The Potential Mediating Role of Good Mental Health on the Relationship Between Low Physical Activity and High Screen Time with Executive Functions in Chilean Children and Adolescents
Abstract
Highlights
- Good mental health partially mediates the link between an unhealthy lifestyle and executive functions.
- Low physical activity and high screen time were inversely related to attention, inhibition, cognitive flexibility, and working memory.
- Promoting active lifestyles and mental well-being from early ages may enhance cognitive development.
- Schools and families are key in integrated actions for physical activity, mental health, and screen use.
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants and Study Design
2.2. Main Outcomes
2.2.1. Lifestyle
2.2.2. Executive Function
2.2.3. Mental Health
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gregory, T.; Engelhardt, D.; Lewkowicz, A.; Luddy, S.; Guhn, M.; Gadermann, A.; Schonert-Reichl, K.; Brinkman, S. Validity of the middle years development instrument for population monitoring of student wellbeing in Australian school children. Child Indic. Res. 2019, 12, 873–899. [Google Scholar] [CrossRef]
- McDool, E.; Powell, P.; Roberts, J.; Taylor, K. The internet and children’s psychological wellbeing. J. Health Econ. 2020, 69, 102274. [Google Scholar] [CrossRef] [PubMed]
- Tomyn, A.J.; Cummins, R.A. The Subjective Wellbeing of High-School Students: Validating the Personal Wellbeing Index—School Children. Soc. Indic. Res. 2011, 101, 405–418. [Google Scholar] [CrossRef]
- O’Farrell, P.; Wilson, C.; Shiel, G. Teachers’ perceptions of the barriers to assessment of mental health in schools with implications for educational policy: A systematic review. Br. J. Educ. Psychol. 2023, 93, 262–282. [Google Scholar] [CrossRef] [PubMed]
- Kieling, C.; Baker-Henningham, H.; Belfer, M.; Conti, G.; Ertem, I.; Omigbodun, O.; Rohde, L.A.; Srinath, S.; Ulkuer, N.; Rahman, A. Child and adolescent mental health worldwide: Evidence for action. Lancet 2011, 378, 1515–1525. [Google Scholar] [CrossRef]
- McGorry, P.; Gunasiri, H.; Mei, C.; Rice, S.; Gao, C.X. The youth mental health crisis: Analysis and solutions. Front. Psychiatry 2025, 15, 1517533. [Google Scholar] [CrossRef]
- Jürges, H.; Schwarz, A.; Cahan, S.; Abdeen, Z. Child mental health and cognitive development: Evidence from the West Bank. Empirica 2019, 46, 423–442. [Google Scholar] [CrossRef]
- Patton, G.C.; Sawyer, S.M.; Santelli, J.S.; Ross, D.A.; Afifi, R.; Allen, N.B.; Arora, M.; Azzopardi, P.; Baldwin, W.; Bonell, C. Our future: A Lancet commission on adolescent health and wellbeing. Lancet 2016, 387, 2423–2478. [Google Scholar] [CrossRef]
- Merikangas, K.R.; He, J.P.; Burstein, M.; Swanson, S.A.; Avenevoli, S.; Cui, L.; Benjet, C.; Georgiades, K.; Swendsen, J. Lifetime prevalence of mental disorders in U.S. adolescents: Results from the National Comorbidity Survey Replication—Adolescent Supplement (NCS-A). J. Am. Acad. Child Adolesc. Psychiatry 2010, 49, 980–989. [Google Scholar] [CrossRef]
- Diaz, A.M.; Flores, C.P.; Huerta, I.M.; Tardone, N.D.; Pizarro, C.A.; Cerda, D.A.; Estay, J.A. Factores relacionados a la depresión durante la adolescencia: Una revisión integrativa. Horizonte de enfermería 2023, 34, 321–358. [Google Scholar]
- Murphy, J.M.; Guzmán, J.; McCarthy, A.E.; Squicciarini, A.M.; George, M.; Canenguez, K.M.; Dunn, E.C.; Baer, L.; Simonsohn, A.; Smoller, J.W. Mental health predicts better academic outcomes: A longitudinal study of elementary school students in Chile. Child Psychiatry Hum. Dev. 2015, 46, 245–256. [Google Scholar] [CrossRef]
- de la Barra, F.; Irarrazaval, M.; Valdes, A.; Soto-Brandt, G. Evolving child and adolescent mental health and development programs in Chile. Rev. Panam. Salud Pública 2019, 43, e33. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef]
- Cortés Pascual, A.; Moyano Muñoz, N.; Quílez Robres, A. The relationship between executive functions and academic performance in primary education: Review and meta-analysis. Front. Psychol. 2019, 10, 449759. [Google Scholar] [CrossRef]
- Zhan, Z.; Ai, J.; Ren, F.; Li, L.; Chu, C.-H.; Chang, Y.-K. Cardiorespiratory fitness, age, and multiple aspects of executive function among preadolescent children. Front. Psychol. 2020, 11, 1198. [Google Scholar] [CrossRef]
- Etnier, J.L.; Chang, Y.-K. The effect of physical activity on executive function: A brief commentary on definitions, measurement issues, and the current state of the literature. J. Sport Exerc. Psychol. 2009, 31, 469–483. [Google Scholar] [CrossRef]
- Zelazo, P.D.; Blair, C.B.; Willoughby, M.T. Executive Function: Implications for Education. NCER 2017–2000. National Center for Education Research 2016. Available online: https://ies.ed.gov/ncer/2025/01/executive-function-implications-education (accessed on 18 May 2025).
