Skeletal Maturity Assessment in Pediatric ACL-Reconstruction
Abstract
Highlights
- Skeletal maturity significantly influences surgical decision-making and outcomes in pediatric ACL reconstruction.
- A multimodal approach combining clinical, radiological, and MRI-based assessments enhances accuracy in determining skeletal maturity.
- Tailoring ACL reconstruction techniques to skeletal maturity levels minimizes growth disturbances and improves functional outcomes.
- An integrated assessment strategy may standardize preoperative planning, particularly for patients with ambiguous maturity status or comorbidities.
Abstract
1. Introduction
2. Methods
3. Growth Plate Structure and Assessment Complexity
3.1. Assessment Challenges Arising from Anatomical Complexity
3.2. Impact on Surgical Decision-Making
4. Clinical Methods to Assess Skeletal Maturity
4.1. Chronological Age—A Universal Reference, Never a Standalone Tool
4.2. Tanner Staging (Sexual Maturity Rating)—Reliable at Maturity Extremes, Uncertain in Intermediate Stages
4.3. Peak Height Velocity (PHV)—Growth Momentum Indicator Without Anatomical Specificity
4.4. Growth Charts and Mid-Parental Height—Contextual, Not Decisive
4.5. Applicability and Limitations of Clinical Methods
- Clinical methods are sufficient when:
- Clear maturity extremes are defined by the assessment tool (e.g., obviously pre-pubertal or fully mature patients)
- Multiple clinical indicators align consistently
- Surgical scenarios are low-risk, where minor assessment errors have minimal consequences
- Radiological assessment is unavailable due to resource limitations
- Additional assessment is required when:
- Clinical methods provide conflicting results (common occurrence)
- Patients fall within intermediate maturity ranges (Tanner stages 2–4)
- Surgical procedures are high-risk, and growth disturbances have severe consequences
- Patient populations are atypical (e.g., athletes, ethnic minorities, endocrine disorders)
- Surgical technique selection critically depends on precise maturity assessment
5. Radiological Methods to Assess Skeletal Maturity
5.1. Hand and Wrist Radiographs
5.1.1. Greulich-Pyle Atlas: Widespread Use Despite Fundamental Limitations
5.1.2. Tanner-Whitehouse Method
5.1.3. Sanders Skeletal Maturity Classification
5.2. Elbow and Foot Radiographs
5.2.1. Sauvegrain Elbow Method
5.2.2. Calcaneal Assessment
5.3. MRI-Based Assessment
5.4. Applicability and Limitations of Radiological Methods
- Radiological methods are sufficient when:
- Objective, reproducible maturity assessment is required for high-stakes orthopedic decision-making
- Established protocols (e.g., GP atlas, TW3, Sanders, Sauvegrain) are available and clinically validated for the patient’s demographic
- Prediction of condition progression (e.g., scoliosis) or adult height estimation requires high precision
- Pubertal stage assessment needs accuracy within six months (e.g., spine or limb surgery timing)
- Joint-specific growth evaluation is necessary for surgical planning (e.g., ACL reconstruction in skeletally immature patients)
- Rapid, low-cost adjunctive imaging (e.g., calcaneal ultrasound/radiography) can enhance screening or confirm clinical impressions
- Radiological methods are inadequate when:
- The selected method is population-specific or outdated (e.g., GP atlas limitations in diverse cohorts)
- The technique is excessively time-intensive for routine practice (e.g., TW method in busy settings)
- The method is condition-specific and lacks broader applicability (e.g., Sanders classification in non-scoliosis cases)
- The patient’s developmental stage falls outside the method’s optimal range (e.g., Sauvegrain method outside early puberty)
- Imaging modality lacks standardization or has reduced accuracy in certain groups (e.g., calcaneal imaging in males)
- High cost, limited availability, or impracticality prevent routine use (e.g., MRI in general clinical settings)
6. Maturity-Related Decision in Pediatric ACLR
6.1. Technique Selection Based on Skeletal Maturity
6.2. Timing Considerations: When to Delay vs. Proceed
6.3. Graft Selection and Maturity
7. Post-Operative Complications in Pediatric ACLR
7.1. Growth Disturbances
7.2. Graft Failure and Meniscal Injuries
8. Current Guidelines and Expert Consensus
9. Proposed Integration Model for Skeletal Maturity Assessment in Pediatric ACLR
9.1. Assessment Algorithm
- All pediatric ACL patients should undergo two initial evaluations: a clinical assessment and a radiological assessment.
- The clinical assessment includes a detailed history and physical examination to determine chronological age and Tanner stage. When possible, previous records should be reviewed to estimate peak height velocity.
