Phytotherapy in Pediatric Dentistry: A Narrative Review of Clinical Applications and Evidence
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Study Selection and Eligibility Criteria
- Original clinical research (randomized or non-randomized trials, pilot studies, or observational studies);
- Studies involving children or adolescents up to 18 years of age;
- Studies that evaluated herbal or plant-derived agents used for preventive or therapeutic purposes in oral conditions such as dental caries, gingivitis, pulp therapy, or other oral diseases;
- Articles published between January 1995 and September 2025;
- Studies written in English and available in full-text format.
- Animal studies, systematic reviews, or narrative commentaries;
- Articles not directly involving a pediatric population;
- Studies investigating products without a clear phytotherapeutic component;
- Grey literature, including theses, conference abstracts, or non–peer-reviewed sources.
3. Narrative Synthesis
3.1. Dental Caries and Oral Biofilm Control
3.1.1. Epidemiological Context and Etiological Factors
3.1.2. Glycyrrhiza uralensis (Licorice Root)
3.1.3. Camellia sinensis (Green Tea, EGCG)
3.1.4. Theobroma cacao (Cocoa Husk)
3.1.5. Vaccinium macrocarpon (Cranberry)
3.1.6. Punica granatum (Pomegranate)
3.1.7. Aloe vera
3.1.8. Ocimum sanctum (Tulsi, Holy Basil)
3.1.9. Other Plant Extracts
3.2. Application in Pediatric Endodontic Treatments
3.2.1. Direct Pulp Capping in Primary Teeth
3.2.2. Pulpotomy in Primary Teeth
3.2.3. Root Canal Irrigation and Disinfection
3.3. Use in Gingivitis and Other Pediatric Oral Conditions
3.3.1. Prevention and Treatment of Gingivitis
3.3.2. Other Pediatric Oral Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peres, M.A.; Macpherson, L.M.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef]
- Glick, M.; Williams, D.M. FDI Vision 2030: Delivering optimal oral health for all. Int. Dent. J. 2021, 71, 3–4. [Google Scholar] [CrossRef]
- World Health Organization. WHO Traditional Medicine Strategy: 2014–2023; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Naim, N.; Bouymajane, A.; Oulad El Majdoub, Y.; Ezrari, S.; Lahlali, R.; Tahiri, A.; Ennahli, S.; Laganà Vinci, R.; Cacciola, F.; Mondello, L.; et al. Flavonoid composition and antibacterial properties of Crocus sativus L. petal extracts. Molecules 2022, 28, 186. [Google Scholar] [CrossRef]
- Baumann, T.; Niemeyer, S.H.; Lussi, A.; Scaramucci, T.; Carvalho, T.S. Rinsing solutions containing natural extracts and fluoride prevent enamel erosion in vitro. J. Appl. Oral Sci. 2023, 31, e20230108. [Google Scholar] [CrossRef]
- Elchaghaby, M.A.; El-Kader, S.F.A.; Aly, M.M. Bioactive composition and antibacterial activity of three herbal extracts (lemongrass, sage, and guava leaf) against oral bacteria: An in vitro study. J. Oral Biosci. 2022, 64, 114–119. [Google Scholar] [CrossRef]
- Ekor, M. The Growing Use of Herbal Medicines: Issues Relating to Adverse Reactions and Challenges in Monitoring Safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef]
- Franceschinis, E.; Roverso, M.; Gabbia, D.; De Martin, S.; Brusegan, M.; Vaccarin, C.; Bogialli, S.; Chilin, A. Self-Emulsifying Formulations to Increase the Oral Bioavailability of 4,6,4′-Trimethylangelicin as a Possible Treatment for Cystic Fibrosis. Pharmaceutics 2022, 14, 1806. [Google Scholar] [CrossRef] [PubMed]
- Gloria-Garza, M.A.; Reyna-Martínez, G.R.; Jiménez-Salas, Z.; Campos-Góngora, E.; Kačániová, M.; Aguirre-Cavazos, D.E.; Bautista-Villarreal, M.; Leos-Rivas, C.; Elizondo-Luevano, J.H. Medicinal Plants Against Dental Caries: Research and Application of Their Antibacterial Properties. Plants 2025, 14, 1390. [Google Scholar] [CrossRef]
- Yun, S.-E.; Choi, B.-B.; Nam, S.-H.; Kim, G.-C. Antimicrobial effects of edible mixed herbal extracts on oral microorganisms: An in vitro study. Medicina 2023, 59, 1771. [Google Scholar] [CrossRef] [PubMed]
- Nomura, Y.; Otsuka, R.; Hasegawa, R.; Hanada, N. Oral microbiome of children living in an isolated area in Myanmar. Int. J. Environ. Res. Public Health 2020, 17, 4033. [Google Scholar] [CrossRef] [PubMed]
- Mitsuhata, C.; Kado, N.; Hamada, M.; Nomura, R.; Kozai, K. Characterization of the unique oral microbiome of children with Down syndrome. Sci. Rep. 2022, 12, 14150. [Google Scholar] [CrossRef]
- Xu, X.; Shan, B.; Zhang, Q.; Lu, W.; Zhao, J.; Zhang, H.; Chen, W. Oral microbiome characteristics in children with and without early childhood caries. J. Clin. Pediatr. Dent. 2023, 47, 58–67. [Google Scholar] [CrossRef]
- Han, S.-Y.; Chang, C.-L.; Wang, Y.-L.; Wang, C.-S.; Lee, W.-J.; Vo, T.T.T.; Chen, Y.-L.; Cheng, C.-Y.; Lee, I.-T. A Narrative Review on Advancing Pediatric Oral Health: Comprehensive Strategies for the Prevention and Management of Dental Challenges in Children. Children 2025, 12, 286. [Google Scholar] [CrossRef]
- Anwar, M.A.; Sayed, G.A.; Hal, D.M.; Hafeez, M.S.A.E.; Shatat, A.S.; Salman, A.; Eisa, N.M.; Ramadan, A.; El-Shiekh, R.A.; Hatem, S.; et al. Herbal Remedies for Oral and Dental Health: A Comprehensive Review of Their Multifaceted Mechanisms Including Antimicrobial, Anti-Inflammatory, and Antioxidant Pathways. Inflammopharmacology 2025, 33, 1085–1160. [Google Scholar] [CrossRef]
- Gupta, A.; Rathore, D.; Joshi, A.; Pawar, J.; Gupta, A. Preparation of herbal candy to prevent dental caries and boost overall health in children. J. Neonatal Surg. 2025, 14, 1090–1099. [Google Scholar] [CrossRef]