- Huizinga, M.; Baeyens, D.; Burack, J.A. Executive function and education. Front. Psychol. 2018, 9, 1357. [Google Scholar] [CrossRef]
- St Clair-Thompson, H.L.; Gathercole, S.E. Executive functions and achievements in school: Shifting, updating, inhibition, and working memory. Q. J. Exp. Psychol. 2006, 59, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Feinstein, L.; Bynner, J. The importance of cognitive development in middle childhood for adulthood socioeconomic status, mental health, and problem behavior. Child Dev. 2004, 75, 1329–1339. [Google Scholar] [CrossRef]
- Tamakoshi, A.; Tamakoshi, K.; Lin, Y.; Yagyu, K.; Kikuchi, S.; Group, J.S. Healthy lifestyle and preventable death: Findings from the Japan Collaborative Cohort (JACC) Study. Prev. Med. 2009, 48, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Pilato, I.B.; Beezhold, B.; Radnitz, C. Diet and lifestyle factors associated with cognitive performance in college students. J. Am. Coll. Health 2020, 70, 2230–2236. [Google Scholar] [CrossRef] [PubMed]
- Jao, N.C.; Robinson, L.D.; Kelly, P.J.; Ciecierski, C.C.; Hitsman, B. Unhealthy behavior clustering and mental health status in United States college students. J. Am. Coll. Health 2019, 67, 790–800. [Google Scholar] [CrossRef] [PubMed]
- Sweet, M. The Relationship Between Executive Functions and Physical Activity in University Students. Senior Thesis, Honors College, Baylor University, Waco, TX, USA, 2016. [Google Scholar]
- Choudhary, A.K.; Loganathan, S.; Maheshkumar, K. A Sedentary Lifestyle and Cognitive Function. Chall. Dis. Health Res. 2021, 6, 52–62. [Google Scholar]
- Melnyk, B.; Kelly, S.; Jacobson, D.; Arcoleo, K.; Shaibi, G. Improving physical activity, mental health outcomes, and academic retention in college students with Freshman 5 to thrive: COPE/Healthy lifestyles. J. Am. Assoc. Nurse Pract. 2014, 26, 314–322. [Google Scholar] [CrossRef]
- Caamaño-Navarrete, F.; Arriagada-Hernández, C.; Jara-Tomckowiack, L.; Hernandez-Martinez, J.; Valdés-Badilla, P.; Contreras-Díaz, G.; del-Cuerpo, I.; Delgado-Floody, P. Association Between Screen Time and Lifestyle Parameters with Executive Functions in Chilean Children and Adolescents: Potential Mediating Role of Health-Related Quality of Life. Children 2025, 12, 2. [Google Scholar] [CrossRef]
- Rodriguez-Ayllon, M.; Cadenas-Sánchez, C.; Estévez-López, F.; Muñoz, N.E.; Mora-Gonzalez, J.; Migueles, J.H.; Molina-García, P.; Henriksson, H.; Mena-Molina, A.; Martínez-Vizcaíno, V. Role of physical activity and sedentary behavior in the mental health of preschoolers, children and adolescents: A systematic review and meta-analysis. Sports Med. 2019, 49, 1383–1410. [Google Scholar] [CrossRef]
- Gnazzo, M.; Baldini, V.; Carotenuto, M.; Pisanò, G.; Messina, G.; Moscatelli, F.; Ruberto, M. Impact of Absence Seizures on Physical Activity Levels in Children: A Cross-Sectional Study. Children 2025, 12, 791. [Google Scholar] [CrossRef]
- Li, Y.; Xia, X.; Meng, F.; Zhang, C. The association of physical fitness with mental health in children: A serial multiple mediation model. Curr. Psychol. 2022, 41, 7280–7289. [Google Scholar] [CrossRef]