- The radiological evaluation consists of knee radiographs (anteroposterior and lateral views) to assess physeal status. Closed physes typically allow proceeding directly to transphyseal reconstruction, as outcomes in this subgroup align with adult results.
- For patients with open physes, the assessment becomes more nuanced:
- Early Maturity (Tanner stages I–II): Bone age should be assessed via Greulich-Pyle hand and wrist radiographs or elbow ossification. When skeletal and chronological ages differ by less than one year, surgical planning can favor physeal-sparing techniques, minimizing growth disturbance risk.
- Intermediate Maturity (Tanner stage III): Patients with some remaining growth should have bone age assessment combined with clinical markers such as secondary sexual characteristics and peak height velocity. Concordant findings support proceeding with hybrid or partial-transphyseal techniques, balancing anatomical reconstruction with growth preservation.
- Discordant or Complex Cases: When clinical and radiological assessments disagree by more than one year or stage, or when there is a history of growth disorders, additional specialized evaluations are warranted before surgery. These may include MRI-based bone age assessment, endocrinology consultation (e.g., growth hormone and IGF-1 evaluation), or genetic testing if indicated. These advanced methods are reserved for cases where the standard algorithm is insufficient, given their higher cost and complexity.
9.2. Risk Stratification Based on Assessment Results
- Low Risk: Patients with consistent assessment findings or discrepancies within one year/stage, no history of growth disturbances, and clear physeal status. These patients proceed with surgical techniques appropriate to their maturity level, followed by routine postoperative follow-up.
- Moderate Risk: Patients with discrepancies of 1–2 years/stages or borderline maturity (e.g., Tanner stage III) are best managed with conservative hybrid or partial transphyseal techniques. They require enhanced postoperative monitoring due to a moderate risk of growth disturbances.
- High Risk: Patients with major discrepancies between assessments, a history of growth disorders, or unclear physeal imaging findings require shared decision-making involving the patient and family. Surgical options should prioritize growth preservation, typically favoring physeal-sparing approaches, and postoperative monitoring must be intensive.
9.3. Quality Assurance Protocol
9.4. Validation and Continuous Improvement
10. Limitations and Controversies
11. Future Directions
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACL | Anterior Cruciate Ligament |
ACLR | Anterior Cruciate Ligament Reconstruction |
AI | Artificial Intelligence |
ITB | Iliotibial band |
MRI | Magnetic Resonance Imaging |
SMR | Sexual Maturity Rating |
TW3 | Tanner-Whitehouse 3 Method |
U.S. | United States |
UK | United Kingdom |
References
- Kocher, M.S.; Garg, S.; Micheli, L.J. Physeal sparing reconstruction of the anterior cruciate ligament in skeletally immature prepubescent children and adolescents. J. Bone Jt. Surg. Am. 2005, 87, 2371–2379. [Google Scholar] [CrossRef]
- Dunn, K.L.; Lam, K.C.; Valovich McLeod, T.C. Early Operative Versus Delayed or Nonoperative Treatment of Anterior Cruciate Ligament Injuries in Pediatric Patients. J. Athl. Train. 2016, 51, 425–427. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, V.; Elhakim, I.Z.; Soliman, A.T.; Elsedfy, H.; Elalaily, R.; Millimaggi, G. Methods for Rating Sexual Development in Girls. Pediatr. Endocrinol. Rev. 2016, 14, 27–32. [Google Scholar] [CrossRef] [PubMed]
- Tinggaard, J.; Mieritz, M.G.; Sørensen, K.; Mouritsen, A.; Hagen, C.P.; Aksglaede, L.; Wohlfahrt-Veje, C.; Juul, A. The physiology and timing of male puberty. Curr. Opin. Endocrinol. Diabetes Obes. 2012, 19, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Cole, T.J. Estimating peak height velocity in individuals. Ann. Hum. Biol. 2020, 47, 584. [Google Scholar] [CrossRef]
