“Light” on Phototherapy—Complications and Strategies for Shortening Its Duration, A Review of the Literature
Abstract
:1. Introduction
2. Materials and Methods
3. Neonatal Jaundice and Phototherapy
3.1. Risk Factors for Neonatal Jaundice
3.2. Risk Factors for Bilirubin Induced Brain Toxicity
3.3. Severe NHB and Bilirubin Encephalopathy
3.4. Common Treatments of NHB
3.5. Mechanisms of Phototherapy
3.6. Types of Phototherapy Devices
3.7. Prophylactic or Preventive Phototherapy
3.8. Possible Complications of Phototherapy
3.8.1. Mother–Newborn Interactions
3.8.2. Short-Term Effects
- Thermal regulation and hydration
- Electrolyte disturbances
- Hematologic effects
- Sleep disturbances
- Skin
- Cardiovascular effects
- Gastrointestinal effects
- Survival
3.8.3. Long-Term Effects
- A long duration of neonatal phototherapy was positively associated with the risk of allergic disorders, especially food allergies [70].
- In addition, blue light treatment during the newborn period may also be related to other morbidities. Authors confirmed a small increase in the risk of childhood convulsions (especially among boys) who received phototherapy in the neonatal period. They noted that the association was not due to hyperbilirubinemia itself or other known confounding variables [71]. A previous study showed similar results and the authors concluded that sex and gestational age may play important roles in this association [72].
- Recently, questions have been raised about the effect of phototherapy on child development. A Japanese observational cohort study was performed that examined the relationship between phototherapy duration for neonatal jaundice and the risk of neurodevelopmental impairment at 3 years of age. A data analysis of 76,897 infants was performed. Four exposure groups were studied: no phototherapy, short phototherapy (1–24 h), long phototherapy (2–48 h), and very long phototherapy (>48 h). After adjusting for relevant risk factors, a dose–response relationship was identified between the duration of phototherapy and the children’s development at age three, and the differences were significant. A longer duration of phototherapy is a predictor of neurodevelopmental delay, therefore, it is prudent to avoid prolonged periods of phototherapy [73].
- Since the 1970s, there have been reports that phototherapy has a mutagenic effect on prokaryotic and eukaryotic cells [74]. A previous study showed the effects of phototherapy on an increase in the incidence of neonatal melanocytic nevi, which is known to be the most important risk factor for the appearance of melanoma in the skin [75]. It has also been suggested that phototherapy in newborns may increase the risk of hemangioma in infants, and this happens as a result of oxidative stress that damages vascular endothelial cells and stimulates the formation of new blood vessels [76]. Accumulating evidence in recent years has indicated that phototherapy may cause a variety of adverse reactions, including DNA damage, cancer risk, and mortality in VLBW [35,77,78]. Phototherapy may be a possible risk factor for cancer. A recently published review found links between phototherapy in newborns and an increased risk of cancer. Specifically, all hematopoietic cancers, all leukemias, and myeloid leukemias showed statistically significant associations. Phototherapy in newborns, according to these results, may be associated with a 1.2 fold increase in the chance of developing any cancer, 1.5 fold risk for any hematopoietic cancer, 1.4 fold risk for leukemia, and 2.9 fold risk for myelocytic leukemia [35]. In addition, a population-based cohort study in a Canadian medical district with a 10-year follow-up in public hospital care indicated that infants who received phototherapy were at an increased risk for cancer several years after exposure, particularly solid tumors. However, the researchers noted that the associations found were weak, and they failed to confirm a direct effect of phototherapy [79]. A recently published population-based retrospective cohort study that included all babies born after ≥32 weeks’ gestation in a single medical center in Israel between 1988 and 2018 compared the incidence of neoplastic diseases between infants exposed to phototherapy and those who were not. The medical center’s database was crosschecked and the diagnosis was verified with the registry of malignant childhood diseases according to the National Cancer Registry of the Israeli Ministry of Health. The study population included 342,172 infants, of which 18,797 (5.5%) were exposed to phototherapy. According to the researchers’ findings, phototherapy was associated with a significantly increased risk of childhood malignancies and benign tumors. Specifically, phototherapy was associated with hematopoietic cancer and leukemia, but not with solid tumors and lymphoma [78]. The increased risk of cancer in children previously exposed to phototherapy may related to the hyperbilirubinemia itself, phototherapy, or a combination of both [79,80].
