Fertility Preservation in Female Children and Adolescent Cancer Patients
Abstract
:1. Introduction
2. The Impact of Cancer Treatment on Ovarian Function and Its Underlying Mechanisms
2.1. Surgery
2.2. Chemotherapy
2.3. Radiotherapy
2.4. Immunotherapy
2.5. Recovery of Ovarian Function After Cancer Treatment
3. Fertility Preservation in Cancer Treatments
3.1. Ovarian Protection Related to Surgery
3.2. Current and Emerging Strategies for Ovarian Protection in Chemotherapy
3.3. Ovarian Protection During Radiation Therapy
3.4. Fertility Preservation in Cancer Treatment
3.5. Emerging Strategies for Fertility Preservation
4. Additional Considerations
5. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Murphy, S.L.; Xu, J.; Kochanek, K.D. Deaths: Final data for 2010. Natl. Vital. Stat. Rep. 2013, 61, 1–117. [Google Scholar] [PubMed]
- Ward, E.; DeSantis, C.; Robbins, A.; Kohler, B.; Jemal, A. Childhood and adolescent cancer statistics, 2014. CA Cancer J. Clin. 2014, 64, 83–103. [Google Scholar] [CrossRef] [PubMed]
- Chemaitilly, W.; Mertens, A.C.; Mitby, P.; Whitton, J.; Stovall, M.; Yasui, Y.; Robison, L.; Sklar, C.A. Acute ovarian failure in the childhood cancer survivor study. J. Clin. Endocrinol. Metab. 2006, 91, 1723–1728. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Sun, Q.; Duan, Y.; Cheng, Q.; Luo, X.; Zhou, Y.; Liu, X.; Xiao, P.; Cheng, A.S.K. Reproductive concerns among adolescent and young adult cancer survivors: A scoping review of current research situations. Cancer Med. 2022, 11, 3508–3517. [Google Scholar] [CrossRef]
- Wallace, W.H.; Kelsey, T.W. Human ovarian reserve from conception to the menopause. PLoS ONE 2010, 5, e8772. [Google Scholar] [CrossRef]
- Spears, N.; Lopes, F.; Stefansdottir, A.; Rossi, V.; De Felici, M.; Anderson, R.A.; Klinger, F.G. Ovarian damage from chemotherapy and current approaches to its protection. Hum. Reprod. Update 2019, 25, 673–693. [Google Scholar] [CrossRef]
- Stern, E.; Ben-Ami, M.; Gruber, N.; Toren, A.; Caspi, S.; Abebe-Campino, G.; Lurye, M.; Yalon, M.; Modan-Moses, D. Hypothalamic-pituitary-gonadal function, pubertal development, and fertility outcomes in male and female medulloblastoma survivors: A single-center experience. Neuro Oncol. 2023, 25, 1345–1354. [Google Scholar] [CrossRef]
- Armstrong, G.T.; Whitton, J.A.; Gajjar, A.; Kun, L.E.; Chow, E.J.; Stovall, M.; Leisenring, W.; Robison, L.L.; Sklar, C.A. Abnormal timing of menarche in survivors of central nervous system tumors: A report from the Childhood Cancer Survivor Study. Cancer 2009, 115, 2562–2570. [Google Scholar] [CrossRef]
- Chemaitilly, W.; Li, Z.; Krasin, M.J.; Brooke, R.J.; Wilson, C.L.; Green, D.M.; Klosky, J.L.; Barnes, N.; Clark, K.L.; Farr, J.B.; et al. Premature Ovarian Insufficiency in Childhood Cancer Survivors: A Report from the St. Jude Lifetime Cohort. J. Clin. Endocrinol. Metab. 2017, 102, 2242–2250. [Google Scholar] [CrossRef]
- Barton, S.E.; Najita, J.S.; Ginsburg, E.S.; Leisenring, W.M.; Stovall, M.; Weathers, R.E.; Sklar, C.A.; Robison, L.L.; Diller, L. Infertility, infertility treatment, and achievement of pregnancy in female survivors of childhood cancer: A report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 2013, 14, 873–881. [Google Scholar] [CrossRef]