- Khadilkar, V.; Phanse, S. Growth charts from controversy to consensus. Indian J. Endocrinol. Metab. 2012, 16, S185–S187. [Google Scholar] [CrossRef]
- Pyle, S.I.; Waterhouse, A.M.; Greulich, W.W. Attributes of the radiographic standard of reference for the National Health Examination Survey. Am. J. Phys. Anthropol. 1971, 35, 331–337. [Google Scholar] [CrossRef]
- Diméglio, A.; Charles, Y.P.; Daures, J.P.; de Rosa, V.; Kaboré, B. Accuracy of the Sauvegrain method in determining skeletal age during puberty. J. Bone Jt. Surg. Am. 2005, 87, 1689–1696. [Google Scholar] [CrossRef]
- Neal, K.M.; Shirley, E.D.; Kiebzak, G.M. Maturity Indicators and Adolescent Idiopathic Scoliosis: Evaluation of the Sanders Maturity Scale. Spine 2018, 43, E406–E412. [Google Scholar] [CrossRef]
- Fabricant, P.D.; Jones, K.J.; Delos, D.; Cordasco, F.A.; Marx, R.G.; Pearle, A.D.; Warren, R.F.; Green, D.W. Reconstruction of the anterior cruciate ligament in the skeletally immature athlete: A review of current concepts: AAOS exhibit selection. J. Bone Jt. Surg. Am. 2013, 95, e28. [Google Scholar] [CrossRef]
- Mizuta, H.; Kubota, K.; Shiraishi, M.; Otsuka, Y.; Nagamoto, N.; Takagi, K. The conservative treatment of complete tears of the anterior cruciate ligament in skeletally immature patients. J. Bone Jt. Surg. Br. 1995, 77, 890–894. [Google Scholar] [CrossRef]
- Malina, R.M.; Eisenmann, J.C.; Cumming, S.P.; Ribeiro, B.; Aroso, J. Maturity-associated variation in the growth and functional capacities of youth football (soccer) players 13–15 years. Eur. J. Appl. Physiol. 2004, 91, 555–562. [Google Scholar] [CrossRef]
- Yuan, J.T.; Furdock, R.J.; Benedick, A.; Liu, R.W. Estimating Skeletal Maturity by Segmented Linear Modeling of Key AP Knee Radiographic Parameters. J. Pediatr. Orthop. 2022, 42, 169–173. [Google Scholar] [CrossRef]
- Lazar, L.; Phillip, M. Pubertal disorders and bone maturation. Endocrinol. Metab. Clin. N. Am. 2012, 41, 805–825. [Google Scholar] [CrossRef]
- Seil, R.; Weitz, F.K.; Pape, D. Surgical-experimental principles of anterior cruciate ligament (ACL) reconstruction with open growth plates. J. Exp. Orthop. 2015, 2, 11. [Google Scholar] [CrossRef]
- Katsimbri, P. The biology of normal bone remodelling. Eur. J. Cancer Care 2017, 26, e12740. [Google Scholar] [CrossRef] [PubMed]
- Mallinos, A.; Jones, K. The Double-Edged Sword: Anterior Cruciate Ligament Reconstructions on Adolescent Patients-Growth Plate Surgical Challenges and Future Considerations. J. Clin. Med. 2024, 13, 7522. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Shi, S.; Chen, J.; Zhong, G.; Liu, Z. Leptin differentially regulates endochondral ossification in tibial and vertebral epiphyseal plates. Cell Biol. Int. 2018, 42, 169–179. [Google Scholar] [CrossRef]
- Kocher, M.S.; Smith, J.T.; Zoric, B.J.; Lee, B.; Micheli, L.J. Transphyseal anterior cruciate ligament reconstruction in skeletally immature pubescent adolescents. J. Bone Jt. Surg. Am. 2007, 89, 2632–2639. [Google Scholar] [CrossRef]
- Lawrence, J.T.; Argawal, N.; Ganley, T.J. Degeneration of the knee joint in skeletally immature patients with a diagnosis of an anterior cruciate ligament tear: Is there harm in delay of treatment? Am. J. Sports Med. 2011, 39, 2582–2587. [Google Scholar] [CrossRef]
- Frank, J.S.; Gambacorta, P.L. Anterior cruciate ligament injuries in the skeletally immature athlete: Diagnosis and management. J. Am. Acad. Orthop. Surg. 2013, 21, 78–87. [Google Scholar] [CrossRef]
- Falciglia, F.; Panni, A.S.; Giordano, M.; Aulisa, A.G.; Guzzanti, V. Anterior cruciate ligament reconstruction in adolescents (Tanner stages 2 and 3). Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 807–814. [Google Scholar] [CrossRef]
