Age-Dependent Burst Suppression During Anesthesia in Young Children with Congenital Heart Disease: The Impact of Anesthetic Depth
Abstract
Highlights
- Higher spectral edge frequency (SEF) was associated with lower burst suppression (BS) throughout the surgical procedure.
- Children under 12 months showed a stronger SEF–BS correlation compared to those aged 12–36 months.
- SEF appears to be an age-sensitive indicator of anesthetic depth during sevoflurane anesthesia with extracorporeal circulation.
- These findings underscore the importance of individualized, age-adjusted anesthesia monitoring strategies in pediatric cardiac surgery.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting and Participants
2.3. Data Collection
2.4. Statistical Analysis
3. Results
3.1. Baseline Patient Characteristics
3.2. Longitudinal Changes in Burst Suppression and Spectral Edge Frequency
3.2.1. Burst Suppression (BS)
3.2.2. Spectral Edge Frequency (SEF)
3.3. SEF in Relation to BS Throughout the Full Surgical Procedure, Before ECC, and During ECC
3.3.1. Full Surgery Procedure
3.3.2. Before ECC
3.3.3. During ECC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | Analysis of variance |
ASA | American society of anesthesiologists |
ASD | Atrial septal defect |
BS | Burst suppression |
BSA | Body surface area |
CPB | Cardiopulmonary bypass |
CHD | Congenital heart disease |
˚C | Degrees Celsius |
ECC | Extracorporeal circulation |
EEG | Electroencephalography |
EMM | Estimated marginal mean |
ETCO2 | End-tidal carbon dioxide |
HR | Heart rate |
Hz | Hertz |
kPa | Kilopascal |
MAC | Minimum alveolar concentration |
PDA | Patent ductus arteriosus |
PSi | Patient state index |
SD | Standard deviation |
SE | Standard error |
SEF | Spectral edge frequency |
VSD | Ventricular septal defect |
References
- Zimmerman, M.S.; Smith, A.G.C.; Sable, C.A.; Echko, M.M.; Wilner, L.B.; Olsen, H.E.; Atalay, H.T.; Awasthi, A.; Bhutta, Z.A.; Boucher, J.L.; et al. Global, regional, and national burden of congenital heart disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet Child Adolesc. Health 2020, 4, 185–200. [Google Scholar] [CrossRef]
- Mandalenakis, Z.; Giang, K.W.; Eriksson, P.; Liden, H.; Synnergren, M.; Wåhlander, H.; Fedchenko, M.; Rosengren, A.; Dellborg, M. Survival in Children With Congenital Heart Disease: Have We Reached a Peak at 97%? J. Am. Heart Assoc. 2020, 9, e017704. [Google Scholar] [CrossRef] [PubMed]
- The Swedish Registry of Congenital Heart Disease (SWEDCON). Årsrapport 2023. Available online: https://www.ucr.uu.se/swedcon/arsrapporter (accessed on 14 September 2025).
- Huisenga, D.; La Bastide-Van Gemert, S.; Van Bergen, A.; Sweeney, J.; Hadders-Algra, M. Developmental outcomes after early surgery for complex congenital heart disease: A systematic review and meta-analysis. Dev. Med. Child Neurol. 2021, 63, 29–46. [Google Scholar] [CrossRef]
- Cortínez, L.I.; Anderson, B.J. Modeling the pharmacokinetics and pharmacodynamics of sevoflurane using compartment models in children and adults. Pediatr. Anesth. 2018, 28, 834–840. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.N.; Purdon, P.L.; Van Dort, C.J. General anesthesia and altered states of arousal: A systems neuroscience analysis. Annu. Rev. Neurosci. 2011, 34, 601–628. [Google Scholar] [CrossRef] [PubMed]