- Somaraj, V.; Shenoy, R.P.; Shenoy Panchmal, G.; Kumar, V.; Jodalli, P.S.; Sonde, L. Effect of herbal and fluoride mouth rinses on Streptococcus mutans and dental caries among 12–15-year-old school children: A randomized controlled trial. Int. J. Dent. 2017, 2017, 5654373. [Google Scholar] [CrossRef] [PubMed]
- Safiaghdam, H.; Oveissi, V.; Bahramsoltani, R.; Farzaei, M.H.; Rahimi, R. Medicinal Plants for Gingivitis: A Review of Clinical Trials. Iran. J. Basic Med. Sci. 2018, 21, 978–991. [Google Scholar] [CrossRef]
- Youssef, F.M.; Ateyya, H.; Hanna Samy, A.E.; Elmokadem, E.M. The Anti-Inflammatory and Antioxidant Effects of Astaxanthin as an Adjunctive Therapy in Community-Acquired Pneumonia: A Randomized Controlled Trial. Front. Pharmacol. 2025, 16, 1621308. [Google Scholar] [CrossRef] [PubMed]
- GBD 2021 Oral Disorders Collaborators. Trends in the global, regional, and national burden of oral conditions from 1990 to 2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2025, 405, 897–910. [Google Scholar] [CrossRef]
- Anil, S.; Anand, P.S. Early childhood caries: Prevalence, risk factors, and prevention. Front. Pediatr. 2017, 5, 157. [Google Scholar] [CrossRef] [PubMed]
- Meyer, F.; Schulze Zur Wiesche, E.; Amaechi, B.T.; Limeback, H.; Enax, J. Caries etiology and preventive measures. Eur. J. Dent. 2024, 18, 766–776. [Google Scholar] [CrossRef]
- Tinanoff, N.; Baez, R.J.; Diaz Guillory, C.; Donly, K.J.; Feldens, C.A.; McGrath, C.; Phantumvanit, P.; Pitts, N.B.; Seow, W.K.; Sharkov, N.; et al. Early childhood caries epidemiology, aetiology, risk assessment, societal burden, management, education, and policy: Global perspective. Int. J. Paediatr. Dent. 2019, 29, 238–248. [Google Scholar] [CrossRef]
- Malin, A.J.; Wang, Z.; Khan, D.; McKune, S.L. The potential systemic role of diet in dental caries development and arrest: A narrative review. Nutrients 2024, 16, 1463. [Google Scholar] [CrossRef]
- Marsh, P.D. Microbiology of dental plaque biofilms and their role in oral health and caries. Dent. Clin. N. Am. 2010, 54, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Motoc, G.V.; Juncar, R.I.; Moca, A.E.; Motoc, O.; Vaida, L.L.; Juncar, M. The relationship between age, gender, BMI, diet, salivary pH and periodontal pathogenic bacteria in children and adolescents: A cross-sectional study. Biomedicines 2023, 11, 2374. [Google Scholar] [CrossRef]
- Lemos, J.A.; Palmer, S.R.; Zeng, L.; Wen, Z.T.; Kajfasz, J.K.; Freires, I.A.; Abranches, J.; Brady, L.J. The biology of Streptococcus mutans. Microbiol. Spectr. 2019, 7, 10-1128. [Google Scholar] [CrossRef] [PubMed]
- Mazurkiewicz, D.; Pustułka, M.; Ambrozik-Haba, J.; Bienkiewicz, M. Dietary habits and oral hygiene as determinants of the incidence and intensity of dental caries—A pilot study. Nutrients 2023, 15, 4833. [Google Scholar] [CrossRef]
- Shinkai, R.S.A.; Azevedo, C.L.; de Campos, T.T.; Michel-Crosato, E.; Biazevic, M.G.H. Importance of phytotherapy for oral health care and quality of life in adults: A scoping review. J. Dent. Sci. 2024, 19, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Magriplis, E.; Michas, G.; Petridi, E.; Chrousos, G.P.; Roma, E.; Benetou, V.; Cholopoulos, N.; Micha, R.; Panagiotakos, D.; Zampelas, A. Dietary sugar intake and its association with obesity in children and adolescents. Children 2021, 8, 676. [Google Scholar] [CrossRef]
- Peters, M.C.; Tallman, J.A.; Braun, T.M.; Jacobson, J.J. Clinical reduction of S. mutans in pre-school children using a novel liquorice root extract lollipop: A pilot study. Eur. Arch. Paediatr. Dent. 2010, 11, 274–278. [Google Scholar] [CrossRef]
- Almaz, M.E.; Sönmez, I.Ş.; Ökte, Z.; Oba, A.A. Efficacy of a sugar-free herbal lollipop for reducing salivary Streptococcus mutans levels: A randomized controlled trial. Clin. Oral Investig. 2017, 21, 839–845. [Google Scholar] [CrossRef]
- Chen, Y.; Agnello, M.; Dinis, M.; Chien, K.C.; Wang, J.; Hu, W.; Shi, W.; He, X.; Zou, J. Lollipop containing Glycyrrhiza uralensis extract reduces Streptococcus mutans colonization and maintains oral microbial diversity in Chinese preschool children. PLoS ONE 2019, 14, e0221756. [Google Scholar] [CrossRef]
- Jain, E.; Pandey, R.K.; Khanna, R. Liquorice root extracts as potent cariostatic agents in pediatric practice. J. Indian Soc. Pedod. Prev. Dent. 2013, 31, 146–152. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, T.; Jha, A.; Kishore, J.; Barua, A.D.; Rangari, P. Cariostatic efficacy of aqueous and ethanolic extracts of liquorice in schoolchildren: In vivo comparative study. J. Contemp. Dent. Pract. 2020, 21, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Radeva-Ilieva, M.; Stoeva, S.; Hvarchanova, N.; Georgiev, K.D. Green tea: Current knowledge and issues. Foods 2025, 14, 745. [Google Scholar] [CrossRef]
- Suzuki, Y.; Miyoshi, N.; Isemura, M. Health-promoting effects of green tea. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2012, 88, 88–101. [Google Scholar] [CrossRef] [PubMed]
- Vyas, T.; Nagi, R.; Bhatia, A.; Bains, S.K. Therapeutic effects of green tea as an antioxidant on oral health—A review. J. Fam. Med. Prim. Care 2021, 10, 3998–4001. [Google Scholar] [CrossRef] [PubMed]
- Vilela, M.M.; Salvador, S.L.; Teixeira, I.G.L.; Del Arco, M.C.G.; De Rossi, A. Efficacy of green tea and its extract, epigallocatechin-3-gallate, in the reduction of cariogenic microbiota in children: A randomized clinical trial. Arch. Oral Biol. 2020, 114, 104727. [Google Scholar] [CrossRef] [PubMed]