- Koman, J.D.; Sanders, J.O. Valgus deformity after reconstruction of the anterior cruciate ligament in a skeletally immature patient. A case report. J. Bone Jt. Surg. Am. 1999, 81, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Tanner, J.M. Assessment of Skeletal Maturity and Prediction of Adult Height (TW2 Method), 2nd ed.; Academic Press: London, UK; New York, NJ, USA, 1983; pp. vi, 106p. [Google Scholar]
- Marshall, W.A.; Tanner, J.M. Variations in pattern of pubertal changes in girls. Arch. Dis. Child. 1969, 44, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Slough, J.M.; Hennrikus, W.; Chang, Y. Reliability of Tanner staging performed by orthopedic sports medicine surgeons. Med. Sci. Sports Exerc. 2013, 45, 1229–1234. [Google Scholar] [CrossRef] [PubMed]
- Koopman-Verhoeff, M.E.; Gredvig-Ardito, C.; Barker, D.H.; Saletin, J.M.; Carskadon, M.A. Classifying Pubertal Development Using Child and Parent Report: Comparing the Pubertal Development Scales to Tanner Staging. J. Adolesc. Health 2020, 66, 597–602. [Google Scholar] [CrossRef]
- Espeland, M.A.; Gallagher, D.; Tell, G.S.; Davison, L.L.; Platt, O.S. Reliability of Tanner stage assessments in a multi-center study. Am. J. Hum. Biol. 1990, 2, 503–510. [Google Scholar] [CrossRef]
- Okuda, A.; Shigematsu, H.; Fujii, H.; Iwata, E.; Tanaka, M.; Morimoto, Y.; Masuda, K.; Yamamoto, Y.; Tanaka, Y. Reliability Comparison between “Distal Radius and Ulna” and “Simplified Tanner-Whitehouse III” Assessments for Patients with Adolescent Idiopathic Scoliosis. Asian Spine J. 2020, 14, 280–286. [Google Scholar] [CrossRef]
- Mirwald, R.L.; Baxter-Jones, A.D.; Bailey, D.A.; Beunen, G.P. An assessment of maturity from anthropometric measurements. Med. Sci. Sports Exerc. 2002, 34, 689–694. [Google Scholar] [CrossRef]
- Baxter-Jones, A.D. Growth and development of young athletes. Should competition levels be age related? Sports Med. 1995, 20, 59–64. [Google Scholar] [CrossRef]
- de Onis, M.; Onyango, A.W.; Borghi, E.; Siyam, A.; Nishida, C.; Siekmann, J. Development of a WHO growth reference for school-aged children and adolescents. Bull. World Health Organ. 2007, 85, 660–667. [Google Scholar] [CrossRef]
- Grimberg, A.; DiVall, S.A.; Polychronakos, C.; Allen, D.B.; Cohen, L.E.; Quintos, J.B.; Rossi, W.C.; Feudtner, C.; Murad, M.H.; Drug and Therapeutics Committee and Ethics Committee of the Pediatric Endocrine Society. Guidelines for Growth Hormone and Insulin-Like Growth Factor-I Treatment in Children and Adolescents: Growth Hormone Deficiency, Idiopathic Short Stature, and Primary Insulin-Like Growth Factor-I Deficiency. Horm. Res. Paediatr. 2016, 86, 361–397. [Google Scholar] [CrossRef] [PubMed]
- Rogol, A.D.; Roemmich, J.N.; Clark, P.A. Growth at puberty. J. Adolesc. Health 2002, 31, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Fury, M.S.; Paschos, N.K.; Fabricant, P.D.; Anderson, C.N.; Busch, M.T.; Chambers, H.G.; Christino, M.A.; Cordasco, F.A.; Edmonds, E.W.; Ganley, T.J.; et al. Assessment of Skeletal Maturity and Postoperative Growth Disturbance After Anterior Cruciate Ligament Reconstruction in Skeletally Immature Patients: A Systematic Review. Am. J. Sports Med. 2022, 50, 1430–1441. [Google Scholar] [CrossRef] [PubMed]
- Marshall, W.A.; Tanner, J.M. Variations in the pattern of pubertal changes in boys. Arch. Dis. Child. 1970, 45, 13–23. [Google Scholar] [CrossRef]
- Huang, S.; Su, Z.; Liu, S.; Chen, J.; Su, Q.; Su, H.; Shang, Y.; Jiao, Y. Combined assisted bone age assessment and adult height prediction methods in Chinese girls with early puberty: Analysis of three artificial intelligence systems. Pediatr. Radiol. 2023, 53, 1108–1116. [Google Scholar] [CrossRef]
- Park, K.W.; Kim, J.H.; Sung, S.; Lee, M.Y.; Song, H.R. Assessment of skeletal age in multiple epiphyseal dysplasia. J. Pediatr. Orthop. 2014, 34, 738–742. [Google Scholar] [CrossRef]
- Greulich, W.W.; Pyle, S.I. Radiographic Atlas of Skeletal Development of the Hand and Wrist, 2nd ed.; Stanford University Press: Stanford, CA, USA, 1959; pp. xvi, 256p. [Google Scholar]