- Paulson, O.B.; Strandgaard, S.; Edvinsson, L. Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 1990, 2, 161–192. [Google Scholar]
- Long, M.H.Y.; Lim, E.H.L.; Balanza, G.A.; Allen, J.C.; Purdon, P.L., Jr.; Bong, C.L. Sevoflurane requirements during electroencephalogram (EEG)-guided vs standard anesthesia Care in Children: A randomized controlled trial. J. Clin. Anesth. 2022, 81, 110913. [Google Scholar] [CrossRef]
- Ricci, Z.; Robino, C.; Rufini, P.; Cumbo, S.; Cavallini, S.; Gobbi, L.; Brocchi, A.; Serio, P.; Romagnoli, S. Monitoring anesthesia depth with patient state index during pediatric surgery. Pediatr. Anesth. 2023, 33, 855–861. [Google Scholar] [CrossRef]
- Cornelissen, L.; Bergin, A.M.; Lobo, K.; Donado, C.; Soul, J.S.; Berde, C.B. Electroencephalographic discontinuity during sevoflurane anesthesia in infants and children. Pediatr. Anesth. 2017, 27, 251–262. [Google Scholar] [CrossRef]
- Corlette, S.J.; Walker, S.M.; Cornelissen, L.; Brasher, C.; Bower, J.; Davidson, A.J. Changes in the Term Neonatal Electroencephalogram with General Anesthesia: A Systematic Review with Narrative Synthesis. Anesthesiology 2024, 141, 670–680. [Google Scholar] [CrossRef]
- Agrawal, U.; Berde, C.B.; Cornelissen, L. Electroencephalographic features of discontinuous activity in anesthetized infants and children. PLoS ONE 2019, 14, e0223324. [Google Scholar] [CrossRef]
- Gessler, P.; Schmitt, B.; Prètre, R.; Latal, B. Inflammatory response and neurodevelopmental outcome after open-heart surgery in children. Pediatr. Cardiol. 2009, 30, 301–305. [Google Scholar] [CrossRef]
- Xu, F.; Han, L.; Wang, Y.; Deng, D.; Ding, Y.; Zhao, S.; Zhang, Q.; Ma, L.; Chen, X. Prolonged anesthesia induces neuroinflammation and complement-mediated microglial synaptic elimination involved in neurocognitive dysfunction and anxiety-like behaviors. BMC Med. 2023, 21, 7. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1062–1067. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef]
- Lenth, R.V.; Buerkner, P.; Herve, M.; Love, J.; Riebl, H.; Singmann, H. Emmeans: Estimated Marginal Means, aka Least-Squares Means. Available online: https://cran.r-project.org/web/packages/emmeans/emmeans.pdf (accessed on 14 September 2025).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Bong, C.L.; Balanza, G.A.; Khoo, C.E.; Tan, J.S.; Desel, T.; Purdon, P.L. A Narrative Review Illustrating the Clinical Utility of Electroencephalogram-Guided Anesthesia Care in Children. Anesth. Analg. 2023, 137, 108–123. [Google Scholar] [CrossRef] [PubMed]
- Yuan, I.; Bong, C.L.; Chao, J.Y. Intraoperative pediatric electroencephalography monitoring: An updated review. Korean J. Anesthesiol. 2024, 77, 289–305. [Google Scholar] [CrossRef] [PubMed]
- Cornelissen, L.; Kim, S.E.; Lee, J.M.; Brown, E.N.; Purdon, P.L.; Berde, C.B. Electroencephalographic markers of brain development during sevoflurane anaesthesia in children up to 3 years old. Br. J. Anaesth. 2018, 120, 1274–1286. [Google Scholar] [CrossRef]
- Borzage, M.T.; Peterson, B.S. A Scoping Review of the Mechanisms Underlying Developmental Anesthetic Neurotoxicity. Anesth. Analg. 2025, 140, 409–426. [Google Scholar] [CrossRef]
- US Food and Drug Adminitration (FDA). FDA Drug Safety Communication: FDA Approves Label Changes for Use of General Anesthetic and Sedation Drugs in Young Children. Available online: https://www.fda.gov/Drugs/DrugSafety/ucm554634.htm (accessed on 14 September 2025).