4. Strategies for Shortening Phototherapy
4.1. Cycled Phototherapy
4.2. Positioning during Phototherapy
4.3. Probiotics
4.4. Pomegranate Juice
4.5. Fibrate
4.6. Metalloporphyrins
4.7. Zinc Sulfate
4.8. Kangaroo Mother Care
4.9. Massage
4.10. Traditional Chinese Medicine
4.10.1. Tuina
4.10.2. Medical Bath
4.10.3. Oral Herbal Treatment
4.11. Folk Traditions, Beliefs, and Superstitions
Purgative Manna
4.12. Enhancement of Defecation
5. New Technologies
6. Discussion
7. Limitations
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Olusanya, B.O.; Kaplan, M.; Hansen, T.W.R. Neonatal hyperbilirubinaemia: A global perspective. Lancet Child Adolesc. Health 2018, 2, 610–620. [Google Scholar] [CrossRef] [PubMed]
- Anupriya, K.S.; Pradeep, N. Cord blood albumin level as a predictor of neonatal physiological jaundice in healthy term neonate. Indian J. Child Health 2023, 10, 77–79. [Google Scholar] [CrossRef]
- Gao, C.; Guo, Y.; Huang, M.; He, J.; Qiu, X. Breast Milk Constituents and the Development of Breast Milk Jaundice in Neonates: A Systematic Review. Nutrients 2023, 15, 2261. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Kumar, P.; Sundaram, V.; Munjal, S.K.; Malhi, P.; Panda, N.K. Childhood neurodevelopmental outcomes of survivors of acute bilirubin encephalopathy: A retrospective cohort study. Early Hum. Dev. 2021, 158, 105380. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guo, G.; Li, A.; Cai, W.Q.; Wang, X. Challenges of phototherapy for neonatal hyperbilirubinemia (Review). Exp. Ther. Med. 2021, 21, 231. [Google Scholar] [CrossRef] [PubMed]
- Kemper, A.R.; Newman, T.B.; Slaughter, J.L.; Maisels, M.J.; Watchko, J.F.; Downs, S.M.; Grout, R.W.; Bundy, D.G.; Stark, A.R.; Bogen, D.L.; et al. Clinical Practice Guideline Revision: Management of Hyperbilirubinemia in the Newborn Infant 35 or More Weeks of Gestation. Pediatrics 2022, 150, e2022058859. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.C.; Chen, S.M.; Chang, Y.Z.; Sun, H.L.; Ku, M.S. Maternal Exposure to Air Pollution Is Associated with Neonatal Jaundice: A Retrospective Cohort Study. J. Pediatr. 2022, 242, 99–105.e4. [Google Scholar] [CrossRef] [PubMed]
- Nelin, T.; Burris, H.H. In Utero Exposure to Air Pollution May Increase the Risk of Neonatal Hyperbilirubinemia. J. Pediatr. 2022, 242, 8–9. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, W.; Hou, K.; Lin, J.; Song, C.; Zhou, C.; Huang, B.; Tong, X.; Wang, J.; Rhine, W.; et al. Air pollution exposure associates with increased risk of neonatal jaundice. Nat. Commun. 2019, 10, 3741. [Google Scholar] [CrossRef]
- Crane, J.M.; Keough, M.; Murphy, P.; Burrage, L.; Hutchens, D. Effects of environmental tobacco smoke on perinatal outcomes: A retrospective cohort study. BJOG Int. J. Obstet. Gynaecol. 2011, 118, 865–871. [Google Scholar] [CrossRef]
- Salmeri, N.; Farina, A.; Candiani, M.; Dolci, C.; Bonavina, G.; Poziello, C.; Vigano, P.; Cavoretto, P.I. Endometriosis and Impaired Placentation: A Prospective Cohort Study Comparing Uterine Arteries Doppler Pulsatility Index in Pregnancies of Patients with and without Moderate-Severe Disease. Diagnostics 2022, 12, 1024. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Bhutta, Z.A.; Coates, M.M.; Coggeshall, M.; Dandona, L.; Diallo, K.; Franca, E.B.; Fraser, M.; Fullman, N.; Gething, P.W.; et al. Global, regional, national, and selected subnational levels of stillbirths, neonatal, infant, and under-5 mortality, 1980–2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016, 388, 1725–1774. [Google Scholar] [CrossRef] [PubMed]