- Ferrazzano, G.F.; Roberto, L.; Amato, I.; Cantile, T.; Sangianantoni, G.; Ingenito, A. Antimicrobial properties of green tea extract against cariogenic microflora: An in vivo study. J. Med. Food 2011, 14, 907–911. [Google Scholar] [CrossRef]
- Hegde, R.J.; Kamath, S. Comparison of the Streptococcus mutans and Lactobacillus colony count changes in saliva following chlorhexidine (0.12%) mouth rinse, combination mouth rinse, and green tea extract (0.5%) mouth rinse in children. J. Indian Soc. Pedod. Prev. Dent. 2017, 35, 150–155. [Google Scholar] [CrossRef]
- Kamath, S.; Hegde, R.; Kamath, N. Comparison of the Streptococcus mutans colony count changes in plaque following chlorhexidine (0.12%) mouth rinse and green tea extract (0.5%) mouth rinse in 8–12-year-old children. J. Indian Soc. Pedod. Prev. Dent. 2021, 39, 310–315. [Google Scholar] [CrossRef]
- Belwal, T.; Cravotto, C.; Ramola, S.; Thakur, M.; Chemat, F.; Cravotto, G. Bioactive compounds from cocoa husk: Extraction, analysis and applications in food production chain. Foods 2022, 11, 798. [Google Scholar] [CrossRef]
- Matsumoto, M.; Tsuji, M.; Okuda, J.; Sasaki, H.; Nakano, K.; Osawa, K.; Shimura, S.; Ooshima, T. Inhibitory effects of cacao bean husk extract on plaque formation in vitro and in vivo. Eur. J. Oral Sci. 2004, 112, 249–252. [Google Scholar] [CrossRef]
- Srikanth, R.K.; Shashikiran, N.D.; Subba Reddy, V.V. Chocolate mouth rinse: Effect on plaque accumulation and mutans streptococci counts when used by children. J. Indian Soc. Pedod. Prev. Dent. 2008, 26, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Fajriani; Mustamin, A.W.; Asmawati. The role of cacao extract in reduction of the number of mutans streptococci colonies in the saliva of 12–14-year-old children. J. Indian Soc. Pedod. Prev. Dent. 2016, 34, 120–123. [Google Scholar] [CrossRef] [PubMed]
- Jeitler, M.; Michalsen, A.; Schwiertz, A.; Kessler, C.S.; Koppold-Liebscher, D.; Grasme, J.; Kandil, F.I.; Steckhan, N. Effects of a supplement containing a cranberry extract on recurrent urinary tract infections and intestinal microbiota: A prospective, uncontrolled exploratory study. J. Integr. Complement. Med. 2022, 28, 399–406. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, H.; Gu, L. American cranberries and health benefits—An evolving story of 25 years. J. Sci. Food Agric. 2020, 100, 5111–5116. [Google Scholar] [CrossRef] [PubMed]
- Coleman, C.M.; Ferreira, D. Oligosaccharides and complex carbohydrates: A new paradigm for cranberry bioactivity. Molecules 2020, 25, 881. [Google Scholar] [CrossRef]
- Philip, N.; Leishman, S.J.; Bandara, H.; Walsh, L.J. Polyphenol-rich cranberry extracts modulate virulence of Streptococcus mutans–Candida albicans biofilms implicated in the pathogenesis of early childhood caries. Pediatr. Dent. 2019, 41, 56–62. [Google Scholar] [PubMed]
- Olczak-Kowalczyk, D.; Turska-Szybka, A.; Twetman, S.; Gozdowski, D.; Piekoszewska-Ziętek, P.; Góra, J.; Wróblewska, M. Effect of tablets containing a paraprobiotic strain and cranberry extract on caries incidence in preschool children: A randomized controlled trial. Dent. Med. Probl. 2025, 62, 209–215. [Google Scholar] [CrossRef]
- Bansal, K.; Shamoo, A.; Mohapatra, S.; Kalaivani, M.; Batra, P.; Mathur, V.P.; Srivastava, A.; Chaudhry, R. Comparative evaluation of cranberry extract and sodium fluoride as mouth rinses on S. mutans counts in children: A double-blind randomized controlled trial. Eur. Arch. Paediatr. Dent. 2024, 25, 801–809. [Google Scholar] [CrossRef]
- Zarfeshany, A.; Asgary, S.; Javanmard, S.H. Potent health effects of pomegranate. Adv. Biomed. Res. 2014, 3, 100. [Google Scholar] [CrossRef]
- Vučić, V.; Grabež, M.; Trchounian, A.; Arsić, A. Composition and potential health benefits of pomegranate: A review. Curr. Pharm. Des. 2019, 25, 1817–1827. [Google Scholar] [CrossRef] [PubMed]
- Mahd, M.A.; Aref, P.; Emadi, F.; Javadi, F.; Kharazi Fard, M.J.; Tavassoli-Hojjati, S. Effect of hydroalcoholic extract of whole pomegranate fruit on cariogenic bacteria and its clinical effect on dental plaque formation in 8–10-year-old children. Dent. Res. J. 2023, 20, 114. [Google Scholar] [CrossRef]
- Mishra, P.; Marwah, N.; Agarwal, N.; Chaturvedi, Y.; Suohu, T. Comparison of Punica granatum, Terminalia chebula, and Vitis vinifera seed extracts used as mouthrinse on salivary Streptococcus mutans levels in children. J. Contemp. Dent. Pract. 2019, 20, 920–927. [Google Scholar] [PubMed]
- Sánchez, M.; González-Burgos, E.; Iglesias, I.; Gómez-Serranillos, M.P. Pharmacological updateproperties of Aloe vera and its major active constituents. Molecules 2020, 25, 1324. [Google Scholar] [CrossRef]
- Khatri, S.G.; Samuel, S.R.; Acharya, S.; Patil, S.T. Antiplaque, antifungal effectiveness of Aloe vera among intellectually disabled adolescents: Pilot study. Pediatr. Dent. 2017, 39, 434–438. [Google Scholar] [PubMed]
- Cohen, M.M. Tulsi—Ocimum sanctum: A herb for all reasons. J. Ayurveda Integr. Med. 2014, 5, 251–259. [Google Scholar] [CrossRef]
- Dharsono, H.D.A.; Putri, S.A.; Kurnia, D.; Dudi, D.; Satari, M.H. Ocimum species: A review on chemical constituents and antibacterial activity. Molecules 2022, 27, 6350. [Google Scholar] [CrossRef]
- Agarwal, P.; Nagesh, L.; Murlikrishnan. Evaluation of the antimicrobial activity of various concentrations of Tulsi (Ocimum sanctum) extract against Streptococcus mutans: An in vitro study. Indian J. Dent. Res. 2010, 21, 357–359. [Google Scholar] [CrossRef]