- Miyasaka, K.W.; Suzuki, Y.; Brown, E.N.; Nagasaka, Y. EEG-Guided Titration of Sevoflurane and Pediatric Anesthesia Emergence Delirium: A Randomized Clinical Trial. JAMA Pediatr. 2025, 179, 704–712. [Google Scholar] [CrossRef]
- Berger-Estilita, J.; Marcolino, I.; Radtke, F.M. Patient-centered precision care in anaesthesia—The PC-square (PC) 2 approach. Curr. Opin. Anaesthesiol. 2024, 37, 163–170. [Google Scholar] [CrossRef] [PubMed]
All | <12 Months | 12–36 Months | |
---|---|---|---|
n = 12 | n = 6 | n = 6 | |
n (%) or mean (SD) | n (%) or mean (SD) | n (%) or mean (SD) | |
Gender: | |||
Female | 9 (75.0) | 3 (50.0) | 6 (100.0) |
Male | 3 (25.0) | 3 (50.0) | 0 (0.0) |
Height, cm | 75.4 (13.40) | 64.8 (5.57) | 89.5 (1.87) |
Weight, kg | 8.7 (3.08) | 6.3 (1.43) | 11.8 (0.85) |
BSA, m2 | 0.41 (0.12) | 0.32 (0.05) | 0.54 (0.02) |
Diagnosis: | |||
ASD | 5 (41.7) | 1 (16.7) | 4 (66.7) |
VSD | 3 (25.0) | 1 (16.7) | 2 (33.3) |
ASD, VSD | 3 (25.0) | 3 (50.0) | 0 (0.0) |
ASD, VSD, PDA | 1 (8.3) | 1 (16.7) | 0 (0.0) |
All | <12 Months | 12–36 Months | ||
---|---|---|---|---|
n = 12 | n = 6 | n = 6 | ||
Mean (SD) | Mean (SD) | Mean (SD) | p-value * | |
EEG/PSi | 35.8 (17.16) | 33.1 (19.30) | 39.1 (13.47) | 0.3 |
HR, bpm | 110.3 (19.21) | 116.6 (19.87) | 104.2 (16.38) | 0.04 |
SpO2, % | 95.88 (3.103) | 95.50 (3.148) | 96.65 (2.847) | 0.1 |
ETCO2, kPa | 5.14 (1.379) | 4.73 (1.294) | 5.46 (1.356) | 0.2 |
MAP, mmHg | 48.8 (11.09) | 46.8 (11.87) | 51.2 (9.63) | 0.04 |
Temperature, °C: | ||||
Esophageal | 35.7 (0.91) | 35.7 (1.07) | 35.7 (0.55) | 0.9 |
Rectal | 35.7 (0.97) | 35.4 (1.10) | 36.1 (0.53) | 0.1 |
Skin | 31.9 (3.00) | 30.8 (3.13) | 33.8 (1.46) | 0.09 |
All | <12 Months | 12–36 Months | ||
---|---|---|---|---|
n = 12 | n = 6 | n = 6 | ||
Mean (SD) | Mean (SD) | Mean (SD) | p-value * | |
Full surgery procedure: | ||||
Time, minutes | 162.4 (38.37) | 172.1 (34.54) | 152.7 (42.67) | 0.4 |
BS, % | 3.8 (15.70) | 5.3 (19.55) | 2.1 (9.04) | 0.4 |
SEFL, Hz | 13.2 (6.69) | 10.3 (6.90) | 16.5 (4.63) | <0.05 |
SEFR, HZ | 13.2 (6.65) | 10.4 (6.91) | 16.4 (4.65) | 0.05 |
Before ECC: | ||||
Time, minutes | 72.4 (32.55) | 68.1 (31.22) | 76.7 (36.21) | 0.7 |
BS, % | 0.4 (4.63) | 0.3 (1.73) | 0.5 (6.34) | 0.6 |
SEFL, Hz | 13.5 (5.96) | 10.0 (6.50) | 16.6 (3.03) | 0.03 |
SEFR, HZ | 13.5 (5.81) | 10.1 (6.37) | 16.5 (2.88) | 0.04 |
During ECC: | ||||
Time, minutes | 20.7 (18.37) | 30.8 (21.41) | 11.0 (6.95) | 0.06 |
BS, % | 19.5 (34.67) | 27.0 (38.25) | 0.0 (0.0) | 0.07 |
SEFL, Hz | 14.9 (7.67) | 12.0 (7.72) | 19.8 (4.45) | 0.04 |
SEFR, HZ | 14.6 (7.90) | 11.8 (8.02) | 19.6 (4.55) | 0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augustinsson, A.; Sjöberg, C.; Holmén, J.; Hjärpe, A.; Jildenstål, P. Age-Dependent Burst Suppression During Anesthesia in Young Children with Congenital Heart Disease: The Impact of Anesthetic Depth. Children 2025, 12, 1401. https://doi.org/10.3390/children12101401
Augustinsson A, Sjöberg C, Holmén J, Hjärpe A, Jildenstål P. Age-Dependent Burst Suppression During Anesthesia in Young Children with Congenital Heart Disease: The Impact of Anesthetic Depth. Children. 2025; 12(10):1401. https://doi.org/10.3390/children12101401
Chicago/Turabian StyleAugustinsson, Annelie, Carina Sjöberg, Johan Holmén, Anders Hjärpe, and Pether Jildenstål. 2025. "Age-Dependent Burst Suppression During Anesthesia in Young Children with Congenital Heart Disease: The Impact of Anesthetic Depth" Children 12, no. 10: 1401. https://doi.org/10.3390/children12101401
APA StyleAugustinsson, A., Sjöberg, C., Holmén, J., Hjärpe, A., & Jildenstål, P. (2025). Age-Dependent Burst Suppression During Anesthesia in Young Children with Congenital Heart Disease: The Impact of Anesthetic Depth. Children, 12(10), 1401. https://doi.org/10.3390/children12101401