- Kasirer, Y.; Kaplan, M.; Hammerman, C. Kernicterus on the Spectrum. NeoReviews 2023, 24, e329–e342. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; van Landeghem, F.K.H. Clinicopathological Spectrum of Bilirubin Encephalopathy/Kernicterus. Diagnostics 2019, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Hussain, E.; Parveen, R.; Rai, V.R.; Mahar, S.; Khoso, Z.; Laghari, T.M.; Rani, B. Does Gender Affect Levels of Hyperbilirubinemia in Term Neonates. Pak. J. Med. Health Sci. 2023, 17, 532. [Google Scholar]
- Anjanappa, S.; Ansari, T.F.; Unki, P.; Krishnegowda, M. A prospective study on correlation of cord blood bilirubin with occurrence of neonata l hyperbilirubinemia. J. Med. Sci. Res. 2023, 11, 104–108. [Google Scholar]
- Slusher, T.M.; Zamora, T.G.; Appiah, D.; Stanke, J.U.; Strand, M.A.; Lee, B.W.; Richardson, S.B.; Keating, E.M.; Siddappa, A.M.; Olusanya, B.O. Burden of severe neonatal jaundice: A systematic review and meta-analysis. BMJ Paediatr. Open 2017, 1, e000105. [Google Scholar] [CrossRef] [PubMed]
- Satrom, K.M.; Farouk, Z.L.; Slusher, T.M. Management challenges in the treatment of severe hyperbilirubinemia in low- and middle-income countries: Encouraging advancements, remaining gaps, and future opportunities. Front. Pediatr. 2023, 11, 1001141. [Google Scholar] [CrossRef]
- Perrone, S.; Lembo, C.; Giordano, M.; Petrolini, C.; Cannavo, L.; Gitto, E. Molecular mechanisms of oxidative stress-related neonatal jaundice. J. Biochem. Mol. Toxicol. 2023, 37, e23349. [Google Scholar] [CrossRef]
- Cremer, R.J.; Perryman, P.W.; Richards, D.H. Influence of light on the hyperbilirubinaemia of infants. Lancet 1958, 271, 1094–1097. [Google Scholar] [CrossRef]
- Ebbesen, F.; Hansen, T.W.R.; Maisels, M.J. Update on Phototherapy in Jaundiced Neonates. Curr. Pediatr. Rev. 2017, 13, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Hansen, T.W.R.; Maisels, M.J.; Ebbesen, F.; Vreman, H.J.; Stevenson, D.K.; Wong, R.J.; Bhutani, V.K. Sixty years of phototherapy for neonatal jaundice—from serendipitous observation to standardized treatment and rescue for millions. J. Perinatol. 2020, 40, 180–193. [Google Scholar] [CrossRef] [PubMed]
- Maisels, M.J.; McDonagh, A.F. Phototherapy for neonatal jaundice. N. Engl. J. Med. 2008, 358, 920–928. [Google Scholar] [CrossRef] [PubMed]
- Stokowski, L.A. Fundamentals of phototherapy for neonatal jaundice. Adv. Neonatal Care 2011, 11, S10–S21. [Google Scholar] [CrossRef] [PubMed]
- Tridente, A.; De Luca, D. Efficacy of light-emitting diode versus other light sources for treatment of neonatal hyperbilirubinemia: A systematic review and meta-analysis. Acta Paediatr. 2012, 101, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Javorka, K.; Matasova, K.; Javorka, M.; Zibolen, M. Mechanisms of Cardiovascular Changes of Phototherapy in Newborns with Hyperbilirubinemia. Physiol. Res. 2023, 72, S1–S9. [Google Scholar] [CrossRef] [PubMed]
- Mani, S.; Panneerselvam, K.; Rangaraj, S.; Ramraj, B.; Sundar, S. Effects of Different Types of Phototherapy Units on Neonatal Jaundice: A Cross-sectional Study. J. Clin. Diagn. Res. 2022, 16, 1–5. [Google Scholar] [CrossRef]
- Novoa, R.H.; Huaman, K.; Caballero, P. Light-Emitting Diode (LED) Phototherapy Versus Non-LED Phototherapy Devices for Hyperbilirubinemia in Neonates: A Systematic Review and Meta-Analysis. Am. J. Perinatol. 2022, 16. [Google Scholar] [CrossRef]
- Ung, B.; Suils, H.; Cohen, C.; Autret, F.; Walter-Nicolet, E. Implementation of neonatal phototherapy with the BiliCocoon Bag(R) device in the maternity ward and impact on mother-infant separation. Arch. Pediatr. Organe 2023, 30, 283–290. [Google Scholar] [CrossRef]
- Pettersson, M.; Eriksson, M.; Albinsson, E.; Ohlin, A. Home phototherapy for hyperbilirubinemia in term neonates-an unblinded multicentre randomized controlled trial. Eur. J. Pediatr. 2021, 180, 1603–1610. [Google Scholar] [CrossRef]