- Chow, E.J.; Stratton, K.L.; Leisenring, W.M.; Oeffinger, K.C.; Sklar, C.A.; Donaldson, S.S.; Ginsberg, J.P.; Kenney, L.B.; Levine, J.M.; Robison, L.L.; et al. Pregnancy after chemotherapy in male and female survivors of childhood cancer treated between 1970 and 1999: A report from the Childhood Cancer Survivor Study cohort. Lancet Oncol. 2016, 17, 567–576. [Google Scholar] [CrossRef]
- Thomas-Teinturier, C.; El Fayech, C.; Oberlin, O.; Pacquement, H.; Haddy, N.; Labbé, M.; Veres, C.; Guibout, C.; Diallo, I.; De Vathaire, F. Age at menopause and its influencing factors in a cohort of survivors of childhood cancer: Earlier but rarely premature. Hum. Reprod. 2013, 28, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Vannuccini, S.; Clemenza, S.; Rossi, M.; Petraglia, F. Hormonal treatments for endometriosis: The endocrine background. Rev. Endocr. Metab. Disord. 2022, 23, 333–355. [Google Scholar] [CrossRef]
- Zha, Y.; Li, Y.; Lyu, W. Research progress on the prevention and treatment of chemotherapy-induced ovarian damage. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024, 53, 288–296. [Google Scholar] [CrossRef]
- Kim, S.; Kim, S.W.; Han, S.J.; Lee, S.; Park, H.T.; Song, J.Y.; Kim, T. Molecular Mechanism and Prevention Strategy of Chemotherapy- and Radiotherapy-Induced Ovarian Damage. Int. J. Mol. Sci. 2021, 22, 7484. [Google Scholar] [CrossRef]
- Kalich-Philosoph, L.; Roness, H.; Carmely, A.; Fishel-Bartal, M.; Ligumsky, H.; Paglin, S.; Wolf, I.; Kanety, H.; Sredni, B.; Meirow, D. Cyclophosphamide triggers follicle activation and “burnout”; AS101 prevents follicle loss and preserves fertility. Sci. Transl. Med. 2013, 5, 185ra62. [Google Scholar] [CrossRef]
- Wallace, W.H.B.; Anderson, R.A.; Irvine, D.S. Fertility preservation for young patients with cancer: Who is at risk and what can be offered? Lancet Oncol. 2005, 6, 209–218. [Google Scholar] [CrossRef] [PubMed]
- Green, D.M.; Nolan, V.G.; Goodman, P.J.; Whitton, J.A.; Srivastava, D.; Leisenring, W.M.; Neglia, J.P.; Sklar, C.A.; Kaste, S.C.; Hudson, M.M.; et al. The cyclophosphamide equivalent dose as an approach for quantifying alkylating agent exposure: A report from the Childhood Cancer Survivor Study. Pediatr. Blood Cancer 2014, 61, 53–67. [Google Scholar] [CrossRef]
- Drechsel, K.; Broer, S.L.; Stoutjesdijk, F.S.; Twisk, J.W.R.; van den Berg, M.H.; Lambalk, C.B.; van Leeuwen, F.E.; Overbeek, A.; van den Heuvel-Eibrink, M.M.; van Dorp, W.; et al. Clinical and self-reported markers of reproductive function in female survivors of childhood Hodgkin lymphoma. J. Cancer Res. Clin. Oncol. 2023, 149, 13677–13695. [Google Scholar] [CrossRef] [PubMed]
- Adriaens, I.; Smitz, J.; Jacquet, P. The current knowledge on radiosensitivity of ovarian follicle development stages. Hum. Reprod. Update 2009, 15, 359–377. [Google Scholar] [CrossRef]
- Bereket, A. Endocrinologic Consequences of Pediatric Posterior Fossa Tumours. J. Clin. Res. Pediatr. Endocrinol. 2015, 7, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Wallace, W.H.; Thomson, A.B.; Kelsey, T.W. The radiosensitivity of the human oocyte. Hum. Reprod. 2003, 18, 117–121. [Google Scholar] [CrossRef] [PubMed]