- Ganjeh, P.; Meyer, T.; Hagmayer, Y.; Kuhnert, R.; Ravens-Sieberer, U.; von Steinbuechel, N.; Rothenberger, A.; Becker, A. Physical Activity Improves Mental Health in Children and Adolescents Irrespective of the Diagnosis of Attention Deficit Hyperactivity Disorder (ADHD)—A Multi-Wave Analysis Using Data from the KiGGS Study. Int. J. Environ. Res. Public Health 2021, 18, 2207. [Google Scholar] [CrossRef]
- de Bruijn, A.G.M.; Meijer, A.; Königs, M.; Oosterlaan, J.; Smith, J.; Hartman, E. The mediating role of neurocognitive functions in the relation between physical competencies and academic achievement of primary school children. Psychol. Sport Exerc. 2023, 66, 102390. [Google Scholar] [CrossRef] [PubMed]
- Likhitweerawong, N.; Boonchooduang, N.; Khorana, J.; Phinyo, P.; Patumanond, J.; Louthrenoo, O. Executive dysfunction as a possible mediator for the association between excessive screen time and problematic behaviors in preschoolers. PLoS ONE 2024, 19, e0298189. [Google Scholar] [CrossRef]
- Xiang, H.; Lin, L.; Chen, W.; Li, C.; Liu, X.; Li, J.; Ren, Y.; Guo, V.Y. Associations of excessive screen time and early screen exposure with health-related quality of life and behavioral problems among children attending preschools. BMC Public Health 2022, 22, 2440. [Google Scholar] [CrossRef] [PubMed]
- Zapata-Lamana, R.; Ibarra-Mora, J.; Henriquez-Beltrán, M.; Sepúlveda-Martin, S.; Martínez-González, L.; Cigarroa, I. Aumento de horas de pantalla se asocia con un bajo rendimiento escolar. Andes Pediatrica 2021, 92, 565–575. [Google Scholar] [CrossRef]
- Caamaño-Navarrete, F.; Del-Cuerpo, I.; Arriagada-Hernández, C.; Cresp-Barria, M.; Hernández-Mosqueira, C.; Contreras-Díaz, G.; Valdés-Badilla, P.; Jerez-Mayorga, D.; Delgado-Floody, P. Association between food habits with mental health and executive function in chilean children and adolescents. Children 2025, 12, 268. [Google Scholar] [CrossRef]
- Yang, L.; Corpeleijn, E.; Hartman, E. Daily physical activity, sports participation, and executive function in children. JAMA Netw. Open 2024, 7, e2449879. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Li, R.; Wong, S.H.; Sum, R.K.; Wang, P.; Yang, B.; Sit, C.H. Physical activity and executive function in children with ADHD: The mediating role of sleep. Front. Pediatr. 2022, 9, 775589. [Google Scholar] [CrossRef] [PubMed]
- Veraksa, A.; Tvardovskaya, A.; Gavrilova, M.; Yakupova, V.; Musálek, M. Associations between executive functions and physical fitness in preschool children. Front. Psychol. 2021, 12, 674746. [Google Scholar] [CrossRef]
- Zhao, G.; Sun, K.; Fu, J.; Li, Z.; Liu, D.; Tian, X.; Yang, J.; Zhang, Q. Impact of physical activity on executive functions: A moderated mediation model. Front. Psychol. 2024, 14, 1226667. [Google Scholar] [CrossRef]
- Benzing, V.; Chang, Y.-K.; Schmidt, M. Acute physical activity enhances executive functions in children with ADHD. Sci. Rep. 2018, 8, 12382. [Google Scholar] [CrossRef]
- Howarth, A.; Cooke, S.J.; Nguyen, V.M.; Hunt, L.M. Non-probabilistic surveys and sampling in the human dimensions of fisheries. Rev. Fish Biol. Fish. 2024, 34, 597–622. [Google Scholar] [CrossRef]
- Majem, L.S.; Barba, L.R.; Bartrina, J.A.; Rodrigo, C.P.; Santana, P.S.; Quintana, L.P. Obesidad infantil y juvenil en España. Resultados del Estudio enKid (1998–2000). Med. Clin. 2003, 121, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Caamaño-Navarrete, F.; Latorre-Román, P.Á.; Párraga-Montilla, J.; Jerez-Mayorga, D.; Delgado-Floody, P. Selective attention and concentration are related to lifestyle in chilean schoolchildren. Children 2021, 8, 856. [Google Scholar] [CrossRef] [PubMed]