- Lovera, L.A.; Torres, J.; Garcia-Perdomo, H.A. Effectiveness and safety of prophylactic phototherapy to prevent jaundice in premature newborns: Systematic review and meta-analysis. J. Child Health Care Prof. Work. Child. Hosp. Community 2023. [Google Scholar] [CrossRef]
- Okwundu, C.I.; Okoromah, C.A.; Shah, P.S. Prophylactic phototherapy for preventing jaundice in preterm or low birth weight infants. Cochrane Database Syst. Rev. 2012, 1, CD007966. [Google Scholar] [CrossRef] [PubMed]
- Boskabadi, H.; Shoeibi, N.; Bagheri, F.; Pourbadakhshan, N.; Moradi, A.; Zakerihamidi, M. Potential Role of Bilirubin in Preventing Retinopathy of Prematurity. Curr. Pediatr. Rev. 2023, 19, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Chen, L.; Shang, S.; Jiang, K. A clinical prediction rule for acute bilirubin encephalopathy in neonates with extreme hyperbilirubinemia: A retrospective cohort study. Medicine 2020, 99, e19364. [Google Scholar] [CrossRef] [PubMed]
- Abdellatif, M.; Tawfik, G.M.; Makram, A.M.; Abdelsattar, M.K.; Dobs, M.; Papadopoulos, D.N.; Hoang-Trong, B.L.; Mostafa, E.M.; Duong, P.D.T.; Huy, N.T. Association between neonatal phototherapy and future cancer: An updated systematic review and meta-analysis. Eur. J. Pediatr. 2023, 182, 329–341. [Google Scholar] [CrossRef] [PubMed]
- Abedi, F.; Mirbagher Ajorpaz, N.; Esalatmanesh, S.; Rahemi, Z.; Gilasi, H.R.; Kafaei Atrian, M.; Hosseinian, M. The effect of tactile-kinesthetic stimulation on growth indices of healthy neonates. J. Bodyw. Mov. Ther. 2018, 22, 308–312. [Google Scholar] [CrossRef] [PubMed]
- Sherbiny, H.S.; Youssef, D.M.; Sherbini, A.S.; El-Behedy, R.; Sherief, L.M. High-intensity light-emitting diode vs fluorescent tubes for intensive phototherapy in neonates. Paediatr. Int. Child Health 2016, 36, 127–133. [Google Scholar] [CrossRef]
- Ebbesen, F.; Vreman, H.J.; Hansen, T.W.R. Blue-Green (~480 nm) versus Blue (~460 nm) Light for Newborn Phototherapy-Safety Considerations. Int. J. Mol. Sci. 2022, 24, 461. [Google Scholar] [CrossRef]
- Yassin, F.C.; Delanaud, S.; Szcrupak, C.; Dubos, C.; Durand, E.; Tourneux, P. Optimization of the incubator air temperature during LED phototherapy treatment for the preterm infant. Eur. J. Pediatr. 2021, 180, 277–281. [Google Scholar] [CrossRef]
- Maayan-Metzger, A.; Yosipovitch, G.; Hadad, E.; Sirota, L. Transepidermal water loss and skin hydration in preterm infants during phototherapy. Am. J. Perinatol. 2001, 18, 393–396. [Google Scholar] [CrossRef]
- Faulhaber, F.R.S.; Procianoy, R.S.; Silveira, R.C. Side Effects of Phototherapy on Neonates. Am. J. Perinatol. 2019, 36, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Chinnappa, A.L.; Rudrappa, S. Study of changes in serum sodium and potassium levels in term and preterm neonates following phototherapy. Int. J. Contemp. Pediatr. 2022, 9, 793–798. [Google Scholar] [CrossRef]
- Beser, E.; Cakir, U.; Karacaglar, N.B.; Kucukoglu Keser, M.; Ceran, B.; Tugcu, A.U.; Tayman, C. Phototherapy-induced hypocalcemia and hypoparathyroidism in icteric term newborns. J. Pediatr. Endocrinol. Metab. 2023, 36, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Panneerselvam, K.; Mani, S.; Vasudevan, N.; Preethi, S.; Krishnamoorthy, N.; Rk, P.; Sundar, S. Effect of Light-Emitting Diode Phototherapy on Serum Calcium Levels in Neonates with Jaundice. Cureus 2022, 14, e23938. [Google Scholar] [CrossRef] [PubMed]
- Buonocore, G.; Zani, S.; Sargentini, I.; Gioia, D.; Signorini, C.; Bracci, R. Hypoxia-induced free iron release in the red cells of newborn infants. Acta Paediatr. 1998, 87, 77–81. [Google Scholar] [CrossRef]
- Sisson, T.R. Photodegradation of riboflavin in neonates. Fed. Proc. 1987, 46, 1883–1885. [Google Scholar] [PubMed]