- Bath, L.E.; Tydeman, G.; Critchley, H.O.; Anderson, R.A.; Baird, D.T.; Wallace, W.H. Spontaneous conception in a young woman who had ovarian cortical tissue cryopreserved before chemotherapy and radiotherapy for a Ewing’s sarcoma of the pelvis: Case report. Hum. Reprod. 2004, 19, 2569–2572. [Google Scholar] [CrossRef]
- van Dorp, W.; Mulder, R.L.; Kremer, L.C.; Hudson, M.M.; van den Heuvel-Eibrink, M.M.; van den Berg, M.H.; Levine, J.M.; van Dulmen-den Broeder, E.; di Iorgi, N.; Albanese, A.; et al. Recommendations for Premature Ovarian Insufficiency Surveillance for Female Survivors of Childhood, Adolescent, and Young Adult Cancer: A Report from the International Late Effects of Childhood Cancer Guideline Harmonization Group in Collaboration With the PanCareSurFup Consortium. J. Clin. Oncol. 2016, 34, 3440–3450. [Google Scholar] [PubMed]
- Bath, L.E.; Critchley, H.O.; Chambers, S.E.; Anderson, R.A.; Kelnar, C.J.; Wallace, W.H. Ovarian and uterine characteristics after total body irradiation in childhood and adolescence: Response to sex steroid replacement. Br. J. Obstet. Gynaecol. 1999, 106, 1265–1272. [Google Scholar] [CrossRef]
- Chiarelli, A.M.; Marrett, L.D.; Darlington, G.A. Pregnancy outcomes in females after treatment for childhood cancer. Epidemiology 2000, 11, 161–166. [Google Scholar] [CrossRef]
- Caserta, S.; Cancemi, G.; Murdaca, G.; Stagno, F.; Di Gioacchino, M.; Gangemi, S.; Allegra, A. The Effects of Cancer Immunotherapy on Fertility: Focus on Hematological Malignancies. Biomedicines 2024, 12, 2106. [Google Scholar] [CrossRef]
- Tanda, E.T.; Croce, E.; Spagnolo, F.; Zullo, L.; Spinaci, S.; Genova, C.; Rossi, G. Immunotherapy in Adolescents and Young Adults: What Remains in Cancer Survivors. Front. Oncol. 2021, 11, 736123. [Google Scholar] [CrossRef]
- van der Kooi, A.; van den Heuvel-Eibrink, M.M.; van den Berg, S.; van Dorp, W.; Pluijm, S.M.F.; Laven, J.S.E. Changes in Anti-Müllerian Hormone and Inhibin B in Children Treated for Cancer. J. Adolesc. Young Adult Oncol. 2019, 8, 281–290. [Google Scholar] [CrossRef]
- Yu, B.; Fritz, R.; Vega, M.; Merino, M. Dissociation of Pubertal Development Abnormality and Gonadal Dysfunction in Childhood Cancer Survivors. J. Adolesc. Young Adult Oncol. 2020, 9, 490–495. [Google Scholar] [CrossRef]
- van den Berg, M.H.; Overbeek, A.; Lambalk, C.B.; Kaspers, G.J.L.; Bresters, D.; van den Heuvel-Eibrink, M.M.; Kremer, L.C.; Loonen, J.J.; van der Pal, H.J.; Ronckers, C.M.; et al. Long-term effects of childhood cancer treatment on hormonal and ultrasound markers of ovarian reserve. Hum. Reprod. 2018, 33, 1474–1488. [Google Scholar] [CrossRef] [PubMed]
- Ratanasrithong, P.; Benjapibal, M. Pregnancy Outcomes after Conservative Surgery for Early-Stage Ovarian Neoplasms. Asian Pac. J. Cancer Prev. 2017, 18, 2083–2087. [Google Scholar] [PubMed]
- Yoo, S.C.; Kim, W.Y.; Yoon, J.H.; Chang, S.J.; Chang, K.H.; Ryu, H.S. Young girls with malignant ovarian germ cell tumors can undergo normal menarche and menstruation after fertility-preserving surgery and adjuvant chemotherapy. Acta Obstet. Gynecol. Scand. 2010, 89, 126–130. [Google Scholar] [CrossRef]