- Carrillo, H.A.; Ramírez-Vélez, R. Adherencia a la dieta mediterránea en una población escolar colombiana: Evaluación de las propiedades psicométricas del cuestionario KIDMED. Nutr. Hosp. 2020, 37, 73–79. [Google Scholar]
- Tapia, J.L.; Rocabado, F.; Duñabeitia, J.A. Cognitive estimation of speed, movement and time across the lifespan. J. Integr. Neurosci. 2022, 21, 10. [Google Scholar] [CrossRef]
- Reina-Reina, C.; Conesa, P.J.; Duñabeitia, J.A. Impact of a cognitive stimulation program on the reading comprehension of children in primary education. Front. Psychol. 2023, 13, 985790. [Google Scholar] [CrossRef]
- Caamaño-Navarrete, F.; Arriagada-Hernández, C.; Fuentes-Vilugrón, G.; Jara-Tomckowiack, L.; Levin-Catrilao, A.; del Val Martín, P.; Muñoz-Troncoso, F.; Delgado-Floody, P. Healthy Lifestyle Related to Executive Functions in Chilean University Students: A Pilot Study. Healthcare 2024, 12, 1022. [Google Scholar] [CrossRef]
- Jowik-Krzemińska, K.; Dylewska, D.; Pawlińska-Maćkowiak, A.; Słopień, A.; Tyszkiewicz-Nwafor, M. Cognitive Functions in Adolescent Girls with Anorexia Nervosa during Nutritional Rehabilitation. Nutrients 2024, 16, 3435. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.-H.; Chen, C.-Y.; Liao, X.-l.; Chen, X.-m.; Zheng, X.; Tsai, Y.-C.; Lin, C.-Y.; Griffiths, M.D.; Pakpour, A.H. Psychometric properties of the Depression, Anxiety, and Stress Scale (DASS-21) among different Chinese populations: A cross-sectional and longitudinal analysis. Acta Psychol. 2023, 240, 104042. [Google Scholar] [CrossRef]
- Mella, F.R.; Vinet, E.V.; Muñoz, A.M.A. Escalas de depresión, ansiedad y estrés (DASS-21): Adaptación y propiedades psicométricas en estudiantes secundarios de Temuco. Rev. Argent. Clín. Psicol. 2014, 23, 179–190. [Google Scholar]
- Román, F.; Santibáñez, P.; Vinet, E.V. Uso de las Escalas de Depresión Ansiedad Estrés (DASS-21) como instrumento de tamizaje en jóvenes con problemas clínicos. Acta Investig. Psicol. 2016, 6, 2325–2336. [Google Scholar] [CrossRef]
- Vaughan, R.S.; Edwards, E.J.; MacIntyre, T.E. Mental health measurement in a post Covid-19 world: Psychometric properties and invariance of the DASS-21 in athletes and non-athletes. Front. Psychol. 2020, 11, 590559. [Google Scholar] [CrossRef]
- Morales, G.; Balboa-Castillo, T.; Fernández-Rodríguez, R.; Garrido-Miguel, M.; Guidoni, C.M.; Sirtoli, R.; Mesas, A.E.; Rodrigues, R. Adherence to the Mediterranean diet and depression, anxiety, and stress symptoms in Chilean university students: A cross-sectional study. Cad. Saúde Pública 2023, 39, e00206722. [Google Scholar] [CrossRef] [PubMed]
- Antúnez, Z.; Vinet, E.V. Escalas de depresión, ansiedad y estrés (DASS-21): Validación de la versión abreviada en estudiantes universitarios chilenos. Ter. Psicológica 2012, 30, 49–55. [Google Scholar] [CrossRef]
- Lagos San Martín, N.; Ossa Cornejo, C.; Palma Luengo, M.; Arriagada Allaire, C. Autopercepción de desarrollo emocional de los estudiantes secundarios de la región de Ñuble, Chile. Rev. Estud. Exp. Educ. 2020, 19, 17–27. [Google Scholar] [CrossRef]
- Contreras-Mendoza, I.; Olivas-Ugarte, L.O.; De La Cruz-Valdiviano, C. Escalas abreviadas de Depresión, Ansiedad y Estrés (DASS-21): Validez, fiabilidad y equidad en adolescentes peruanos. Rev. Psicol. Clin. Ninos Adolesc. 2021, 8, 24–30. [Google Scholar] [CrossRef]
