Relationship between Skeletal Muscle Thickness and Physical Activity in 4- to 6-Year-Olds in Japan
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Anthropometrics Data
2.3. Muscle Thickness
2.4. Physical Activity
2.5. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rennie, K.L.; Wells, J.C.; McCaffrey, T.A.; Livingstone, M.B. The effect of physical activity on body fatness in children and adolescents. Proc. Nutr. Soc. 2006, 65, 393–402. [Google Scholar] [CrossRef]
- Janssen, I.; Leblanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Warburton, D.E.; Nicol, C.W.; Bredin, S.S. Health benefits of physical activity: The evidence. CMAJ 2006, 174, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Bailey, D.A.; Faulkner, R.A.; McKay, H.A. Growth, physical activity, and bone mineral acquisition. Exerc. Sport Sci. Rev. 1996, 24, 233–266. [Google Scholar] [CrossRef]
- Tremblay, M.S.; Colley, R.C.; Saunders, T.J.; Healy, G.N.; Owen, N. Physiological and health implications of a sedentary lifestyle. Appl. Physiol. Nutr. Me. 2010, 35, 725–740. [Google Scholar] [CrossRef] [PubMed]
- Snyder, W.S.; Cook, M.J.; Nasset, E.S.; Karhausen, L.R.; Howells, G.P.; Tipton, I.H. Report of the Task Group in Reference Man (International Commission on Radiological Protection No. 23); Pergamon Press: Now York, NY, USA, 1984. [Google Scholar]
- Huang, T.T.; Johnson, M.S.; Figueroa-Colon, R.; Dwyer, J.H.; Goran, M.I. Growth of visceral fat, subcutaneous abdominal fat, and total body fat in children. Obes. Res. 2001, 9, 283–289. [Google Scholar] [CrossRef]
- Pengyu, D.; Noriko, I.S.; Liangfu, Z.; Hisashi, N. Changes in physical activity and weight status of Chinese children: A retrospective longitudinal study. Jpn. J. Phys. Fit. Sport. Med. 2016, 5, 247–256. [Google Scholar]
- Telama, R.; Yang, X.; Viikari, J.; Valimaki, I.; Wanne, O.; Raitakari, O. Physical activity from childhood to adulthood: A 21-year tracking study. Am. J. Prev. Med. 2005, 28, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Khaw, K.T.; Wareham, N.; Bingham, S.; Welch, A.; Luben, R.; Day, N. Combined impact of health behaviours and mortality in men and women: The EPIC-Norfolk prospective population study. PLoS Med. 2008, 5, e12. [Google Scholar]
- Abe, T.; Sakamaki, M.; Yasuda, T.; Bemben, M.G.; Kondo, M.; Kawakami, Y.; Fukunaga, T. Age-related, site-specific muscle loss in 1507 Japanese men and women aged 20 to 95 years. J. Sports Sci. Med. 2011, 10, 145–150. [Google Scholar]
- Frontera, W.R.; Hughes, V.A.; Fielding, R.A.; Fiatarone, M.A.; Evans, W.J.; Roubenoff, R. Aging of skeletal muscle: A 12-yr longitudinal study. J. Appl. Physiol. 2000, 88, 1321–1326. [Google Scholar] [CrossRef]
- Booth, F.W.; Chakravarthy, M.V.; Gordon, S.E.; Spangenburg, E.E. Waging war on physical inactivity: Using modern molecular ammunition against an ancient enemy. J. Appl. Physiol. 2002, 93, 3–30. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, N.; Welsman, J.R. Peak oxygen uptake in relation to growth and maturation in 11-to 17-year-old humans. Eur. J. Appl. Physiol. 2001, 85, 546–551. [Google Scholar] [CrossRef] [PubMed]
- Scott, D.; Blizzard, L.; Fell, J.; Jones, G. Ambulatory activity, body composition, and lower-limb muscle strength in older adults. Med. Sci. Sport. Exerc. 2009, 41, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.C.; Kim, M.K.; Han, K.; Lee, S.Y.; Lee, S.H.; Ko, S.H.; Kwon, H.S.; Merchant, A.T.; Yim, H.W.; Lee, W.C.; et al. Low muscle mass is associated with metabolic syndrome only in nonobese young adults: The Korea National Health and Nutrition Examination Survey 2008–2010. Nutr. Res. 2015, 35, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Baxter-Jones, A.D.G.; Eisenmann, J.C.; Mirwald, R.L.; Faulkner, R.A.; Bailey, D.A. The influence of physical activity on lean mass accrual during adolescence: A longitudinal analysis. J. Appl. Physiol. 2008, 105, 734–741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ara, I.; Vicente-Rodriguez, G.; Jimenez-Ramirez, J.; Dorado, C.; Serrano-Sanchez, J.A.; Calbet, J.A.L. Regular participation in sports is associated with enhanced physical fitness and lower fat mass in prepubertal boys. Int. J. Obes. 2004, 28, 1585–1593. [Google Scholar] [CrossRef] [Green Version]
- Funatsu, K.; Muraki, S. Influences of lower limb muscle thickness on sprint motion in childhood. Jpn. J. Phys. Fit. Sport. Med. 2013, 62, 365–373. [Google Scholar] [CrossRef] [Green Version]