- Lolayekar, N.V.; Kadkhodayan, S.S. Estimation of salivary pH and viability of Streptococcus mutans on chewing of Tulsi leaves in children. J. Indian Soc. Pedod. Prev. Dent. 2019, 37, 87–91. [Google Scholar] [CrossRef]
- Megalaa, N.; Thirumurugan, K.; Kayalvizhi, G.; Sajeev, R.; Kayalvizhi, E.B.; Ramesh, V.; Vargeese, A. A comparative evaluation of the anticaries efficacy of herbal extracts (Tulsi and black myrobalans) and sodium fluoride as mouthrinses in children: A randomized controlled trial. Indian J. Dent. Res. 2018, 29, 760–767. [Google Scholar] [CrossRef]
- Mishra, R.; Tandon, S.; Rathore, M.; Banerjee, M. Antimicrobial and plaque inhibitory potential of herbal and probiotic oral rinses in children: A randomized clinical trial. Indian J. Dent. Res. 2014, 25, 485–492. [Google Scholar] [CrossRef]
- Fahim, M.F.M.; Zarnigar, P. Effect of prepared herbal mouthwash in maintaining the oral health of school children: A single-blind randomized control trial. Explore 2024, 20, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Kajjari, S.; Vanishree, B.K.; Janardhanan, S.; Patil, V.H.; Uppin, C.; Hugar, S.M. Antimicrobial efficacy of Mangifera indica, Mentha arvensis, and chlorhexidine mouthwashes on Streptococcus mutans and Candida albicans in children: A comparative in vivo study. Int. J. Clin. Pediatr. Dent. 2024, 17 (Suppl. S1), S78–S83. [Google Scholar] [CrossRef]
- Deshpande, A.; Baishya, S.; Dori, S.; Wadhwa, M.; Shah, K. Clinical and microbiological evaluation of dental plaque on topical application of olive oil, olive oil with 35% Curcuma zedoaria, and olive oil with 30% Azadirachta indica in hospitalized children: A randomized control trial. J. Indian Soc. Pedod. Prev. Dent. 2025, 43, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Parajas, I.L. Caries preventive effect of wild tea (tsaang-gubat) among school children. J. Philipp. Dent. Assoc. 1995, 47, 3–13. [Google Scholar] [PubMed]
- Deshpande, M.A.; Baliga, S.; Thosar, N.; Rathi, N.; Jyothishi, S.; Deulkar, P.V.; Bane, S.P. Evaluation of antibacterial efficacy of Triphala toothwipes on oral Streptococcus mutans count in intellectually disabled children. Spec. Care Dent. 2021, 41, 619–625. [Google Scholar] [CrossRef]
- Almerich-Torres, T.; Montiel-Company, J.M.; Bellot-Arcís, C.; Iranzo-Cortés, J.E.; Ortolá-Siscar, J.C.; Almerich-Silla, J.M. Caries prevalence evolution and risk factors among schoolchildren and adolescents from Valencia (Spain): Trends 1998–2018. Int. J. Environ. Res. Public Health 2020, 17, 6561. [Google Scholar] [CrossRef]
- Fiegler-Rudol, J.; Niemczyk, W.; Janik, K.; Zawilska, A.; Kępa, M.; Tanasiewicz, M. How to deal with pulpitis: An overview of new approaches. Dent. J. 2025, 13, 25. [Google Scholar] [CrossRef]
- Moca, A.E.; Iurcov, R.; Ciavoi, G.; Moca, R.T.; Șipoș, L.R. Pediatric dental emergencies during the COVID-19 pandemic in Romania: A retrospective study. Children 2023, 10, 807. [Google Scholar] [CrossRef]
- Chouchene, F.; Oueslati, A.; Masmoudi, F.; Baaziz, A.; Maatouk, F.; Ghedira, H. Efficacy of non-instrumental endodontic treatment in primary teeth: A systematic review of clinical randomized trials. Syst. Rev. 2024, 13, 112. [Google Scholar] [CrossRef]
- Issrani, R.; Prabhu, N.; Bader, A.K.; Alfayyadh, A.Y.; Alruwaili, K.K.; Alanazi, S.H.; Ganji, K.K.; Alam, M.K. Exploring the properties of formocresol in dentistry—A comprehensive review. J. Clin. Pediatr. Dent. 2023, 47, 1–10. [Google Scholar] [CrossRef]
- Jha, S.; Goel, N.; Dash, B.P.; Sarangal, H.; Garg, I.; Namdev, R. An Update on Newer Pulpotomy Agents in Primary Teeth: A Literature Review. J. Pharm. Bioallied Sci. 2021, 13, S57–S61. [Google Scholar] [CrossRef]
- Canoğlu, E.; Güngör, H.C.; Uysal, S. Direct pulp capping of primary molars with calcium hydroxide or MTA following hemorrhage control with different medicaments: Randomized clinical trial. Pediatr. Dent. 2022, 44, 167–173. [Google Scholar] [PubMed]
- Chatzidimitriou, K.; Vadiakas, G.; Koletsi, D. Direct pulp capping in asymptomatic carious primary molars using three different pulp capping materials: A prospective clinical trial. Eur. Arch. Paediatr. Dent. 2022, 23, 803–811. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, H.; Dhillon, J.S.; Batra, M.; Saini, M. MTA versus Biodentine: Review of literature with a comparative analysis. J. Clin. Diagn. Res. 2017, 11, ZG01–ZG05. [Google Scholar] [CrossRef] [PubMed]
- Songsiripradubboon, S.; Banlunara, W.; Sangvanich, P.; Trairatvorakul, C.; Thunyakitpisal, P. Clinical, radiographic, and histologic analysis of the effects of acemannan used in direct pulp capping of human primary teeth: Short-term outcomes. Odontology 2016, 104, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Niu, Y.; Qin, S.; Ma, G. A new biomaterial derived from Aloe vera—Acemannan from basic studies to clinical application. Pharmaceutics 2023, 15, 1913. [Google Scholar] [CrossRef]
- Lin, G.S.S.; Chin, Y.J.; Choong, R.S.; Wafa, S.W.W.S.S.T.; Dziaruddin, N.; Baharin, F.; Ismail, A.F. Treatment outcomes of pulpotomy in primary teeth with irreversible pulpitis: A systematic review and meta-analysis. Children 2024, 11, 574. [Google Scholar] [CrossRef]
- Coll, J.A.; Dhar, V.; Chen, C.Y.; Crystal, Y.O.; Guelmann, M.; Marghalani, A.A.; AlShamali, S.; Xu, Z.; Glickman, G.N.; Wedeward, R. Use of vital pulp therapies in primary teeth 2024. Pediatr. Dent. 2024, 46, 13–26. [Google Scholar] [PubMed]