- Preacher, K.; Hayes, A. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef] [PubMed]
- Halse, M.; Steinsbekk, S.; Hammar, Å.; Wichstrøm, L. Longitudinal relations between impaired executive function and symptoms of psychiatric disorders in childhood. J. Child Psychol. Psychiatry 2022, 63, 1574–1582. [Google Scholar] [CrossRef]
- Schumacher, A.; Campisi, S.C.; Khalfan, A.F.; Merriman, K.; Williams, T.S.; Korczak, D.J. Cognitive functioning in children and adolescents with depression: A systematic review and meta-analysis. Eur. Neuropsychopharmacol. 2024, 79, 49–58. [Google Scholar] [CrossRef]
- Hatch, S.L.; Jones, P.B.; Kuh, D.; Hardy, R.; Wadsworth, M.E.J.; Richards, M. Childhood cognitive ability and adult mental health in the British 1946 birth cohort. Soc. Sci. Med. 2007, 64, 2285–2296. [Google Scholar] [CrossRef]
- Xian, G.; Chai, Y.; Gong, Y.; He, W.; Ma, C.; Zhang, X.; Zhang, J.; Ma, Y. The relationship between healthy lifestyles and cognitive function in Chinese older adults: The mediating effect of depressive symptoms. BMC Geriatr. 2024, 24, 299. [Google Scholar] [CrossRef]
- Lavrijsen, J.; Verschueren, K. High Cognitive Ability and Mental Health: Findings from a Large Community Sample of Adolescents. J. Intell. 2023, 11, 38. [Google Scholar] [CrossRef] [PubMed]
- McCormick, C.R. Lifestyle factors and their impact on the networks of attention. Appl. Cogn. Psychol. 2022, 36, 135–153. [Google Scholar]
- Vohr, B.R.; McGowan, E.C.; Bann, C.; Das, A.; Higgins, R.; Hintz, S.; Ambalavanan, N.; Carlo, W.A.; Collins, M.V.; Cosby, S.S. Association of high screen-time use with school-age cognitive, executive function, and behavior outcomes in extremely preterm children. JAMA Pediatr. 2021, 175, 1025–1034. [Google Scholar]
- Lakicevic, N.; Manojlovic, M.; Chichinina, E.; Drid, P.; Zinchenko, Y. Screen time exposure and executive functions in preschool children. Sci. Rep. 2025, 15, 1839. [Google Scholar] [CrossRef]
- Zavala-Crichton, J.P.; Esteban-Cornejo, I.; Solis-Urra, P.; Mora-Gonzalez, J.; Cadenas-Sanchez, C.; Rodriguez-Ayllon, M.; Migueles, J.H.; Molina-Garcia, P.; Verdejo-Roman, J.; Kramer, A.F. Association of sedentary behavior with brain structure and intelligence in children with overweight or obesity: The ActiveBrains project. J. Clin. Med. 2020, 9, 1101. [Google Scholar] [CrossRef]
- Cadenas-Sanchez, C.; Migueles, J.H.; Verdejo-Román, J.; Erickson, K.I.; Esteban-Cornejo, I.; Catena, A.; Ortega, F.B. Physical activity, sedentary time, and fitness in relation to brain shapes in children with overweight/obesity: Links to intelligence. Scand. J. Med. Sci. Sports 2023, 33, 319–330. [Google Scholar]
- Chen, Y.-Y.; Yim, H.; Lee, T.-H. Negative impact of daily screen use on inhibitory control network in preadolescence: A two-year follow-up study. Dev. Cogn. Neurosci. 2023, 60, 101218. [Google Scholar]
- Jirout, J.; LoCasale-Crouch, J.; Turnbull, K.; Gu, Y.; Cubides, M.; Garzione, S.; Evans, T.M.; Weltman, A.L.; Kranz, S. How lifestyle factors affect cognitive and executive function and the ability to learn in children. Nutrients 2019, 11, 1953. [Google Scholar] [CrossRef]