- Sarkar, S.K.; Biswas, B.; Laha, S.; Sarkar, N.; Mondal, M.; Angel, J.; Abhisek, K.; Kumar, V.; Acharya, A.; Biswas, P.; et al. A study on effect of phototherapy on platelet count in neonates with unconjugated hyperbilirubinemia: A hospital based prospective observational study. Asian J. Med. Sci. 2021, 12, 41–46. [Google Scholar] [CrossRef]
- Elsaeed, W.F.; Khalil, A.M.; Abdel-Mohsen, Z.M. Evaluation of Phototherapy on Platelet Count in Neonates with Neonatal Hyperbilirubinemia. Zagazig Univ. Med. J. 2023, 29, 292–298. [Google Scholar]
- Atan, Y.S.; Subasi, M.; Guzel Ozdemir, P.; Batur, M. The Effect of Blindness on Biological Rhythms and the Consequences of Circadian Rhythm Disorder. Turk. J. Ophthalmol. 2023, 53, 111–119. [Google Scholar] [CrossRef]
- Hotta, M.; Ueda, K.; Ikehara, S.; Tanigawa, K.; Nakayama, H.; Wada, K.; Kimura, T.; Ozono, K.; Sobue, T.; Iso, H.; et al. Association between neonatal phototherapy and sleep: The Japan Environment and Children’s Study. J. Sleep Res. 2023, 32, e13911. [Google Scholar] [CrossRef]
- McDonagh, A.F. Bilirubin, copper-porphyrins, and the bronze-baby syndrome. J. Pediatr. 2011, 158, 160–164. [Google Scholar] [CrossRef]
- Bertini, G.; Dani, C.; Fonda, C.; Zorzi, C.; Rubaltelli, F.F. Bronze baby syndrome and the risk of kernicterus. Acta Paediatr. 2005, 94, 968–971. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Qu, Y.; Cambier, S.; Mu, D. The side effects of phototherapy for neonatal jaundice: What do we know? What should we do? Eur. J. Pediatr. 2011, 170, 1247–1255. [Google Scholar] [CrossRef] [PubMed]
- Mourad, R.M.; Waked, N.M.; El Desouky, M.A.; El-Khashab, K.M.A.; El-Gayed, A.S. Peripheral Blood Count Changes in Neonates with Indirect Hyperbilirubinemia after Phototherapy. Egypt. J. Hosp. Med. 2023, 90, 1141–1148. [Google Scholar] [CrossRef]
- Javorka, K.; Nandraziova, L.; Uhrikova, Z.; Czippelova, B.; Matasova, K.; Javorka, M.; Zibolen, M. Cardiovascular changes during phototherapy in newborns. Physiol. Res. 2022, 71, S179–S186. [Google Scholar] [CrossRef] [PubMed]
- Javorka, K.; Zavarska, L. Changes in systemic blood pressure and cardiorespiratory parameters in premature neonates during phototherapy. Ceskoslovenska Pediatr. 1990, 45, 230–232. [Google Scholar]
- Weissman, A.; Berkowitz, E.; Smolkin, T.; Blazer, S. Effect of phototherapy on neonatal heart rate variability and complexity. Neonatology 2009, 95, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Benders, M.J.; Van Bel, F.; Van de Bor, M. Cardiac output and ductal reopening during phototherapy in preterm infants. Acta Paediatr. 1999, 88, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Borenstein-Levin, L.; Kugelman, A.; Horani, A.; Sharif, Y.; Sharif-Rasslan, A.; Riskin, A.; Hochwald, O.; Dinur, G.; Amshalom, A.; Bader, D.; et al. Alterations in Sensitive Measures of Cardiac Function in Healthy Neonates during Phototherapy. Harefuah 2020, 159, 739–744. [Google Scholar]
- Borenstein-Levin, L.; Sharif, D.; Amshalom, A.; Riskin, A.; Hemo, M.; Khalil, A.; Bader, D.; Kugelman, A. Effects of Phototherapy on Coronary Blood Flow in Healthy Neonates: A Pilot Study. Neonatology 2016, 110, 75–82. [Google Scholar] [CrossRef]
- Bader, D.; Kugelman, A.; Blum, D.E.; Riskin, A.; Tirosh, E. Effect of phototherapy on cardiorespiratory activity during sleep in neonates with physiologic jaundice. Isr. Med. Assoc. J. 2006, 8, 12–16. [Google Scholar] [PubMed]
- Barefield, E.S.; Dwyer, M.D.; Cassady, G. Association of patent ductus arteriosus and phototherapy in infants weighing less than 1000 grams. J. Perinatol. 1993, 13, 376–380. [Google Scholar] [PubMed]
- Bozkaya, D.; Dizdar, E.A.; Ertekin, O.; Derme, T.; Umac, H.A. Effect of phototherapy on the ductus arteriosus diameter in extremely premature infants: A randomised controlled trial. Early Hum. Dev. 2023, 183, 105820. [Google Scholar] [CrossRef] [PubMed]