- Bossù, M.; Iaculli, F.; Di Giorgio, G.; Salucci, A.; Polimeni, A.; Di Carlo, S. Different pulp dressing materials for the pulpotomy of primary teeth: A systematic review of the literature. J. Clin. Med. 2020, 9, 838. [Google Scholar] [CrossRef]
- Çiftçiler, R.; Haznedaroğlu, İ.C. Ankaferd hemostat: From molecules to medicine. Turk. J. Med. Sci. 2020, 50, 1739–1750. [Google Scholar] [CrossRef]
- Yaman, E.; Görken, F.; Pinar Erdem, A.; Sepet, E.; Aytepe, Z. Effects of folk medicinal plant extract Ankaferd Blood Stopper® in vital primary molar pulpotomy. Eur. Arch. Paediatr. Dent. 2012, 13, 197–202. [Google Scholar] [CrossRef]
- Ozmen, B.; Bayrak, S. Comparative evaluation of Ankaferd Blood Stopper, ferric sulfate, and formocresol as pulpotomy agents in primary teeth: A clinical study. Niger. J. Clin. Pract. 2017, 20, 832–838. [Google Scholar] [CrossRef] [PubMed]
- Şahin, N.D.; Arikan, V.; Tulga Öz, F. Comparative evaluation of the success of Er,Cr:YSGG laser, ferric sulfate, or a herbal hemostatic agent for hemostasis in primary molar pulpotomy. Eur. J. Oral Sci. 2025, 133, e70022. [Google Scholar] [CrossRef] [PubMed]
- Sharaf, R.M.; Kabil, N.S.; Youssef, F.S.; Awad, B.G. Clinical and radiographic evaluation of Nigella sativa and Aloe vera as pulpotomy medicaments in primary teeth: A randomized controlled trial. Int. J. Clin. Pediatr. Dent. 2023, 16 (Suppl. S2), 195–201. [Google Scholar] [CrossRef] [PubMed]
- Mando, A.; Laflouf, M.; Achour, H.; Alsalameh, S.A.; Alsayed Tolibah, Y. The effect of pomegranate peel extract and apple cider vinegar as irrigants in disinfecting the necrotic primary root canal. Sci. Rep. 2025, 15, 4497. [Google Scholar] [CrossRef]
- Rathee, M.; Jain, P. Gingivitis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2025. [Google Scholar] [PubMed]
- Motoc, G.V.; Juncar, R.I.; Moca, A.E.; Motoc, O.; Moca, R.T.; Țig, I.A.; Vaida, L.L.; Juncar, M. The relationship between dietary habits and periodontal pathogens in a sample of Romanian children and adolescents: A cross-sectional study. Children 2023, 10, 1779. [Google Scholar] [CrossRef]
- Pari, A.; Ilango, P.; Subbareddy, V.; Katamreddy, V.; Parthasarthy, H. Gingival diseases in childhood—A review. J. Clin. Diagn. Res. 2014, 8, ZE01–ZE04. [Google Scholar] [CrossRef]
- Bhattacharjee, R.; Nekkanti, S.; Kumar, N.G.; Kapuria, K.; Acharya, S.; Pentapati, K.C. Efficacy of Triphala mouth rinse (aqueous extracts) on dental plaque and gingivitis in children. J. Investig. Clin. Dent. 2015, 6, 206–210. [Google Scholar] [CrossRef] [PubMed]
- Chainani, S.H.; Siddana, S.; Reddy, C.; Manjunathappa, T.H.; Manjunath, M.; Rudraswamy, S. Antiplaque and antigingivitis efficacy of Triphala and chlorhexidine mouthrinse among schoolchildren—A cross-over, double-blind, randomised controlled trial. Oral Health Prev. Dent. 2014, 12, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Amoian, B.; Moghadamnia, A.A.; Barzi, S.; Sheykholeslami, S.; Rangiani, A. Salvadora persica extract chewing gum and gingival health: Improvement of gingival and probe-bleeding index. Complement. Ther. Clin. Pract. 2010, 16, 121–123. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.S.; Hegde, K.S.; Mathew, C.; Bhat, S.V.; Shyamjith, M. Comparative evaluation of Mangifera indica leaf mouthwash with chlorhexidine on plaque accumulation, gingival inflammation, and salivary streptococcal growth. Indian J. Dent. Res. 2017, 28, 151–155. [Google Scholar] [CrossRef]
- Dai, M.R.; Ho, D.K.; Huang, L.; Quock, R.L.; Flaitz, C.M. Utilization of Chinese herbal medicine for selected oral conditions in two pediatric populations. Pediatr. Dent. 2016, 38, 311–316. [Google Scholar] [PubMed]
- Kabil, N.S.; Badran, A.S.; Wassel, M.O. Effect of the addition of chlorhexidine and miswak extract on the clinical performance and antibacterial properties of conventional glass ionomer: An in vivo study. Int. J. Paediatr. Dent. 2017, 27, 380–387. [Google Scholar] [CrossRef]
- Sicca, C.; Bobbio, E.; Quartuccio, N.; Nicolò, G.; Cistaro, A. Prevention of dental caries: A review of effective treatments. J. Clin. Exp. Dent. 2016, 8, e604–e610. [Google Scholar] [CrossRef]
- Poppolo Deus, F.; Ouanounou, A. Chlorhexidine in dentistry: Pharmacology, uses, and adverse effects. Int. Dent. J. 2022, 72, 269–277. [Google Scholar] [CrossRef]
- Verma, N.; Sangwan, P.; Tewari, S.; Duhan, J. Effect of different concentrations of sodium hypochlorite on outcome of primary root canal treatment: A randomized controlled trial. J. Endod. 2019, 45, 357–363. [Google Scholar] [CrossRef]
- Suhag, K.; Duhan, J.; Tewari, S.; Sangwan, P. Success of direct pulp capping using mineral trioxide aggregate and calcium hydroxide in mature permanent molars with pulps exposed during carious tissue removal: 1-year follow-up. J. Endod. 2019, 45, 840–847. [Google Scholar] [CrossRef]
- Al-Saudi, K.W.; Nabih, S.M.; Farghaly, A.M.; AboHager, E.A. Pulpal repair after direct pulp capping with new bioceramic materials: A comparative histological study. Saudi Dent. J. 2019, 31, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Chapple, I.L.; Van der Weijden, F.; Doerfer, C.; Herrera, D.; Shapira, L.; Polak, D.; Madianos, P.; Louropoulou, A.; Machtei, E.; Donos, N.; et al. Primary prevention of periodontitis: Managing gingivitis. J. Clin. Periodontol. 2015, 42 (Suppl. S16), S71–S76. [Google Scholar] [CrossRef]
- Prynda, M.; Pawlik, A.A.; Emich-Widera, E.; Kazek, B.; Mazur, M.; Niemczyk, W.; Wiench, R. Oral Hygiene Status in Children on the Autism Spectrum Disorder. J. Clin. Med. 2025, 14, 1868. [Google Scholar] [CrossRef] [PubMed]