- Tee, J.Y.H.; Gan, W.Y.; Tan, K.-A.; Chin, Y.S. Obesity and unhealthy lifestyle associated with poor executive function among Malaysian adolescents. PLoS ONE 2018, 13, e0195934. [Google Scholar] [CrossRef]
- Lipnicki, D.M.; Gunga, H.-C. Physical inactivity and cognitive functioning: Results from bed rest studies. Eur. J. Appl. Physiol. 2009, 105, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Daniele, A.; Lucas, S.J.; Rendeiro, C. Detrimental effects of physical inactivity on peripheral and brain vasculature in humans: Insights into mechanisms, long-term health consequences and protective strategies. Front. Physiol. 2022, 13, 998380. [Google Scholar] [CrossRef] [PubMed]
- McMath, A.L.; Iwinski, S.; Shen, S.; Bost, K.F.; Donovan, S.M.; Khan, N.A. Adherence to screen time and physical activity guidelines is associated with executive function in US toddlers participating in the STRONG Kids 2 birth cohort study. J. Pediatr. 2023, 252, 22–30.e6. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Cai, L.; Wong, S.H.-S.; Lai, L.; Lv, Y.; Tan, W.; Jing, J.; Chen, Y. Association of sedentary time and physical activity with executive function among children. Acad. Pediatr. 2021, 21, 63–69. [Google Scholar] [CrossRef]
- Álvarez-Bueno, C.; Pesce, C.; Cavero-Redondo, I.; Sánchez-López, M.; Martínez-Hortelano, J.A.; Martínez-Vizcaíno, V. The Effect of Physical Activity Interventions on Children’s Cognition and Metacognition: A Systematic Review and Meta-Analysis. J. Am. Acad. Child Adolesc. Psychiatry 2017, 56, 729–738. [Google Scholar] [CrossRef]
- Reyes-Amigo, T.; Bezerra, A.; Gomez-Mazorra, M.; Boppre, G.; Martins, C.; Carrasco-Beltran, H.; Cordero-Roldan, E.; Mota, J. Effects of high-intensity interval training on executive functions in children and adolescents: A Systematic Review and Meta-analysis. Phys. Act. Rev. 2022, 10, 77–87. [Google Scholar] [CrossRef]
- Dadkhah, M.; Saadat, M.; Ghorbanpour, A.M.; Moradikor, N. Experimental and clinical evidence of physical exercise on BDNF and cognitive function: A comprehensive review from molecular basis to therapy. Brain Behav. Immun. Integr. 2023, 3, 100017. [Google Scholar] [CrossRef]
- Nay, K.; Smiles, W.J.; Kaiser, J.; McAloon, L.M.; Loh, K.; Galic, S.; Oakhill, J.S.; Gundlach, A.L.; Scott, J.W. Molecular mechanisms underlying the beneficial effects of exercise on brain function and neurological disorders. Int. J. Mol. Sci. 2021, 22, 4052. [Google Scholar] [CrossRef]
- Ribeiro, F.; Cavaglia, R.; Rato, J.R. Sex differences in response inhibition in young children. Cogn. Dev. 2021, 58, 101047. [Google Scholar] [CrossRef]
- Gaillard, A.; Fehring, D.J.; Rossell, S.L. Sex differences in executive control: A systematic review of functional neuroimaging studies. Eur. J. Neurosci. 2021, 53, 2592–2611. [Google Scholar] [CrossRef]
- Sadeghi, S.; Shalani, B.; Nejati, V. Sex and age-related differences in inhibitory control in typically developing children. Early Child Dev. Care 2022, 192, 292–301. [Google Scholar] [CrossRef]
- Hill, A.C.; Laird, A.R.; Robinson, J.L. Gender differences in working memory networks: A BrainMap meta-analysis. Biol. Psychol. 2014, 102, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Gaillard, A.; Fehring, D.J.; Rossell, S.L. A systematic review and meta-analysis of behavioural sex differences in executive control. Eur. J. Neurosci. 2021, 53, 519–542. [Google Scholar] [CrossRef] [PubMed]