- Stambough, K.; Childress, K.J. Ovarian conservation in management of pediatric gynecology malignancies. Curr. Opin. Obstet. Gynecol. 2018, 30, 316–325. [Google Scholar] [CrossRef] [PubMed]
- Billmire, D.F.; Cullen, J.W.; Rescorla, F.J.; Davis, M.; Schlatter, M.G.; Olson, T.A.; Malogolowkin, M.H.; Pashankar, F.; Villaluna, D.; Krailo, M.; et al. Surveillance after initial surgery for pediatric and adolescent girls with stage I ovarian germ cell tumors: Report from the Children’s Oncology Group. J. Clin. Oncol. 2014, 32, 465–470. [Google Scholar] [CrossRef]
- Hayun, M.; Naor, Y.; Weil, M.; Albeck, M.; Peled, A.; Don, J.; Haran-Ghera, N.; Sredni, B. The immunomodulator AS101 induces growth arrest and apoptosis in multiple myeloma: Association with the Akt/survivin pathway. Biochem. Pharmacol. 2006, 72, 1423–1431. [Google Scholar] [CrossRef]
- Sonigo, C.; Beau, I.; Grynberg, M.; Binart, N. AMH prevents primordial ovarian follicle loss and fertility alteration in cyclophosphamide-treated mice. FASEB J. 2019, 33, 1278–1287. [Google Scholar] [CrossRef]
- Goldman, K.N.; Chenette, D.; Arju, R.; Duncan, F.E.; Keefe, D.L.; Grifo, J.A.; Schneider, R.J. mTORC1/2 inhibition preserves ovarian function and fertility during genotoxic chemotherapy. Proc. Natl. Acad. Sci. USA 2017, 114, 3186–3191. [Google Scholar] [CrossRef]
- Cetin, C.; Okten, S.B.; Tok, O.E.; Ozcan, P.; Karasu, A.F.G.; Tanoglu, F.B.; Taha, H.S.; Ates, S. Treatment of ovarian damage induced by chemotherapeutic drugs in female rats with G-CSF and platelet-rich plasma(PRP): An immunohistochemical study correlation with novel marker INSL-3. Gynecol. Endocrinol. 2024, 40, 2301551. [Google Scholar] [CrossRef]
- Kelsey, T.W.; Hua, C.H.; Wyatt, A.; Indelicato, D.; Wallace, W.H. A predictive model of the effect of therapeutic radiation on the human ovary. PLoS ONE 2022, 17, e0277052. [Google Scholar] [CrossRef]
- Irtan, S.; Orbach, D.; Helfre, S.; Sarnacki, S. Ovarian transposition in prepubescent and adolescent girls with cancer. Lancet Oncol. 2013, 14, e601–e608. [Google Scholar] [CrossRef]
- Rosenbrock, J.; Vásquez-Torres, A.; Mueller, H.; Behringer, K.; Zerth, M.; Celik, E.; Fan, J.; Trommer, M.; Linde, P.; Fuchs, M.; et al. Involved Site Radiotherapy Extends Time to Premature Menopause in Infra-Diaphragmatic Female Hodgkin Lymphoma Patients—An Analysis of GHSG HD14- and HD17-Patients. Front. Oncol. 2021, 11, 658358. [Google Scholar] [CrossRef] [PubMed]
- ESHRE Guideline Group on Female Fertility Preservation; Anderson, R.A.; Braat, D.; D’Angelo, A.; de Sousa Lopes, S.M.C.; Demeestere, I.; Dwek, S.; Frith, L.; Lambertini, M.; Maslin, C.; et al. ESHRE guideline: Female fertility preservation. Hum. Reprod. Open 2020, 2020, hoaa052. [Google Scholar]
- Mulder, R.L.; Font-Gonzalez, A.; Hudson, M.M.; van Santen, H.M.; Loeffen, E.A.H.; Burns, K.C.; Quinn, G.P.; van Dulmen-den Broeder, E.; Byrne, J.; Haupt, R.; et al. Fertility preservation for female patients with childhood, adolescent, and young adult cancer: Recommendations from the PanCareLIFE Consortium and the International Late Effects of Childhood Cancer Guideline Harmonization Group. Lancet Oncol. 2021, 22, e45–e46. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N. Clinical Practice Guidelines for Fertility Preservation in Pediatric, Adolescent, and Young Adults with Cancer. Int. J. Clin. Oncol. 2019, 24, 20–27. [Google Scholar] [CrossRef]