- Di Spirito, F.; Di Palo, M.P.; De Benedetto, G.; Piedepalumbo, F.; Galdi, M.; Cannatà, D.; Cafà, N.; Contaldo, M. Periodontal Microbial Profiles Across Periodontal Conditions in Pediatric Subjects: A Narrative Review. Microorganisms 2025, 13, 1813. [Google Scholar] [CrossRef]
- Holgerson, P.L.; Öhman, C.; Rönnlund, A.; Johansson, I. Maturation of Oral Microbiota in Children with or without Dental Caries. PLoS ONE 2015, 10, e0128534. [Google Scholar] [CrossRef]
- Reynolds, K.; Chandio, N.; Chimoriya, R.; Arora, A. The Effectiveness of Sensory Adaptive Dental Environments to Reduce Corresponding Negative Behaviours and Psychophysiology Responses in Children and Young People with Intellectual and Developmental Disabilities: A Protocol of a Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 13758. [Google Scholar] [CrossRef]


| Author (Year, Country) | Design/Sample | Phytotherapeutic Agent (Formulation) | Main Outcomes/Conclusions |
|---|---|---|---|
| Peters et al., 2010 (USA) [31] | Pilot interventional study, preschool children | Glycyrrhiza uralensis (licorice) lollipop, twice daily for 3 weeks | Significant reduction in salivary S. mutans counts, especially in high-caries-risk group; effect lasted ~3 weeks post-intervention. |
| Almaz et al., 2017 (Turkey) [32] | Randomized controlled trial, 108 children (5–11 years) | Sugar-free herbal lollipop containing licorice extract (10 days) | Marked reduction in S. mutans levels in high-risk children; safe and acceptable preventive adjunct. |
| Chen et al., 2019 (China) [33] | Controlled clinical study, 37 preschool children (3–6 years) | Glycyrrhiza uralensis lollipop (glycyrrhizol A) twice daily for 3 weeks | >80% reduction in S. mutans; preserved microbial diversity; well tolerated. |
| Jain et al., 2013 (India) [34] | Double-blind pilot trial, 60 children (7–14 years) | Aqueous (15%) and ethanolic (3.75%) licorice mouthrinses | Both extracts significantly reduced S. mutans and increased salivary pH; ethanolic form more effective and palatable. |
| Kumar et al., 2020 (India) [35] | In vivo comparative study, 30 schoolchildren (6–12 years) | Aqueous and ethanolic licorice gels (1.75 g/10 mL and 350 mg/10 mL) | Ethanolic extract showed greater antibacterial activity, comparable to 0.2% CHX; suitable for pediatric use. |
| Vilela et al., 2020 (Brazil) [39] | Randomized clinical trial, 80 children (6–12 years) | Camellia sinensis tea/epigallocatechin gallate (EGCG) mouthrinse | Both formulations significantly reduced S. mutans counts vs. control; no adverse effects reported. |
| Ferrazzano et al., 2011 (Italy) [40] | Randomized controlled in vivo study, 66 adolescents (12–18 years) | Green tea extract mouthrinse, 3×/day for 7 days | Significant reduction in S. mutans and Lactobacillus; confirmed antimicrobial efficacy of green tea. |
| Kamath et al., 2021 (India) [42] | Randomized controlled trial, 50 children (8–12 years) | 0.5% green tea mouthrinse vs. 0.12% chlorhexidine | Comparable reduction in S. mutans; green tea better tolerated. |
| Matsumoto et al., 2004 (Japan) [44] | Experimental (in vitro and in vivo), 19 children | Theobroma cacao bean husk extract (mouthrinse/chewing gum) | Inhibited glucosyltransferase and reduced plaque formation in vivo. |
| Srikanth et al., 2008 (India) [45] | Single-blind crossover study, 32 children (10–14 years) | Cocoa bean husk extract (1 mg/mL mouthrinse) | Significant 49.6% reduction in S. mutans and 20.9% in plaque accumulation (p < 0.001). |
| Fajriani et al., 2016 (Indonesia) [46] | Time-series experimental study, 30 children (12–14 years) | Cocoa bean husk ethanol extract (0.1% mouthrinse) | Significant short-term S. mutans reduction (p < 0.05); effective antibacterial effect. |
| Philip et al., 2019 (Australia/UK) [50] | In vitro dual-species biofilm model | Vaccinium macrocarpon (cranberry polyphenol extract) | Inhibited S. mutans–Candida albicans virulence and acidogenicity; reduced EPS and biofilm thickness. |
| Olczak-Kowalczyk et al., 2025 (Poland/Denmark) [51] | Double-blind RCT, 73 preschool children | Paraprobiotic (Ligilactobacillus salivarius) + cranberry extract tablets | 9-month follow-up showed reduced early carious lesions (ICDAS 1–2); safe and well tolerated. |
| Bansal et al., 2024 (India) [52] | Double-blind randomized controlled trial, 280 children (8–12 years) | Non-dialyzable cranberry mouthrinse vs. sodium fluoride rinse | Cranberry rinse non-inferior to fluoride; significant S. mutans reduction and good acceptance. |
| Mahd et al., 2023 (Iran) [55] | Double-blind crossover clinical trial + in vitro phase, 14 children (8–10 years) | Hydroalcoholic extract of whole Punica granatum fruit (38% mouthwash) | Significant inhibitory effect on S. mutans and Lactobacillus acidophilus in vitro; clinically decreased plaque index by 34%—comparable to 0.12% CHX (36% reduction); well tolerated and safe. |
| Mishra et al., 2019 (India) [56] | Randomized double-blind clinical trial, 80 children (8–15 years) | Punica granatum mouthrinse vs. Terminalia chebula and Vitis vinifera | All reduced S. mutans; P. granatum showed highest substantivity and long-lasting antibacterial effect. |
| Khatri et al., 2017 (India) [58] | Double-blind RCT, 40 adolescents with intellectual disability | Aloe vera toothpaste vs. triclosan-based control | Significant reduction in plaque and gingival indices and Candida counts (p < 0.05). |