- Cohn, S.H.; Vartsky, D.; Yasumura, S.; Sawitsky, A.; Zanzi, I.; Vaswani, A.; Ellis, K.J. Compartmental body composition based on total-body nitrogen, potassium, and calcium. Am. J. Physiol. 1980, 239, E524–E530. [Google Scholar] [CrossRef]
- Gallagher, D.; Heymsfield, S.B. Muscle distribution: Variations with body weight, gender, and age. Appl. Radiat. Isot. 1998, 49, 733–734. [Google Scholar] [CrossRef]
- Gallagher, D.; Visser, M.; De Meersman, R.E.; Sepulveda, D.; Baumgartner, R.N.; Pierson, R.N.; Harris, T.; Heymsfield, S.B. Appendicular skeletal muscle mass: Effects of age, gender, and ethnicity. J. Appl. Physiol. 1997, 83, 229–239. [Google Scholar] [CrossRef]
- Kehayias, J.J.; Fiatarone, M.A.; Zhuang, H.; Roubenoff, R. Total body potassium and body fat: Relevance to aging. Am. J. Clin. Nutr. 1997, 66, 904–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adachi, M.; Sasayama, K.; Hikihara, Y.; Okishima, K.; Mizuuchi, H.; Sunanmi, Y.; Shiomi, M.; Nishimuta, M. Assessing daily physical activity in elementary school students used by accelerometer: A validation study against doubly labeled water method. Jpn. J. Phys. Fit. Sport. Med. 2007, 56, 347–355. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Pavon, D.; Kelly, J.; Reilly, J.J. Associations between objectively measured habitual physical activity and adiposity in children and adolescents: Systematic review. Int. J. Pediatr. Obes. 2010, 5, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Hikihara, Y.; Sasayama, K.; Okishima, K.; Mizuuchi, H.; Yoshitake, Y.; Adachi, M.; Takamatsu, K. The difference of relationships between physical activity variables and physical fitness in children and adolescents: With special reference to amount and intensity of physical activity. Jpn. J. Phys. Fit. Sport. Med. 2007, 56, 327–339. [Google Scholar]
- Adachi, M.; Sasayama, K.; Ando, K. Relationship between walking or running speed and exercise intensity measured by Accelerometer on Japanese school children and adolescens (Japanese). Bull. Fac. Educ. Okayama Univ. 2005, 128, 141–145. [Google Scholar]
- Trost, S.G.; McIver, K.L.; Pate, R.R. Conducting Accelerometer-Based Activity Assessments in Field-Based Research. Med. Sci. Sport. Exerc. 2005, 37, S531–S543. [Google Scholar] [CrossRef] [PubMed]
- Moliner-Urdiales, D.; Ortega, F.B.; Vicente-Rodriguez, G.; Rey-Lopez, J.P.; Gracia-Marco, L.; Widhalm, K.; Sjostrom, M.; Moreno, L.A.; Castillo, M.J.; Ruiz, J.R. Association of physical activity with muscular strength and fat-free mass in adolescents: The HELENA study. Eur. J. Appl. Physiol. 2010, 109, 1119–1127. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Gomez, D.; Welk, G.J.; Puertollano, M.A.; Del-Campo, J.; Moya, J.M.; Marcos, A.; Veiga, O.L.; Group, A.S. Associations of physical activity with muscular fitness in adolescents. Scand. J. Med. Sci. Sport. 2011, 21, 310–317. [Google Scholar] [CrossRef] [Green Version]
- Ogawa, M.; Yasuda, T.; Abe, T. Component characteristics of thigh muscle volume in young and older healthy men. Clin. Physiol. Funct. Imaging 2012, 32, 89–93. [Google Scholar] [CrossRef]
- Frontera, W.R.; Reid, K.F.; Phillips, E.M.; Krivickas, L.S.; Hughes, V.A.; Roubenoff, R.; Fielding, R.A. Muscle fiber size and function in elderly humans: A longitudinal study. J. Appl. Physiol. 2008, 105, 637–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrmann, D.; Buck, C.; Sioen, I.; Kouride, Y.; Marild, S.; Molnar, D.; Mouratidou, T.; Pitsiladis, Y.; Russo, P.; Veidebaum, T.; et al. Impact of physical activity, sedentary behaviour and muscle strength on bone stiffness in 2-10-year-old children-cross-sectional results from the IDEFICS study. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.; Park, S.; Shephard, R.J.; Aoyagi, Y. Yearlong physical activity and sarcopenia in older adults: The Nakanojo Study. Eur. J. Appl. Physiol. 2010, 109, 953–961. [Google Scholar] [CrossRef]
- Katzmarzyk, P.T.; Malina, R.M.; Song, T.M.; Bouchard, C. Physical activity and health-related fitness in youth: A multivariate analysis. Med. Sci. Sport. Exerc. 1998, 30, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). The Sport Basic Plan 3th. 2022. Available online: https://www.mext.go.jp/sports/b_menu/sports/mcatetop01/list/1372413_00001.htm (accessed on 20 February 2023).