- Fan, S.; Zhang, K.; Zhang, J.; Zhang, L.; Liu, L.; Lv, A.; Ma, Y.; Fang, X.; Zheng, F.; Wu, Z.; et al. Analysis of the effect of phototherapy on intestinal probiotics and metabolism in newborns with jaundice. Front. Pediatr. 2022, 10, 878473. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, K.; Thomas, E.; Patole, S.; Muller, R. Is phototherapy a risk factor for ileus in high-risk neonates? J. Matern.-Fetal Neonatal Med. 2005, 18, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhong, X.Y.; Zhou, L.G.; Wu, Y.; Wang, L.; Song, S.J. Phototherapy: A new risk factor for necrotizing enterocolitis in very low birth weight preterm infants? a retrospective case-control study. J. Perinatol. 2023. [Google Scholar] [CrossRef]
- Riskin, A.; Kugelman, A.; Bader, D. Necrotizing enterocolitis following intensive phototherapy in full-term newborns—Is there a possible association? Case Rep. Perinat. Med. 2015, 4, 151–154. [Google Scholar] [CrossRef]
- Morris, B.H.; Oh, W.; Tyson, J.E.; Stevenson, D.K.; Phelps, D.L.; O’Shea, T.M.; McDavid, G.E.; Perritt, R.L.; Van Meurs, K.P.; Vohr, B.R.; et al. Aggressive vs. conservative phototherapy for infants with extremely low birth weight. N. Engl. J. Med. 2008, 359, 1885–1896. [Google Scholar] [CrossRef]
- Lamola, A.A. A Pharmacologic View of Phototherapy. Clin. Perinatol. 2016, 43, 259–276. [Google Scholar] [CrossRef]
- Hotta, M.; Ueda, K.; Ikehara, S.; Tanigawa, K.; Nakayama, H.; Wada, K.; Kimura, T.; Ozono, K.; Sobue, T.; Iso, H.; et al. The Duration of Neonatal Phototherapy and Allergic Disorders: The Japan Environment and Children’s Study. Int. Arch. Allergy Immunol. 2023, 184, 211–219. [Google Scholar] [CrossRef]
- Newman, T.B.; Wu, Y.W.; Kuzniewicz, M.W.; Grimes, B.A.; McCulloch, C.E. Childhood Seizures After Phototherapy. Pediatrics 2018, 142, e20180648. [Google Scholar] [CrossRef]
- Maimburg, R.D.; Olsen, J.; Sun, Y. Neonatal hyperbilirubinemia and the risk of febrile seizures and childhood epilepsy. Epilepsy Res. 2016, 124, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Hotta, M.; Ueda, K.; Ikehara, S.; Tanigawa, K.; Nakayama, H.; Wada, K.; Kimura, T.; Ozono, K.; Sobue, T.; Iso, H.; et al. Phototherapy and risk of developmental delay: The Japan Environment and Children’s Study. Eur. J. Pediatr. 2023, 182, 2139–2149. [Google Scholar] [CrossRef] [PubMed]
- Speck, W.T.; Rosenkranz, H.S. Phototherapy for neonatal hyperbilirubinemia--a potential environmental health hazard to newborn infants: A review. Environ. Mutagen. 1979, 1, 321–336. [Google Scholar] [CrossRef]
- Matichard, E.; Le Henanff, A.; Sanders, A.; Leguyadec, J.; Crickx, B.; Descamps, V. Effect of neonatal phototherapy on melanocytic nevus count in children. Arch. Dermatol. 2006, 142, 1599–1604. [Google Scholar] [CrossRef] [PubMed]
- Auger, N.; Ayoub, A.; Lo, E.; Luu, T.M. Increased risk of hemangioma after exposure to neonatal phototherapy in infants with predisposing risk factors. Acta Paediatr. 2019, 108, 1447–1452. [Google Scholar] [CrossRef] [PubMed]
- Arnold, C.; Tyson, J.E. Phototherapy for preterm newborns-historical controversies and RCT evidence. Pediatr. Med. 2021, 4, 35. [Google Scholar] [CrossRef]
- Bugaiski-Shaked, A.; Shany, E.; Mesner, O.; Sergienko, R.; Wainstock, T. Association Between Neonatal Phototherapy Exposure and Childhood Neoplasm. J. Pediatr. 2022, 245, 111–116. [Google Scholar] [CrossRef]
- Auger, N.; Laverdiere, C.; Ayoub, A.; Lo, E.; Luu, T.M. Neonatal phototherapy and future risk of childhood cancer. Int. J. Cancer 2019, 145, 2061–2069. [Google Scholar] [CrossRef]
- Kanmaz, H.G.; Okur, N.; Dilli, D.; Yesilyurt, A.; Oguz, S.S. The effect of phototherapy on sister chromatid exchange with different light density in newborn hyperbilirubinemia. Turk. Arch. Pediatr. 2017, 52, 202–207. [Google Scholar] [CrossRef]
