005) | −0.0004 (−0.005, 0.004) |
PSS Score | 0.001 (−0.001, 0.004) | 0.002 (−0.001, 0.004) |
Child ACE (≥1 vs. 0) | −0.029 (−0.078, 0.021) | −0.053 (−0.104, 0.001) |
Mother ACE | ||
0–1 | Ref. | Ref. |
2–3 | 0.092 (0.032, 0.151) | 0.076 (0.017, 0.135) |
≥4 | 0.026 (−0.039, 0.090) | −0.005 (−0.070, 0.061) |
BMI Category: Overweight vs. Normal Weight 2 Odds Ratio (95% Cl) | ||
Unadjusted | Sociodemographic-Adjusted a | |
RSE Score | 0.99 (0.96, 1.04) | 0.99 (0.96, 1.03) |
PSS Score | 0.99 (0.97, 1.01) | 0.99 (0.97, 1.01) |
Child ACE (≥1 vs. 0) | 0.84 (0.57, 1.24) | 0.80 (0.52, 1.23) |
Mother ACE | ||
0–1 | Ref. | Ref. |
2–3 | 1.70 (1.12, 2.60) | 1.64 (1.06, 2.54) |
≥4 | 1.06 (0.65, 1.73) | 0.88 (0.52, 1.48) |
BMI Category: Underweight vs. Normal Weight 2 Odds Ratio (95% Cl) | ||
Unadjusted | Sociodemographic-Adjusted a | |
RSE Score | 1.03 (0.99, 1.07) | 1.04 (1.00, 1.08 |
PSS Score | 0.98 (0.96, 1.00) | 0.98 (0.95, 1.00) |
Child ACE (≥1 vs. 0) | 1.09 (0.65, 1.83) | 1.25 (0.72, 2.16) |
Mother ACE | ||
0–1 | Ref. | Ref. |
2–3 | 0.91 (0.46, 1.79) | 1.04 (0.52, 2.07) |
≥4 | 0.72 (0.34, 1.53) | 0.93 (0.42, 2.03) |
BMI Category: Overweight vs. Underweight 2 Odds Ratio (95% Cl) | ||
Unadjusted | Sociodemographic-Adjusted a | |
RSE Score | 0.97 (0.92, 1.02) | 0.96 (0.91, 1.01) |
PSS Score | 1.01 (0.99, 1.04) | 1.02 (0.99, 1.05) |
Child ACE (≥1 vs. 0) | 0.77 (0.42, 1.40) | 0.72 (0.37, 1.44) |
Mother ACE | ||
0–1 | Ref. | Ref. |
2–3 | 1.88 (0.90, 3.90) | 1.75 (0.78, 3.93) |
≥4 | 1.47 (0.63, 3.40) | 1.13 (0.44, 2.91) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A.; Rovnaghi, C.R.; Anand, K.J.S. Associations of Hair Biomarkers with Height, Weight, and Body Mass Index in Preschool Children. Children 2025, 12, 1264. https://doi.org/10.3390/children12091264
Gupta A, Rovnaghi CR, Anand KJS. Associations of Hair Biomarkers with Height, Weight, and Body Mass Index in Preschool Children. Children. 2025; 12(9):1264. https://doi.org/10.3390/children12091264
Chicago/Turabian StyleGupta, Anjali, Cynthia R. Rovnaghi, and Kanwaljeet J. S. Anand. 2025. "Associations of Hair Biomarkers with Height, Weight, and Body Mass Index in Preschool Children" Children 12, no. 9: 1264. https://doi.org/10.3390/children12091264
APA StyleGupta, A., Rovnaghi, C. R., & Anand, K. J. S. (2025). Associations of Hair Biomarkers with Height, Weight, and Body Mass Index in Preschool Children. Children, 12(9), 1264. https://doi.org/10.3390/children12091264