| Agarwal et al., 2010 (India) [61] | In vitro study | Ocimum sanctum (Tulsi) ethanolic extract (0.5–10%) | 4% concentration produced 22 mm inhibition zone against S. mutans. |
| Lolayekar & Kadkhodayan, 2019 (India) [62] | Clinical study, 30 children (9–12 years) | Chewing fresh Tulsi leaves | Significant reduction in S. mutans colony counts; minimal effect on salivary pH. |
| Megalaa et al., 2018 (India) [63] | Randomized controlled trial, 60 children | Ocimum sanctum (Tulsi, 4%) and Terminalia chebula (2.5%) mouthrinses vs. 0.05% NaF | Increased salivary pH and decreased S. mutans counts; Tulsi more effective short-term, myrobalan better long-term. |
| Mishra et al., 2014 (India) [64] | Randomized controlled trial, 60 children (6–14 years) | Herbal oral rinse (Herboral) vs. 0.2% chlorhexidine and probiotic rinse | Herbal rinse equally effective as CHX in reducing S. viridans and plaque; better taste acceptance. |
| Kajjari et al., 2024 (India) [66] | Randomized controlled trial, 45 children (7–10 years) | Mangifera indica (mango) and Mentha arvensis (mint) mouthrinses vs. CHX (0.2%) | Both herbal rinses significantly reduced S. mutans and Candida albicans; Mentha an early equivalent to CHX. |
| Deshpande et al., 2025 (India) [67] | Triple-blinded randomized clinical trial, 84 hospitalized children (3–14 years) | Topical application of extra virgin olive oil (EVOO), EVOO + 35% Curcuma zedoaria (white turmeric), EVOO + 30% Azadirachta indica (neem) vs. saline | All preparations reduced plaque and bacterial counts at 72 h (p < 0.05). EVOO + CZ and EVOO + AI achieved 100% plaque reduction, 95–96% S. mutans and Lactobacillus decrease, and 75–90% Candida reduction; well tolerated and practical for hospitalized children. |
| Parajas, 1997 (Philippines) [68] | Longitudinal school-based intervention (~3 years) | Wild tea (Ehretia microphylla, “tsaang-gubat”) beverage | ~75% decrease in caries incidence; protective effect diminished with irregular use; low-cost culturally accepted strategy. |
| Deshpande et al., 2021 (India) [69] | Randomized controlled trial, 27 intellectually disabled children | Triphala toothwipes vs. placebo | Significant reduction in S. mutans at 48 h and 7 days; effective adjunct for children with special needs. |
| Author (Year, Country) | Design/Sample | Procedure | Phytotherapeutic Agent (Formulation) | Main Outcomes/Conclusions |
|---|---|---|---|---|
| Songsiripradubboon et al., 2016 (Thailand) [79] | Randomized controlled clinical and histologic study, 42 teeth in 37 children (7–11 y) | Direct pulp capping in primary molars | Aloe vera–derived acemannan sponge (0.4%) | 6-month clinical and radiographic success rates were 72.7% (acemannan) vs. 70.0% (Ca(OH)2). Histological findings showed superior dentin bridge formation and pulpal healing in the acemannan group. Acemannan proved biocompatible and is a promising alternative for vital pulp therapy. |
| Yaman et al., 2012 (Turkey) [85] | Randomized single-blind clinical study, 30 children (6–9 y), 60 molars | Pulpotomy | Ankaferd Blood Stopper® (1:1 dilution, topical) | At 12 months, clinical success was 89.3% (FC) vs. 85.7% (ABS), with no statistically significant difference. ABS was found equally effective and may serve as a natural pulpotomy medicament. |
| Özmen & Bayrak, 2017 (Turkey) [86] | Randomized clinical study, 26 children (6–9 y), 45 molars | Pulpotomy | Ankaferd Blood Stopper® (standard solution, 15 s) | After 24 months, clinical success rates were 87% (ABS, FC) and 100% (FS); radiographic success 87%, 80%, and 87%, respectively. ABS demonstrated comparable outcomes to FC and FS and was deemed a safe alternative. |
| Şahin et al., 2025 (Turkey) [87] | Randomized clinical trial, 65 children (5–9 y), 81 molars | Pulpotomy (hemostasis phase) | Herbal hemostatic mixture (Thymus vulgaris, Vitis vinifera, Glycyrrhiza glabra, Alpinia officinarum, Urtica dioica) | At 12 months, clinical success was 100% for herbal and laser groups, 96% for FS. Radiographic success: 73% (herbal), 76% (FS), 96% (laser). Herbal agent provided satisfactory hemostasis comparable to FS but lower radiographic results; laser performed best overall. |
| Sharaf et al., 2023 (Egypt) [88] | Triple-blind randomized controlled trial, 66 molars (4–7 y) | Pulpotomy | Aloe veraethanolic extract vs. Nigella sativa extract | Clinical success after 12 months: 90% (A. vera), 40% (N. sativa), 72.7% (FC). Radiographic success: 72.7%, 20%, and 81.8%, respectively. Aloe vera showed promising biocompatibility and antibacterial potential; N. sativa not recommended for pulpotomy. |
| Mando et al., 2025 (Syria) [89] | Double-blind randomized clinical trial, 30 children (3–5 y), 45 incisors | Root canal irrigation (necrotic teeth) | Punica granatum peel extract (5%) and apple cider vinegar (5%) | Bacterial reduction: PPE 60.4%, ACV 51.6%, NaOCl 87.5%. Cell viability: PPE 85%, ACV 79% (ISO 10993-5 compliant). Both natural irrigants were less effective than NaOCl but demonstrated antibacterial activity and acceptable biocompatibility, with PPE showing superior safety. |
| Author (Year, Country) | Design/Sample | Condition | Phytotherapeutic Agent (Formulation) | Main Outcomes/Conclusions |
|---|---|---|---|---|
| Bhattacharjee et al., 2015 (India) [93] | Randomized double-blind controlled trial, 60 schoolchildren (mean 13 y) | Plaque-induced gingivitis | Triphala aqueous mouthrinse (10 mL, 30 s, twice daily for 15 days) | Both groups showed significant plaque and gingival index reduction (p < 0.001). Triphala was as effective as CHX and can be used as a cost-effective, well-tolerated short-term alternative. |