- Eliakim, A.; Scheett, T.; Allmendinger, N.; Brasel, J.A.; Cooper, D.M. Training, muscle volume, and energy expenditure in nonobese American girls. J. Appl. Physiol. 2001, 90, 35–44. [Google Scholar] [CrossRef] [Green Version]
- Eliakim, A.; Brasel, J.A.; Mohan, S.; Wong, W.L.; Cooper, D.M. Increased physical activity and the growth hormone-IGF-I axis in adolescent males. Am. J. Physiol. 1998, 275, R308–R314. [Google Scholar] [CrossRef] [Green Version]
- Sherar, L.B.; Esliger, D.W.; Baxter-Jones, A.D.; Tremblay, M.S. Age and gender differences in youth physical activity: Does physical maturity matter? Med. Sci. Sport. Exerc. 2007, 39, 830–835. [Google Scholar] [CrossRef]
- Trost, S.G.; Pate, R.R.; Sallis, J.F.; Freedson, P.S.; Taylor, W.C.; Dowda, M.; Sirard, J. Age and gender differences in objectively measured physical activity in youth. Med. Sci. Sport. Exerc. 2002, 34, 350–355. [Google Scholar] [CrossRef]
- Wolfe, R.R. The underappreciated role of muscle in health and disease. Am. J. Clin. Nutr. 2006, 84, 475–482. [Google Scholar] [CrossRef] [Green Version]
- Edwardson, C.L.; Gorely, T. Epoch length and its effect on physical activity intensity. Med. Sci. Sport. Exerc. 2010, 42, 928–934. [Google Scholar] [CrossRef]
All | Boys | Girls | Sex Difference | Daily Difference | |
---|---|---|---|---|---|
n = 275 | n = 124 | n = 151 | |||
Age | 5.5 ± 0.5 | 5.5 ± 0.6 | 5.5 ± 0.5 | ||
Height (cm) | 109.5 ± 5.0 | 109.7 ± 5.0 | 109.4 ± 5.0 | p = 0.25 | |
Weight (kg) | 18.4 ± 2.7 | 18.3 ± 2.6 | 18.4 ± 2.8 | p = 0.16 | |
BMI (kg/m2) a | 15.2 ± 1.5 | 15.2 ± 1.4 | 15.3 ± 1.5 | p = 0.12 | |
Muscle Thickness a | |||||
AT (mm) | 24.1 ± 2.7 | 23.6 ± 2.6 | 24.4 ± 2.8 | p = 0.16 | |
PT (mm) | 33.5 ± 2.9 | 34.0 ± 3.0 | 33.0 ± 2.8 | p = 0.10 | |
AL (mm) | 13.3 ± 1.3 | 13.6 ± 1.2 | 13.2 ± 1.4 | p = 0.22 | |
PL (mm) | 37.9 ± 3.0 | 38.1 ± 2.8 | 37.7 ± 3.2 | p = 0.19 | |
Physical activity on weekdays b | |||||
Daylight duration (hour/day) | 11.1 ± 1.3 | 10.9 ± 2.1 | 11.2 ± 1.5 | p = 0.33 | |
Daily step (step) | 15,373 ± 3392 | 16,206 ± 3546 | 16,488 ± 3108 | p = 0.16 | |
TPA (min) | 153.8 ± 33.0 | 161.8 ± 33.8 | 147.2 ± 31.0 | p = 0.07 | |
LPA (min) | 102.6 ± 20.5 | 106.8 ± 20.4 | 99.1 ± 20.0 | p < 0.05 | |
MVPA (time) | 51.2 ± 15.9 | 55.0 ± 17.4 | 48.0 ± 13.8 | p < 0.05 | |
Physical activity on weekends b | |||||
Daylight duration (hour/day) | 10.5 ± 1.1 | 10.3 ± 1.2 | 10.5 ± 1.0 | p = 0.29 | p = 0.35 |
Daily step (step) | 10,629 ± 4016 | 10,514 ± 3913 | 10,724 ± 4110 | p = 0.16 | p < 0.05 |
TPA (time) | 109.0 ± 40.0 | 108.6 ± 39.7 | 109.3 ± 40.3 | p = 0.07 | p < 0.05 |