- Lv, X.J.; Cheng, X.L.; Tu, Y.Q.; Yan, D.D.; Tang, Q. Association between the location of transposed ovary and ovarian dose in patients with cervical cancer treated with postoperative pelvic radiotherapy. Radiat. Oncol. 2019, 14, 230. [Google Scholar] [CrossRef] [PubMed]
- Buonomo, B.; Multinu, F.; Casarin, J.; Betella, I.; Zanagnolo, V.; Aletti, G.; Peccatori, F. Ovarian transposition in patients with cervical cancer prior to pelvic radiotherapy: A systematic review. Int. J. Gynecol. Cancer 2021, 31, 360–370. [Google Scholar] [CrossRef]
- Gay, C.; Raphael, Y.R.; Steers, J.; Lu, D.J.; Lewis, J.H.; DeMarco, J.; Fraass, B.; Rimel, B.J.; Zakariaee, R.; Kamrava, M.; et al. Ovarian Transposition Before Pelvic Radiation Therapy: Spatial Distribution and Dose Volume Analysis. Adv. Radiat. Oncol. 2022, 7, 100804. [Google Scholar] [CrossRef]
- Jung, W.; Kim, Y.H.; Kim, K.S. Ovarian Function Preservation in Patients with Cervical Cancer Undergoing Hysterectomy and Ovarian Transposition Before Pelvic Radiotherapy. Technol. Cancer Res. Treat. 2021, 20, 15330338211042140. [Google Scholar] [CrossRef]
- Hwang, J.H.; Yoo, H.J.; Park, S.H.; Lim, M.C.; Seo, S.S.; Kang, S.; Kim, J.Y.; Park, S.Y. Association between the location of transposed ovary and ovarian function in patients with uterine cervical cancer treated with (postoperative or primary) pelvic radiotherapy. Fertil. Steril. 2012, 97, e1–e2. [Google Scholar] [CrossRef]
- Soejima, T. Radiation therapy of cancer in the adolescent and young adult (AYA) generation. Jpn. J. Radiol. 2023, 41, 1331–1334. [Google Scholar] [CrossRef]
- Said, R.S.; Badr, A.M.; Nada, A.S.; El-Demerdash, E. Sodium selenite treatment restores long-lasting ovarian damage induced by irradiation in rats: Impact on oxidative stress and apoptosis. Reprod. Toxicol. 2014, 43, 85–93. [Google Scholar] [CrossRef]
- Demyashkin, G.; Vadyukhin, M.; Murtazalieva, Z.; Pugacheva, E.; Schekin, V.; Bimurzaeva, M.; Pesegova, S.; Shegay, P.; Kaprin, A.l. Novel Molecular Mechanisms Underlying the Ameliorative Effect of Platelet-Rich Plasma against Electron Radiation-Induced Premature Ovarian Failure. Int. J. Mol. Sci. 2024, 25, 10115. [Google Scholar] [CrossRef]
- Tan, R.; He, Y.; Zhang, S.; Pu, D.; Wu, J. Effect of transcutaneous electrical acupoint stimulation on protecting against radiotherapy- induced ovarian damage in mice. J. Ovarian Res. 2019, 12, 65. [Google Scholar] [CrossRef] [PubMed]
- Bhatia, S.; Pappo, A.S.; Acquazzino, M.; Allen-Rhoades, W.A.; Barnett, M.; Borinstein, S.C.; Casey, R.; Choo, S.; Chugh, R.; Dinner, S.; et al. Adolescent and Young Adult (AYA) Oncology, Version 2.2024, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2023, 21, 851–880. [Google Scholar] [CrossRef]
- Lambertini, M.; Peccatori, F.A.; Demeestere, I.; Amant, F.; Wyns, C.; Stukenborg, J.B.; Paluch-Shimon, S.; Halaska, M.J.; Uzan, C.; Meissner, J.; et al. Fertility preservation and post-treatment pregnancies in post-pubertal cancer patients: ESMO Clinical Practice Guidelines(†). Ann. Oncol. 2020, 31, 1664–1678. [Google Scholar] [CrossRef] [PubMed]