- Yoon, Y.; Eisenstadt, M.; Lereya, S.T.; Deighton, J. Gender difference in the change of adolescents’ mental health and subjective wellbeing trajectories. Eur. Child Adolesc. Psychiatry 2023, 32, 1569–1578. [Google Scholar] [CrossRef]
- Iannattone, S.; Mignemi, G.; Pivetta, E.; Gatta, M.; Sica, C.; Cardi, V.; Canale, N.; Spoto, A.; Bottesi, G. Are anxiety, depression, and stress distinguishable in Italian adolescents? an examination through the Depression Anxiety Stress Scales-21. PLoS ONE 2024, 19, e0299229. [Google Scholar] [CrossRef]
- Boyd, A.; Van de Velde, S.; Vilagut, G.; De Graaf, R.; Florescu, S.; Alonso, J.; Kovess-Masfety, V.; Investigators, E.-W. Gender differences in mental disorders and suicidality in Europe: Results from a large cross-sectional population-based study. J. Affect. Disord. 2015, 173, 245–254. [Google Scholar] [CrossRef]
- Gómez, G.; Rivas, M.; Giaconi, V.; Martínez, C.; Burrone, M.S. Understanding the influence of children’s mental health, cognitive development, and environmental factors on learning outcomes in Chile. Humanit. Soc. Sci. Commun. 2024, 11, 1419. [Google Scholar] [CrossRef]
- Dale, H.; Brassington, L.; King, K. The impact of healthy lifestyle interventions on mental health and wellbeing: A systematic review. Ment. Health Rev. J. 2014, 19, 1–26. [Google Scholar] [CrossRef]
Boys (n = 306) | Girls (n = 319) | Total (n = 625) | p-Value | F-Value | |
---|---|---|---|---|---|
Age (y) | 13.20 ± 1.75 | 13.23 ± 1.91 | 13.22 ± 1.83 | 0.859 | 0.03 |
Screen time (h/day) | 3.40 ± 1.62 | 3.041 ± 1.44 | 3.22 ± 1.54 | 0.300 | 8.72 |
Physical activity (h/week) | 2.12 ± 1.17 | 1.73 ± 1.10 | 1.92 ± 1.15 | p < 0.001 | 17.88 |
Lifestyle | 3.80 ± 1.90 | 3.75 ± 1.81 | 3.78 ± 1.85 | 0.736 | 0.11 |
Executive functions | |||||
Attention (score) | 435.59 ± 148.64 | 405.42 ± 155.72 | 419.80 ± 153.00 | 0.017 | 5.68 |
Cognitive flexibility (score) | 385.48 ± 245.60 | 330.18 ± 240.03 | 356.59 ± 244.07 | 0.006 | 7.51 |
Inhibition | 284.35 ± 222.88 | 301.06 ± 243.98 | 293.08 ± 234.09 | 0.391 | 0.74 |
Working Memory(score) | 208.48 ± 211.79 | 195.66 ± 195.46 | 201.78 ± 203.34 | 0.449 | 0.57 |
Mental health | |||||
Anxiety | 6.32 ± 4.99 | 9.37 ± 5.81 | 7.88 ± 5.63 | p < 0.001 | 49.57 |
Depression | 6.70 ± 4.92 | 9.27 ± 5.77 | 8.01 ± 5.52 | p < 0.001 | 35.94 |
Stress | 8.40 ± 4.86 | 10.80 ± 5.28 | 9.62 ± 5.21 | p < 0.001 | 34.90 |
Boys | Girls | Total | ||||||
---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | |||
Anxiety | Absence | 113 | 36.9% | 63 | 19.7% | 176 | 28.2% | p < 0.001 |
Mild | 25 | 8.2% | 12 | 3.8% | 37 | 5.9% | ||
Moderate | 51 | 16.7% | 56 | 17.6% | 107 | 17.1% | ||
Severe | 37 | 12.1% | 35 | 11.0% | 72 | 11.5% | ||
Extremely severe | 80 | 26.1% | 153 | 48.0% | 233 | 37.3% | ||
Total | 306 | 100.0% | 319 | 100.0% | 625 | 100.0% | ||
Depression | Absence | 120 | 39.2% | 76 | 23.8% | 196 | 31.4% | p < 0.001 |
Mild | 50 | 16.3% | 33 | 10.3% | 83 | 13.3% | ||
Moderate | 64 | 20.9% | 80 | 25.1% | 144 | 23.0% | ||
Severe | 38 | 12.4% | 52 | 16.3% | 90 | 14.4% | ||
Extremely severe | 34 | 11.1% | 78 | 24.5% | 112 | 17.9% | ||
Total | 306 | 100.0% | 319 | 100.0% | 625 | 100.0% | ||
Stress | Absence | 138 | 45.1% | 91 | 28.5% | 229 | 36.6% | p < 0.001 |
Mild | 45 | 14.7% | 31 | 9.7% | 76 | 12.2% | ||
Moderate | 54 | 17.6% | 63 | 19.7% | 117 | 18.7% | ||
Severe | 54 | 17.6% | 84 | 26.3% | 138 | 22.1% | ||