- Sanders, J.O.; Khoury, J.G.; Kishan, S.; Browne, R.H.; Mooney, J.F.; Arnold, K.D.; McConnell, S.J.; Bauman, J.A.; Finegold, D.N. Predicting scoliosis progression from skeletal maturity: A simplified classification during adolescence. J. Bone Jt. Surg. Am. 2008, 90, 540–553. [Google Scholar] [CrossRef]
- Bilgili, Y.; Hizel, S.; Kara, S.A.; Sanli, C.; Erdal, H.H.; Altinok, D. Accuracy of skeletal age assessment in children from birth to 6 years of age with the ultrasonographic version of the Greulich-Pyle atlas. J. Ultrasound Med. 2003, 22, 683–690. [Google Scholar] [CrossRef]
- Gilli, G. The assessment of skeletal maturation. Horm. Res. 1996, 45 (Suppl. S2), 49–52. [Google Scholar] [CrossRef]
- Pierce, T.P.; Issa, K.; Festa, A.; Scillia, A.J.; McInerney, V.K. Pediatric Anterior Cruciate Ligament Reconstruction: A Systematic Review of Transphyseal Versus Physeal-Sparing Techniques. Am. J. Sports Med. 2017, 45, 488–494. [Google Scholar] [CrossRef]
- Faunø, P.Z.; Bøge Steinmeier Larsen, J.; Nielsen, M.M.; Hellfritzsch, M.; Nielsen, T.G.; Lind, M. The Risk of Growth Disturbance Is Low After Pediatric Anterior Cruciate Ligament Reconstruction with a Femoral Growth Plate Sparing Technique. Arthrosc. Sports Med. Rehabil. 2023, 5, 100793. [Google Scholar] [CrossRef]
- Kaeding, C.C.; Flanigan, D.; Donaldson, C. Surgical techniques and outcomes after anterior cruciate ligament reconstruction in preadolescent patients. Arthroscopy 2010, 26, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- van Rijn, R.R.; Grootfaam, D.S.; Lequin, M.H.; Boot, A.M.; van Beek, R.D.; Hop, W.C.; van Kuijk, C. Digital radiogrammetry of the hand in a pediatric and adolescent Dutch Caucasian population: Normative data and measurements in children with inflammatory bowel disease and juvenile chronic arthritis. Calcif. Tissue Int. 2004, 74, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Cheung, J.P.; Cheung, P.W.; Samartzis, D.; Cheung, K.M.; Luk, K.D. The use of the distal radius and ulna classification for the prediction of growth: Peak growth spurt and growth cessation. Bone Jt. J. 2016, 98-B, 1689–1696. [Google Scholar] [CrossRef] [PubMed]
- Sitoula, P.; Verma, K.; Holmes, L.; Gabos, P.G.; Sanders, J.O.; Yorgova, P.; Neiss, G.; Rogers, K.; Shah, S.A. Prediction of Curve Progression in Idiopathic Scoliosis: Validation of the Sanders Skeletal Maturity Staging System. Spine 2015, 40, 1006–1013. [Google Scholar] [CrossRef]
- Canavese, F.; Charles, Y.P.; Dimeglio, A. Skeletal age assessment from elbow radiographs. Review of the literature. Chir. Organi Mov. 2008, 92, 1–6. [Google Scholar] [CrossRef]
- Lequin, M.H.; Hop, W.C.; van Rijn, R.R.; Bukkems, M.C.; Verhaak, L.L.; Robben, S.G.; Van Kuijk, C. Comparison between quantitative calcaneal and tibial ultrasound in a Dutch Caucasian pediatric and adolescent population. J. Clin. Densitom. 2001, 4, 137–146. [Google Scholar] [CrossRef]
- Pedrotti, L.; Bertani, B.; Tuvo, G.; Barone, F.; Crivellari, I.; Lucanto, S.; Redento, M. Evaluation of bone density in infancy and adolescence. Review of medical literature and personal experience. Clin. Cases Miner. Bone Metab. 2010, 7, 102–108. [Google Scholar]
- Shea, K.G.; Styhl, A.C.; Jacobs, J.C., Jr.; Ganley, T.J.; Milewski, M.D.; Cannamela, P.C.; Anderson, A.F.; Polousky, J.D. The Relationship of the Femoral Physis and the Medial Patellofemoral Ligament in Children: A Cadaveric Study. Am. J. Sports Med. 2016, 44, 2833–2837. [Google Scholar] [CrossRef]
- Knapik, D.M.; Duong, M.M.; Liu, R.W. Evaluation of Skeletal Maturity Using the Distal Femoral Physeal Central Peak Is Not Significantly Affected by Radiographic Projection. J. Pediatr. Orthop. 2019, 39, e782–e786. [Google Scholar] [CrossRef]