- Henry, L.; Berek, J.S.; Diaz, I.; Feldberg, D.; Mocanu, E.; Niederberger, C.C.; Ohlander, S.; Purandare, N.; Rosenwaks, Z.; Tulandi, T.; et al. FIGO statement: Fertility preservation. Int. J. Gynaecol. Obstet. 2023, 163, 790–794. [Google Scholar] [CrossRef] [PubMed]
- Su, H.I.; Lacchetti, C.; Letourneau, J.; Partridge, A.H.; Qamar, R.; Quinn, G.P.; Reinecke, J.; Smith, J.F.; Tesch, M.; Wallace, W.H.; et al. Fertility Preservation in People with Cancer: ASCO Guideline Update. J. Clin. Oncol. 2025, 43, 1488–1515. [Google Scholar] [CrossRef]
- Vogt, C.; Malhotra, N.R. Fertility Preservation in Children and Adolescents: Where We Are and Where We Are Going. Curr. Urol. Rep. 2024, 25, 133–140. [Google Scholar] [CrossRef]
- Harada, M.; Osuga, Y. Fertility preservation for female cancer patients. Int. J. Clin. Oncol. 2019, 24, 28–33. [Google Scholar] [CrossRef]
- Practice Committee of the American Society for Reproductive Medicine. Fertility preservation in patients undergoing gonadotoxic therapy or gonadectomy: A committee opinion. Fertil. Steril. 2019, 112, 1022–1033. [Google Scholar] [CrossRef]
- Gellert, S.E.; Pors, S.E.; Kristensen, S.G.; Bay-Bjørn, A.M.; Ernst, E.; Yding Andersen, C. Transplantation of frozen-thawed ovarian tissue: An update on worldwide activity published in peer-reviewed papers and on the Danish cohort. J. Assist. Reprod. Genet. 2018, 35, 561–570. [Google Scholar] [CrossRef]
- Poirot, C.; Abirached, F.; Prades, M.; Coussieu, C.; Bernaudin, F.; Piver, P. Induction of puberty by autograft of cryopreserved ovarian tissue. Lancet 2012, 379, 588. [Google Scholar] [CrossRef]
- Shapira, M.; Dolmans, M.M.; Silber, S.; Meirow, D. Evaluation of ovarian tissue transplantation: Results from three clinical centers. Fertil. Steril. 2020, 114, 388–397. [Google Scholar] [CrossRef]
- Dolmans, M.M.; von Wolff, M.; Poirot, C.; Diaz-Garcia, C.; Cacciottola, L.; Boissel, N.; Liebenthron, J.; Pellicer, A.; Donnez, J.; Andersen, C.Y.; et al. Transplantation of cryopreserved ovarian tissue in a series of 285 women: A review of five leading European centers. Fertil. Steril. 2021, 115, 1102–1115. [Google Scholar] [CrossRef] [PubMed]
- Dolmans, M.M.; Falcone, T.; Patrizio, P. Importance of patient selection to analyze in vitro fertilization outcome with transplanted cryopreserved ovarian tissue. Fertil. Steril. 2020, 114, 279–280. [Google Scholar] [CrossRef] [PubMed]
- Dolmans, M.M.; Donnez, J. Fertility preservation in women for medical and social reasons: Oocytes vs ovarian tissue. Best Pract. Res. Clin. Obstet. Gynaecol. 2021, 70, 63–80. [Google Scholar] [CrossRef] [PubMed]
- Demeestere, I.; Simon, P.; Dedeken, L.; Moffa, F.; Tsépélidis, S.; Brachet, C.; Delbaere, A.; Devreker, F.; Ferster, A. Live birth after autograft of ovarian tissue cryopreserved during childhood. Hum. Reprod. 2015, 30, 2107–2109. [Google Scholar] [CrossRef]
- Gillipelli, S.R.; Pio, L.; Losty, P.D.; Abdelhafeez, A.H. Female Fertility Cryopreservation Outcomes in Childhood Cancer: A Systematic Review. J. Pediatr. Surg. 2024, 59, 1564–1568. [Google Scholar] [CrossRef]