LPA (time) | 77.3 ± 26.3 | 77.4 ± 26.3 | 77.2 ± 26.4 | p = 0.31 | p < 0.05 |
MVPA (time) | 32.2 ± 16.2 | 31.2 ± 16.2 | 32.1 ± 11.7 | p = 0.25 | p < 0.05 |
Model 1 a | Model 2 b | |||||
---|---|---|---|---|---|---|
Adjusted for Sex, Age, Height and Weight | Model 1 + Adjusted for Daylight Duration | |||||
β | p Value | R2 | β | p Value | R2 | |
Anterior thigh | ||||||
Daily steps (steps/day) | 0.11 | 0.15 | 0.151 | −0.84 | 0.75 | 0.169 |
LPA (min/day) | 0.13 | 0.21 | 0.175 | −0.05 | 0.89 | 0.183 |
MVPA (min/day) | 0.76 | <0.05 | 0.181 | 1.37 | <0.05 | 0.242 |
TPA (min/day) | 1.23 | <0.05 | 0.177 | 1.11 | <0.05 | 0.238 |
Posterior thigh | ||||||
Daily steps (steps/day) | 1.86 | 0.87 | 0.156 | 1.02 | 0.86 | 0.157 |
LPA (min/day) | 0.68 | 0.96 | 0.227 | 0.43 | 0.15 | 0.225 |
MVPA (min/day) | 0.55 | 0.93 | 0.238 | 1.74 | 0.98 | 0.263 |
TPA (min/day) | −0.91 | 0.74 | 0.167 | 0.94 | 0.26 | 0.267 |
Anterior lower leg | ||||||
Daily steps (steps/day) | 0.72 | 0.56 | 0.208 | −1.33 | 0.45 | 0.296 |
LPA (min/day) | 0.45 | 0.38 | 0.342 | 0.09 | 0.69 | 0.263 |
MVPA (min/day) | 0.01 | 0.92 | 0.174 | −0.44 | 0.11 | 0.272 |
TPA (min/day) | 0.05 | 0.22 | 0.237 | −0.04 | 0.50 | 0.184 |
Posterior lower leg | ||||||
Daily steps (steps/day) | 0.72 | 0.56 | 0.208 | −0.03 | 0.45 | 0.196 |
LPA (min/day) | 0.45 | 0.38 | 0.142 | −0.01 | 0.35 | 0.242 |
MVPA (min/day) | 1.61 | <0.05 | 0.248 | 1.18 | <0.05 | 0.190 |
TPA (min/day) | 0.81 | <0.05 | 0.246 | 0.94 | <0.05 | 0.186 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, P.; Ozaki, H.; Natsume, T.; Ishihara, Y.; Ke, D.; Suzuki, K.; Naito, H. Relationship between Skeletal Muscle Thickness and Physical Activity in 4- to 6-Year-Olds in Japan. Children 2023, 10, 455. https://doi.org/10.3390/children10030455
Deng P, Ozaki H, Natsume T, Ishihara Y, Ke D, Suzuki K, Naito H. Relationship between Skeletal Muscle Thickness and Physical Activity in 4- to 6-Year-Olds in Japan. Children. 2023; 10(3):455. https://doi.org/10.3390/children10030455
Chicago/Turabian StyleDeng, Pengyu, Hayao Ozaki, Toshiharu Natsume, Yoshihiko Ishihara, Dandan Ke, Koya Suzuki, and Hisashi Naito. 2023. "Relationship between Skeletal Muscle Thickness and Physical Activity in 4- to 6-Year-Olds in Japan" Children 10, no. 3: 455. https://doi.org/10.3390/children10030455
APA StyleDeng, P., Ozaki, H., Natsume, T., Ishihara, Y., Ke, D., Suzuki, K., & Naito, H. (2023). Relationship between Skeletal Muscle Thickness and Physical Activity in 4- to 6-Year-Olds in Japan. Children, 10(3), 455. https://doi.org/10.3390/children10030455