- Grassi, A.; Rossi, C.; Altovino, E.; Ambrosini, L.; Adravanti, F.M.; Assaf, A.; Borque, K.; Zaffagnini, S. Differences between bone age and chronological age in patients with open physes and anterior cruciate ligament injury using a Magnetic Resonance Imaging bone age assessment tool of the knee. J. Exp. Orthop. 2025, 12, e70316. [Google Scholar] [CrossRef]
- Tang, H.C.; Dienst, M. Surgical Outcomes in the Treatment of Concomitant Mild Acetabular Dysplasia and Femoroacetabular Impingement: A Systematic Review. Arthroscopy 2020, 36, 1176–1184. [Google Scholar] [CrossRef]
- Milewski, M.D.; Beck, N.A.; Lawrence, J.T.; Ganley, T.J. Anterior cruciate ligament reconstruction in the young athlete: A treatment algorithm for the skeletally immature. Clin. Sports Med. 2011, 30, 801–810. [Google Scholar] [CrossRef]
- Perkins, C.A.; Willimon, S.C. Pediatric Anterior Cruciate Ligament Reconstruction. Orthop. Clin. N. Am. 2020, 51, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Zbojniewicz, A.M.; Meyers, A.B.; Wall, E.J. Post-operative imaging of anterior cruciate ligament reconstruction techniques across the spectrum of skeletal maturity. Skelet. Radiol. 2016, 45, 517–530. [Google Scholar] [CrossRef] [PubMed]
- Willson, R.G.; Kostyun, R.O.; Milewski, M.D.; Nissen, C.W. Anterior Cruciate Ligament Reconstruction in Skeletally Immature Patients: Early Results Using a Hybrid Physeal-Sparing Technique. Orthop. J. Sports Med. 2018, 6, 2325967118755330. [Google Scholar] [CrossRef] [PubMed]
- Seilern Und Aspang, J.; Serrano-Dennis, J.; Hammond, K.E.; Slone, H.S.; Garry, J.G.; Petit, C.; Myer, G.D.; Seguin, D.; Xerogeanes, J.W. Midterm Outcomes of Hybrid Transepiphyseal ACL Reconstruction with Soft Tissue Quadriceps Tendon Autograft in Skeletally Immature Athletes. Orthop. J. Sports Med. 2025, 13, 23259671251322758. [Google Scholar] [CrossRef]
- Pascual-Leone, N.; Gross, P.W.; Meza, B.C.; Fabricant, P.D. Techniques in Pediatric Anterior Cruciate Ligament Reconstruction. Arthroscopy 2022, 38, 2784–2786. [Google Scholar] [CrossRef]
- Chambers, C.C.; Monroe, E.J.; Allen, C.R.; Pandya, N.K. Partial Transphyseal Anterior Cruciate Ligament Reconstruction: Clinical, Functional, and Radiographic Outcomes. Am. J. Sports Med. 2019, 47, 1353–1360. [Google Scholar] [CrossRef]
- Calvo, R.; Figueroa, D.; Gili, F.; Vaisman, A.; Mocoçain, P.; Espinosa, M.; León, A.; Arellano, S. Transphyseal anterior cruciate ligament reconstruction in patients with open physes: 10-year follow-up study. Am. J. Sports Med. 2015, 43, 289–294. [Google Scholar] [CrossRef]
- Anderson, A.F. Transepiphyseal replacement of the anterior cruciate ligament in skeletally immature patients. A preliminary report. J. Bone Jt. Surg. Am. 2003, 85, 1255–1263. [Google Scholar] [CrossRef]
- Collins, M.J.; Arns, T.A.; Leroux, T.; Black, A.; Mascarenhas, R.; Bach, B.R.; Forsythe, B. Growth Abnormalities Following Anterior Cruciate Ligament Reconstruction in the Skeletally Immature Patient: A Systematic Review. Arthroscopy 2016, 32, 1714–1723. [Google Scholar] [CrossRef]
- Anderson, C.N.; Anderson, A.F. Management of the Anterior Cruciate Ligament-Injured Knee in the Skeletally Immature Athlete. Clin. Sports Med. 2017, 36, 35–52. [Google Scholar] [CrossRef] [PubMed]
- Shaw, L.; Finch, C.F. Trends in Pediatric and Adolescent Anterior Cruciate Ligament Injuries in Victoria, Australia 2005–2015. Int. J. Environ. Res. Public Health 2017, 14, 599. [Google Scholar] [CrossRef] [PubMed]
- Willimon, S.C.; Jones, C.R.; Herzog, M.M.; May, K.H.; Leake, M.J.; Busch, M.T. Micheli Anterior Cruciate Ligament Reconstruction in Skeletally Immature Youths: A Retrospective Case Series with a Mean 3-Year Follow-Up. Am. J. Sports Med. 2015, 43, 2974–2981. [Google Scholar] [CrossRef]
- Moksnes, H.; Engebretsen, L.; Risberg, M.A. Management of anterior cruciate ligament injuries in skeletally immature individuals. J. Orthop. Sports Phys. Ther. 2012, 42, 172–183. [Google Scholar] [CrossRef]
- Chambers, C.C.; Zhang, A.L. Outcomes for Surgical Treatment of Femoroacetabular Impingement in Adults. Curr. Rev. Musculoskelet. Med. 2019, 12, 271–280. [Google Scholar] [CrossRef]