- Arnold, C.; Tyson, J.E.; Pedroza, C.; Carlo, W.A.; Stevenson, D.K.; Wong, R.; Dempsey, A.; Khan, A.; Fonseca, R.; Wyckoff, M.; et al. Cycled Phototherapy Dose-Finding Study for Extremely Low-Birth-Weight Infants: A Randomized Clinical Trial. JAMA Pediatr. 2020, 174, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Niknafs, P.; Mortazavi, A.; Torabinezhad, M.; Bahman, B.B.; Niknafs, N. Intermittent versus continuous phototherapy for reducing neonatal hyperbilirubinemia. Iran. J. Pediatr. 2008, 18, 251–256. [Google Scholar]
- Shinwell, E.S.; Sciaky, Y.; Karplus, M. Effect of position changing on bilirubin levels during phototherapy. J. Perinatol. 2002, 22, 226–229. [Google Scholar] [CrossRef] [PubMed]
- Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J. 2017, 474, 1823–1836. [Google Scholar] [CrossRef]
- Penders, J.; Thijs, C.; Vink, C.; Stelma, F.F.; Snijders, B.; Kummeling, I.; van den Brandt, P.A.; Stobberingh, E.E. Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 2006, 118, 511–521. [Google Scholar] [CrossRef] [PubMed]
- Ozge, M.D.; Tugba, G.; Fahri, O.; Guner, K. Effects of Saccharomyces boulardii on Neonatal Hyperbilirubinemia: A randomized controlled trial. Am. J. Perinat. 2015, 2, 137–141. [Google Scholar] [CrossRef]
- Ohland, C.L.; Macnaughton, W.K. Probiotic bacteria and intestinal epithelial barrier function. Am. J. Physiol. Gastrointest. Liver Physiol. 2010, 298, G807–G819. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, L.; Zeng, L.; Yang, X.; Jiang, L.; Gui, G.; Zhang, Z. Probiotics Supplementation Therapy for Pathological Neonatal Jaundice: A Systematic Review and Meta-Analysis. Front. Pharmacol. 2017, 8, 432. [Google Scholar] [CrossRef]
- Hu, D.; Wang, Y.; Yang, S.; Zhang, H. Impact of Saccharomyces boulardii on jaundice in premature infants undergoing phototherapy. J. Pediatr. 2023, 99, 263–268. [Google Scholar] [CrossRef]
- Mutlu, M.; Aslan, Y.; Kader, S.; Akturk Acar, F. Preventive Effects of Probiotic Supplementation on Neonatal Hyperbilirubinemia Caused by Isoimmunization. Am. J. Perinatol. 2020, 37, 1173–1176. [Google Scholar] [CrossRef]
- Deshmukh, J.; Deshmukh, M.; Patole, S. Probiotics for the management of neonatal hyperbilirubinemia: A systematic review of randomized controlled trials. J. Matern.-Fetal Neonatal Med. 2019, 32, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Nouri, S.A.H.; Zarkesh, M. Recent advances in adjuvant pharmacotherapy for neonatal indirect hyperbilirubinemia: A narrative review. J. Compr. Pediatr. 2023, 14, e136461. [Google Scholar]
- Rezapour, M.; Zahedpasha, Y.; Kamalinejad, M.; Memariani, Z.; Alijanpour, M.; Ahmadpour-Kacho, M.; Mozaffarpur, S.A.; Shirafkan, H. The effect of oral use of concentrated pomegranate juice by mothers on hyperbilirubinemia in neonates under phototherapy: A randomized clinical trial. J. Res. Med. Sci. 2023, 28, 46. [Google Scholar] [CrossRef] [PubMed]
- Khafaga, K.A.; Alsaid, L.M.; Salama, R.H.; Abougabal, M.T. Fenofibrate As an Adjuvant to Phototherapy in Term Neonates with Hyperbilirubinemia; A Randomized Controlled Clinical Trial. Egypt J. Hosp. Med. 2022, 89, 4439–4443. [Google Scholar] [CrossRef]
- Eghbalian, F.; Raeisi, R.; Faradmal, J.; Asgharzadeh, A. The Effect of Clofibrate and Phototherapy on Prolonged Jaundice due to Breast Milk in Full-Term Neonates. Clin. Med. Insights Pediatr. 2023, 17, 11795565231177987. [Google Scholar] [CrossRef] [PubMed]
- Ahmadpour-Kacho, M.; Zahed Pasha, Y.; Moghadamnia, A.A.; Khafri, S.; Vafaeinezhad, M. The Effect of Oral Fenofibrate on Serum Bilirubin Level in Term Neonates with Hyperbilirubinemia: A Randomized Clinical Trail. Int. J. Pediatr. 2018, 6, 8317–8327. [Google Scholar] [CrossRef]