- Di Pietro, M.L.; Virdis, A.; Gonzalez-Melado, F.J.; De Luca, D. Cryopreservation of ovarian tissue in pediatrics: What is the child’s best interest. J. Matern. Fetal Neonatal Med. 2012, 25, 2145–2148. [Google Scholar] [CrossRef]
- Park, S.J.; Han, J.Y.; Kim, S.W.; Kim, H.; Ku, S.Y. Current Position of Oncofertility in Adolescent Female Cancer Patients: A Comparative Review on Society Guidelines. In Vivo 2024, 38, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Lotz, L.; Barbosa, P.R.; Knorr, C.; Hofbeck, L.; Hoffmann, I.; Beckmann, M.W.; Antoniadis, S.; Dittrich, R. The safety and satisfaction of ovarian tissue cryopreservation in prepubertal and adolescent girls. Reprod. Biomed. Online 2020, 40, 547–554. [Google Scholar] [CrossRef]
- Kasei, R.; Morimune, A.; Kimura, F.; Kitazawa, J.; Hanada, T.; Murakami, T. Ovarian cryopreservation for children aged 3 years or younger: A report of three cases. J. Obstet. Gynaecol. Res. 2020, 46, 2164–2168. [Google Scholar] [CrossRef]
- Dolmans, M.M.; Masciangelo, R. Risk of transplanting malignant cells in cryopreserved ovarian tissue. Minerva Ginecol. 2018, 70, 436–443. [Google Scholar] [CrossRef] [PubMed]
- McElhinney, K.L.; Orr, S.; Gelarden, I.A.; Laronda, M.M.; Rowell, E.E.L. Is Routine Pathology Evaluation of Tissue Removed for Fertility Preservation Necessary. J. Pediatr. Surg. 2024, 59, 161632. [Google Scholar] [CrossRef]
- Poirot, C.; Fortin, A.; Dhédin, N.; Brice, P.; Socié, G.; Lacorte, J.M.; Akakpo, J.P.; Genestie, C.; Vernant, J.P.; Leblanc, T.; et al. Post-transplant outcome of ovarian tissue cryopreserved after chemotherapy in hematologic malignancies. Haematologica 2019, 104, e360–e363. [Google Scholar] [CrossRef] [PubMed]
- El Issaoui, M.; Giorgione, V.; Mamsen, L.S.; Rechnitzer, C.; Birkebæk, N.; Clausen, N.; Kelsey, T.W.; Andersen, C.Y. Effect of first line cancer treatment on the ovarian reserve and follicular density in girls under the age of 18 years. Fertil. Steril. 2016, 106, 1757–1762.e1. [Google Scholar] [CrossRef]
- Shapira, M.; Raanani, H.; Barshack, I.; Amariglio, N.; Derech-Haim, S.; Marciano, M.N.; Schiff, E.; Orvieto, R.; Meirow, D. First delivery in a leukemia survivor after transplantation of cryopreserved ovarian tissue, evaluated for leukemia cells contamination. Fertil. Steril. 2018, 109, 48–53. [Google Scholar] [CrossRef]
- Grubliauskaite, M.; van der Perk, M.; Bos, A.; Meijer, A.J.M.; Gudleviciene, Z.; van den Heuvel-Eibrink, M.M.; Rascon, J. Minimal Infiltrative Disease Identification in Cryopreserved Ovarian Tissue of Girls with Cancer for Future Use: A Systematic Review. Cancers 2023, 15, 4199. [Google Scholar] [CrossRef]
- Moghassemi, S.; Dadashzadeh, A.; Camboni, A.; Feron, O.; Azevedo, R.B.; Amorim, C.A. Photodynamic therapy using OR141-loaded nanovesicles for eradication of leukemic cells from ovarian tissue. Photodiagnosis Photodyn. Ther. 2022, 40, 103139. [Google Scholar] [CrossRef]
- Cui, X.; Jing, X. Stem cell-based therapeutic potential in female ovarian aging and infertility. J. Ovarian Res. 2024, 17, 171. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhang, Z.; Deng, M.; Zheng, F.; Liu, W.; Ye, S. Biological mechanisms and applied prospects of mesenchymal stem cells in premature ovarian failure. Medicine 2022, 101, e30013. [Google Scholar] [CrossRef]