- Seil, R.; Theisen, D.; Moksnes, H.; Engebretsen, L. ESSKA partners and the IOC join forces to improve children ACL treatment. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 983–984. [Google Scholar] [CrossRef]
- Ardern, C.L.; Ekås, G.; Grindem, H.; Moksnes, H.; Anderson, A.; Chotel, F.; Cohen, M.; Forssblad, M.; Ganley, T.J.; Feller, J.A.; et al. 2018 International Olympic Committee consensus statement on prevention, diagnosis and management of paediatric anterior cruciate ligament (ACL) injuries. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 989–1010. [Google Scholar] [CrossRef]
- Sugimoto, D.; Del Bel, M.; Butler, L. Barriers and Facilitators of Research in Pediatric Sports Medicine Practitioners: A Survey of the PRiSM Society. Int. J. Sports Phys. Ther. 2022, 17, 1417–1429. [Google Scholar] [CrossRef]
- Breen, A.B.; Steen, H.; Pripp, A.; Gunderson, R.; Sandberg Mentzoni, H.K.; Merckoll, E.; Zaidi, W.; Lambert, M.; Hvid, I.; Horn, J. A comparison of 3 different methods for assessment of skeletal age when treating leg-length discrepancies: An inter- and intra-observer study. Acta Orthop. 2022, 93, 222–228. [Google Scholar] [CrossRef]
- Brix, N.; Ernst, A.; Lauridsen, L.L.B.; Parner, E.; Støvring, H.; Olsen, J.; Henriksen, T.B.; Ramlau-Hansen, C.H. Timing of puberty in boys and girls: A population-based study. Paediatr. Perinat. Epidemiol. 2019, 33, 70–78. [Google Scholar] [CrossRef]
- Moksnes, H.; Grindem, H.; Risberg, M.A. Managements of ACL injuries in skeletally immature athletes. Br. J. Sports Med. 2022, 56, 63–72. [Google Scholar]
- Nguyen, J.C.; Guariento, A.; Nicholson, A.; Nguyen, M.K.; Gendler, L.; Ho-Fung, V.; Zhu, X.; Talwar, D.; Darge, K.; Flynn, J.M.; et al. Hand Bone Age Radiography: Comparison Between Slot-scanning and Conventional Techniques. J. Pediatr. Orthop. 2021, 41, e167–e173. [Google Scholar] [CrossRef] [PubMed]
- Dekker, T.J.; Rush, J.K.; Schmitz, M.R. What’s New in Pediatric and Adolescent Anterior Cruciate Ligament Injuries? J. Pediatr. Orthop. 2018, 38, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Kocher, M.S.; Heyworth, B.E.; Fabricant, P.D.; Tepolt, F.A.; Micheli, L.J. Outcomes of Physeal-Sparing ACL Reconstruction with Iliotibial Band Autograft in Skeletally Immature Prepubescent Children. J. Bone Jt. Surg. Am. 2018, 100, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Webster, K.E.; Feller, J.A.; Leigh, W.B.; Richmond, A.K. Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction. Am. J. Sports Med. 2014, 42, 641–647. [Google Scholar] [CrossRef]
- Shaw, L.; Finch, C.F.; Salmon, L.J. Early surgical reconstruction versus rehabilitation for ACL injuries in young athletes. Sports Med. 2021, 51, 1099–1112. [Google Scholar]
- Mouton, C.; Moksnes, H.; Janssen, R.; Fink, C.; Zaffagnini, S.; Monllau, J.C.; Ekås, G.; Engebretsen, L.; Seil, R. Preliminary experience of an international orthopaedic registry: The ESSKA Paediatric Anterior Cruciate Ligament Initiative (PAMI) registry. J. Exp. Orthop. 2021, 8, 45. [Google Scholar] [CrossRef]
- Moksnes, H.; Engebretsen, L.; Seil, R. The ESSKA paediatric anterior cruciate ligament monitoring initiative. Knee Surg. Sports Traumatol. Arthrosc. 2016, 24, 680–687. [Google Scholar] [CrossRef]
Method | Modality | Age Range | Optimal Clinical Application | Clinical Scenarios Requiring Combined Modalities | Advantages | Limitations |
---|---|---|---|---|---|---|
Chronological Age | Clinical (birth date) | All pediatric ages | Initial screening; identification of maturity extremes (<10 years or >16/14 years) | Sole reliance for surgical timing or borderline cases | Universally available; no associated cost; readily accessible | Poor correlation with skeletal maturity; high inter-individual variability |