Extremely severe | 15 | 4.9% | 50 | 15.7% | 65 | 10.4% | ||
Total | 306 | 100.0% | 319 | 100.0% | 625 | 100.0% | ||
Lifestyle | Bad lifestyle | 193 | 65.2% | 208 | 66.7% | 401 | 66.0% | p = 0.434 |
Regular lifestyle | 78 | 26.4% | 86 | 27.6% | 164 | 27.0% | ||
Good lifestyle | 25 | 8.4% | 18 | 5.8% | 43 | 7.1% | ||
Total | 296 | 100.0% | 312 | 100.0% | 608 | 100.0% |
β | 95% CI | Beta | SE | p-Value | |||
---|---|---|---|---|---|---|---|
Model | Attention | ||||||
Negative Lifestyle | 1 | −37.45 | −61.12 | −13.78 | −0.13 | 12.05 | 0.002 |
2 | −37.74 | −61.29 | −14.19 | −0.13 | 11.99 | 0.002 | |
3 | −44.23 | −67.93 | −20.54 | −0.15 | 12.06 | p < 0.001 | |
Cognitive Flexibility | |||||||
Negative Lifestyle | 1 | −72.23 | −109.72 | −34.75 | −0.16 | 19.08 | p < 0.001 |
2 | −72.79 | −110.05 | −35.54 | −0.16 | 18.97 | p < 0.001 | |
3 | −85.91 | −123.03 | −48.78 | −0.19 | 18.90 | p < 0.001 | |
Inhibition | |||||||
Negative Lifestyle | 1 | −60.32 | −96.18 | −24.45 | −0.14 | 18.26 | 0.001 |
2 | −60.16 | −96.04 | −24.28 | −0.14 | 18.27 | 0.001 | |
3 | −65.77 | −102.26 | −29.29 | −0.15 | 18.57 | p < 0.001 | |
Working Memory | |||||||
Negative Lifestyle | 1 | −61.98 | −93.19 | −30.77 | −0.16 | 15.89 | p < 0.001 |
2 | −62.15 | −93.36 | −30.94 | −0.16 | 15.89 | p < 0.001 | |
3 | −75.73 | −106.61 | −44.85 | −0.20 | 15.72 | p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caamaño-Navarrete, F.; Arriagada-Hernández, C.; Lagos-Hernández, R.; Fuentes-Vilugrón, G.; Jara-Tomckowiack, L.; Sandoval-Obando, E.; Contreras-Díaz, G.; Jerez-Mayorga, D.; Hernández-Mosqueira, C.; Delgado-Floody, P. The Potential Mediating Role of Good Mental Health on the Relationship Between Low Physical Activity and High Screen Time with Executive Functions in Chilean Children and Adolescents. Children 2025, 12, 1402. https://doi.org/10.3390/children12101402
Caamaño-Navarrete F, Arriagada-Hernández C, Lagos-Hernández R, Fuentes-Vilugrón G, Jara-Tomckowiack L, Sandoval-Obando E, Contreras-Díaz G, Jerez-Mayorga D, Hernández-Mosqueira C, Delgado-Floody P. The Potential Mediating Role of Good Mental Health on the Relationship Between Low Physical Activity and High Screen Time with Executive Functions in Chilean Children and Adolescents. Children. 2025; 12(10):1402. https://doi.org/10.3390/children12101402
Chicago/Turabian StyleCaamaño-Navarrete, Felipe, Carlos Arriagada-Hernández, Roberto Lagos-Hernández, Gerardo Fuentes-Vilugrón, Lorena Jara-Tomckowiack, Eduardo Sandoval-Obando, Guido Contreras-Díaz, Daniel Jerez-Mayorga, Claudio Hernández-Mosqueira, and Pedro Delgado-Floody. 2025. "The Potential Mediating Role of Good Mental Health on the Relationship Between Low Physical Activity and High Screen Time with Executive Functions in Chilean Children and Adolescents" Children 12, no. 10: 1402. https://doi.org/10.3390/children12101402
APA StyleCaamaño-Navarrete, F., Arriagada-Hernández, C., Lagos-Hernández, R., Fuentes-Vilugrón, G., Jara-Tomckowiack, L., Sandoval-Obando, E., Contreras-Díaz, G., Jerez-Mayorga, D., Hernández-Mosqueira, C., & Delgado-Floody, P. (2025). The Potential Mediating Role of Good Mental Health on the Relationship Between Low Physical Activity and High Screen Time with Executive Functions in Chilean Children and Adolescents. Children, 12(10), 1402. https://doi.org/10.3390/children12101402