- White, Y.A.; Woods, D.C.; Takai, Y.; Ishihara, O.; Seki, H.; Tilly, J.L. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat. Med. 2012, 18, 413–421. [Google Scholar] [CrossRef] [PubMed]
- Ling, L.; Hou, J.; Wang, Y.; Shu, H.; Huang, Y. Effects of Low-Intensity Pulsed Ultrasound on the Migration and Homing of Human Amnion-Derived Mesenchymal Stem Cells to Ovaries in Rats with Premature Ovarian Insufficiency. Cell Transplant. 2022, 31, 9636897221129171. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Pei, C.; Isachenko, E.; Zhou, Y.; Wang, M.; Rahimi, G.; Liu, W.; Mallmann, P.; Isachenko, V. Automatic Evaluation for Bioengineering of Human Artificial Ovary: A Model for Fertility Preservation for Prepubertal Female Patients with a Malignant Tumor. Int. J. Mol. Sci. 2022, 23, 12419. [Google Scholar] [CrossRef]
- Affdal, A.O.; Salama, M.; Ravitsky, V. Ethical, legal, social, and policy issues of ovarian tissue cryopreservation in prepubertal girls: A critical interpretive review. J. Assist. Reprod. Genet. 2024, 41, 999–1026. [Google Scholar] [CrossRef]
- Diesch, T.; Rovo, A.; von der Weid, N.; Faraci, M.; Pillon, M.; Dalissier, A.; Dalle, J.H.; Bader, P. Fertility preservation practices in pediatric and adolescent cancer patients undergoing HSCT in Europe: A population-based survey. Bone Marrow Transplant. 2017, 52, 1022–1028. [Google Scholar] [CrossRef]
- Klipstein, S.; Fallat, M.E.; Savelli, S.; Committee on Bioethics; Section on Hematology/Oncology; Section on Surgery. Fertility Preservation for Pediatric and Adolescent Patients with Cancer: Medical and Ethical Considerations. Pediatrics 2020, 145, e20193994. [Google Scholar] [CrossRef]
Oocyte Cryopreservation | Embryo Cryopreservation | Ovarian Tissue Cryopreservation | |
---|---|---|---|
Which patients | Post-pubertal | Post-pubertal | Prepubertal AND Post-pubertal |
Impact on cancer treatment | Delays the start time of treatment | Delays the start time of treatment | Does not delay therapy |
Rates of birth per embryo transfer | ~50% | ~56% | 25–30% after transplantation |
Time needed | 2 weeks | 2 weeks or more | 1–3 days |
Limitation | Delays in therapy | Need sperm (almost impossible for children and adolescents) | Potential of reseeding malignant cells |
Religious objections in some areas | Ethical considerations | ||
Another surgery is needed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Yang, C. Fertility Preservation in Female Children and Adolescent Cancer Patients. Children 2025, 12, 647. https://doi.org/10.3390/children12050647
Wang M, Yang C. Fertility Preservation in Female Children and Adolescent Cancer Patients. Children. 2025; 12(5):647. https://doi.org/10.3390/children12050647
Chicago/Turabian StyleWang, Min, and Chao Yang. 2025. "Fertility Preservation in Female Children and Adolescent Cancer Patients" Children 12, no. 5: 647. https://doi.org/10.3390/children12050647
APA StyleWang, M., & Yang, C. (2025). Fertility Preservation in Female Children and Adolescent Cancer Patients. Children, 12(5), 647. https://doi.org/10.3390/children12050647