Tanner Staging | Clinical examination | Puberty (approx. 8–16 years) | Clear Tanner stage 1 or 5; assessment by trained pediatric specialists | Intermediate stages (2–4); non-specialist examiners; cultural variability | Non-invasive; directly linked to pubertal development | Subjective assessment; moderate accuracy; potential for misclassification |
Peak Height Velocity (PHV) | Anthropometric measurement and growth charts | Puberty (approx. 9–16 years) | Longitudinal growth monitoring; elective surgical planning | Acute injuries; athletic populations; requirement for site-specific maturity assessment | Reflects biologically relevant growth timing | Retrospective or model-based estimation; lacks anatomical specificity |
Growth Charts and Mid-Parental Height | Clinical records and parental data | All pediatric ages | Monitoring abnormal growth patterns; supplementary context for maturity assessment | Direct use for surgical decision-making; atypical growth patterns requiring verification | Provides longitudinal growth context; easily obtainable | Indirect skeletal maturity indicator; influenced by genetic and environmental factors |
Greulich–Pyle Atlas | Radiograph (left hand-wrist) | Childhood to adolescence (approx. 2–18 years) | Rapid, low-resource maturity estimation | Need for precise growth phase determination for surgical timing | Widely accessible; rapid application; minimal training required | Subjective interpretation; outdated reference population; limited precision |
Tanner–Whitehouse (TW3–RUS) | Radiograph (left hand-wrist) | Childhood to adolescence (approx. 2–18 years) | Detailed growth phase prediction, especially early to mid-puberty cases | Need for knee-specific physeal status confirmation | Quantitative and reproducible scoring; adaptable to populations | Time-intensive; requires specialized training; limited to hand–wrist assessment |
Sanders Staging | Radiograph (left hand-wrist) | Puberty (approx. 8–16 years) | Efficient peak height velocity estimation in high-volume clinical settings | Necessity for anatomical site-specific validation | Streamlined evaluation; strong correlation with growth phases | Indirect skeletal maturity assessment; potential staging overlap |
MRI-Based Knee Assessment | MRI (distal femur and proximal tibia) | Childhood to adolescence (approx. 10–16 years) | Assessment of local growth plate status in borderline or complex cases | Discordance between clinical and hand–wrist findings | Direct visualization of relevant physes; no radiation exposure | High cost; limited availability; requires expert interpretation |
Knee Radiographs | Radiograph (knee) | Childhood to adolescence (approx. 10–16 years) | Site-specific skeletal maturity assessment when MRI is unavailable | Requirement for corroboration of systemic growth trends | Cost-effective; accessible imaging modality | Exposure to ionizing radiation; limited soft-tissue detail |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Longo, U.G.; Villa Corta, M.; Valente, F.; Ruzzini, L.; D’hooghe, P.; Samuelsson, K.; Cordasco, F.A.; Nicholls, A.S. Skeletal Maturity Assessment in Pediatric ACL-Reconstruction. Children 2025, 12, 1186. https://doi.org/10.3390/children12091186
Longo UG, Villa Corta M, Valente F, Ruzzini L, D’hooghe P, Samuelsson K, Cordasco FA, Nicholls AS. Skeletal Maturity Assessment in Pediatric ACL-Reconstruction. Children. 2025; 12(9):1186. https://doi.org/10.3390/children12091186
Chicago/Turabian StyleLongo, Umile Giuseppe, Mariajose Villa Corta, Federica Valente, Laura Ruzzini, Pieter D’hooghe, Kristian Samuelsson, Frank A. Cordasco, and Alexander S. Nicholls. 2025. "Skeletal Maturity Assessment in Pediatric ACL-Reconstruction" Children 12, no. 9: 1186. https://doi.org/10.3390/children12091186
APA StyleLongo, U. G., Villa Corta, M., Valente, F., Ruzzini, L., D’hooghe, P., Samuelsson, K., Cordasco, F. A., & Nicholls, A. S. (2025). Skeletal Maturity Assessment in Pediatric ACL-Reconstruction. Children, 12(9), 1186. https://doi.org/10.3390/children12091186