| Chainani et al., 2014 (India) [94] | Double-blind crossover RCT, 120 schoolchildren (13–16 y) | Plaque and gingivitis | Triphala mouthrinse (10%) | Both CHX and Triphala significantly reduced plaque and gingival indices vs. control (p < 0.001); no significant difference between Triphala and CHX. Confirms comparable antiplaque and anti gingivitis efficacy. |
| Amoian et al., 2010 (Iran) [95] | Double-masked randomized trial, 72 adolescents (mean 15 y) | Gingivitis (plaque-induced) | Salvadora persica (Miswak) extract chewing gum | Significant improvement in gingival and bleeding indices (GI, BI) at 7 and 14 days vs. control. Persica gum promoted periodontal health, effective especially post-scaling. |
| Bhat et al., 2017 (India) [96] | Clinical comparative study, 20 children (8–14 y) | Plaque, gingival inflammation, S. mutans reduction | Mangifera indica (mango) leaf mouthwash | Both rinses improved plaque and gingival scores with microbial reduction; CHX slightly superior. Mangifera indica is a safe, acceptable herbal alternative. |
| Dai et al., 2016 (USA) [97] | Cross-sectional parental interview study, 318 Chinese families (340 children < 12 y) | Use of herbal medicine for oral conditions | Traditional Chinese herbal agents (e.g., watermelon frost, Niuhuang jiedu pian, propolis, Yunnan baiyao) | 19.1% of children and 45.6% of parents reported TCM use for oral conditions (mostly aphthous ulcers, gingivitis, halitosis). Use strongly associated with parental habits and cultural factors. Demonstrates wide use of TCM in pediatric populations. |
| Kabil et al., 2017 (Egypt) [98] | Randomized clinical trial, 60 young permanent molars (6–9 y) | Deep caries restoration/antibacterial GIC | GIC modified with aqueous Salvadora persica extract (100%) or 0.5% CHX | Both CHX- and Miswak-modified GIC showed enhanced antibacterial effect vs. control. Miswak addition yielded high restoration survival (90% at 9 mo) with good biocompatibility. |
| Botanical Source | Main Microbial Targets | Main Clinical Applications |
|---|---|---|
| Glycyrrhiza uralensis (Licorice, glycyrrhizol A) | S. mutans, Lactobacillus spp. | Caries prevention, plaque reduction |
| Camellia sinensis (Green tea, EGCG) | S. mutans, Lactobacillus spp. | Caries prevention, plaque reduction |
| Theobroma cacao (Cocoa bean husk extract) | S. mutans | Caries prevention, plaque reduction |
| Vaccinium macrocarpon (Cranberry polyphenols) | S. mutans, Candida albicans | Caries prevention, plaque reduction |
| Punica granatum (Pomegranate peel extract) | S. mutans, Lactobacillus acidophilus | Caries prevention, plaque reduction, root canal irrigation |
| Aloe vera (Acemannan, anthraquinones) | Candida albicans, mixed flora | Plaque and gingivitis control, direct pulp capping, pulpotomy |
| Ocimum sanctum (Tulsi) | S. mutans, Candida spp. | Caries prevention, plaque reduction |
| Herbal oral rinse (Herboral) (polyherbal blend: Glycyrrhiza, Terminalia chebula, Azadirachta indica) | S. viridans, S. mutans | Caries prevention, plaque reduction |
| Mangifera indica (Mango leaf extract) | S. mutans, Candida albicans | Caries prevention, plaque reduction, gingivitis control |
| Mentha arvensis (Mint) | S. mutans, Candida albicans | Caries prevention, plaque reduction |
| Olea europaea (EVOO) + Curcuma zedoaria (white turmeric) + Azadirachta indica (neem) | S. mutans, Lactobacillus spp., Candida spp. | Caries prevention, plaque reduction, gingivitis control |
| Ehretia microphylla (“Tsaang-gubat”, wild tea) | S. mutans | Caries prevention, plaque reduction |
| Triphala (Terminalia chebula, Emblica officinalis, T. bellirica) | S. mutans, Lactobacillus spp. | Caries prevention, plaque reduction, gingivitis control |
| Ankaferd Blood Stopper® (Thymus vulgaris, Vitis vinifera, Glycyrrhiza glabra, Alpinia officinarum, Urtica dioica) | Mixed oral bacteria (S. mutans, Actinomyces spp.) | Pulpotomy (vital pulp therapy, hemostasis) |
| Salvadora persica (Miswak extract) | S. mutans, Actinomyces spp., Lactobacillus spp. | Plaque control, gingivitis management, restorative material enhancement |
| Traditional Chinese herbal medicines (e.g., Propolis, Niuhuang jiedu pian, Yunnan baiyao) | Broad-spectrum antibacterial and antifungal action | Aphthous ulcer, gingivitis, halitosis management, oral mucosal care |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miclăuș, Z.E.; Moca, R.T.; Matei, R.-I.; Moca, A.E.; Țenț, A.; Porumb, A. Phytotherapy in Pediatric Dentistry: A Narrative Review of Clinical Applications and Evidence. Children 2025, 12, 1559. https://doi.org/10.3390/children12111559
Miclăuș ZE, Moca RT, Matei R-I, Moca AE, Țenț A, Porumb A. Phytotherapy in Pediatric Dentistry: A Narrative Review of Clinical Applications and Evidence. Children. 2025; 12(11):1559. https://doi.org/10.3390/children12111559
Chicago/Turabian StyleMiclăuș, Zorela Elena, Rahela Tabita Moca, Ruxandra-Ilinca Matei, Abel Emanuel Moca, Adriana Țenț, and Anca Porumb. 2025. "Phytotherapy in Pediatric Dentistry: A Narrative Review of Clinical Applications and Evidence" Children 12, no. 11: 1559. https://doi.org/10.3390/children12111559
APA StyleMiclăuș, Z. E., Moca, R. T., Matei, R.-I., Moca, A. E., Țenț, A., & Porumb, A. (2025). Phytotherapy in Pediatric Dentistry: A Narrative Review of Clinical Applications and Evidence. Children, 12(11), 1559. https://doi.org/10.3390/children12111559