- Awad, M.H.; Amer, S.; Hafez, M.; Nour, I.; Shabaan, A. Fenofibrate as an adjuvant to phototherapy in pathological unconjugated hyperbilirubinemia in neonates: A randomized control trial. J. Perinatol. 2021, 41, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Prabha, M.S.; Saravanan, S. The efficacy of fenofibrate as an adjunct to phototherapy for neonatal hyperbilirubinemia. Int. J. Paediatr. Geriatr. 2020, 3, 73–75. [Google Scholar] [CrossRef]
- Zamiri-Miandoab, N.; Montazeri, R.; Hassanpour, S.; Mirghafourvand, M. Effect of Fenofibrate on Neonatal Hyperbilirubinemia: A Systematic Review and Meta-analysis. Iran. J. Neonatol. 2021, 12, 76–84. [Google Scholar] [CrossRef]
- Shabo, S.K.; Gargary, K.H.; Erdeve, O. Indirect Neonatal Hyperbilirubinemia and the Role of Fenofibrate as an Adjuvant to Phototherapy. Children 2023, 10, 1192. [Google Scholar] [CrossRef]
- Drummond, G.S.; Kappas, A. Prevention of neonatal hyperbilirubinemia by tin protoporphyrin IX, a potent competitive inhibitor of heme oxidation. Proc. Natl. Acad. Sci. USA 1981, 78, 6466–6470. [Google Scholar] [CrossRef]
- Drummond, G.S.; Kappas, A. Chemoprevention of neonatal jaundice: Potency of tin-protoporphyrin in an animal model. Science 1982, 217, 1250–1252. [Google Scholar] [CrossRef] [PubMed]
- Kappas, A.; Drummond, G.S. Control of heme metabolism with synthetic metalloporphyrins. J. Clin. Investig. 1986, 77, 335–339. [Google Scholar] [CrossRef] [PubMed]
- Vreman, H.J.; Ekstrand, B.C.; Stevenson, D.K. Selection of metalloporphyrin heme oxygenase inhibitors based on potency and photoreactivity. Pediatr. Res. 1993, 33, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Kappas, A. Phase II Randomized Study of Tin Mesoporphyrin for Neonatal Hyperbilirubinemia. Available online: https://clinicaltrials.gov/ct2/show/study/NCT00004381 (accessed on 30 August 2023).
- Martinez, J.C.; Garcia, H.O.; Otheguy, L.E.; Drummond, G.S.; Kappas, A. Treatment of hyperbilirubinemia pharmacologic approach SnMP(tin-mesoporphyrin). J. Perinatol. 2001, 21 (Suppl. 1), S101–S103, discussion S104–S107. [Google Scholar] [CrossRef] [PubMed]
- Rosenfeld, W.N.; Hudak, M.L.; Ruiz, N.; Gautam, S.; Jasmine Study, G. Stannsoporfin with phototherapy to treat hyperbilirubinemia in newborn hemolytic disease. J. Perinatol. 2022, 42, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Khoshnevisasl, P.; Sadeghzadeh, M.; Kamali, K.; Moeinian, M. Effect of Zinc on Hyperbilirubinemia of Newborns, a Randomized Double Blinded Clinical Trial. Curr. Health Sci. J. 2020, 46, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Hamed, A.M.; Ismael, A.H.; Ragab, M.S. Comparison Between Oral Zinc and Agar with Phototherapy in The Treatment of Neonatal Jaundice: A Prospective Clinical Trial Study. Ann. Neonatol. J. 2022, 4, 204–216. [Google Scholar] [CrossRef]
- ElRaggal, N.M.; Ali, H.R.; Farid, Y.A. Effect of Oral Zinc Sulfate Therapy on the Management of Neonatal Non-Hemolytic Unconjugated Hyperbilirubinemia: A Randomized Control Trial. Iran. J. Neonatol. 2022, 13, 44–50. [Google Scholar]
- Abd El-Magid, M.A.A.; El-Samannody, M.I.; El-Mazahy, M.M.; El-Ghannam, M.Z. Effect of Phototherapy on Zinc Status in Term Neonates with Indirect Hyperbilirubinemia. Al-Azhar Med. J. 2021, 50, 573–682. [Google Scholar] [CrossRef]
- Faal, G.; Khatib Masjedi, H.; Sharifzadeh, G.; Kiani, Z. Efficacy of zinc sulfate on indirect hyperbilirubinemia in premature infants admitted to neonatal intensive care unit: A double-blind, randomized clinical trial. BMC Pediatr. 2020, 20, 130. [Google Scholar] [CrossRef] [PubMed]
- Mafinezhad, S.; Bayani, G.; Bozorgnia, Y.; Khodaparast, M.; Jodat, S. Effect of oral zinc sulfate on reducing hyperbilirubinemia among newborns under 1800 gram. J. North Khorasan Univ. Med. Sci. 2016, 7, 897–904. [Google Scholar] [CrossRef]
- Furman, L. Kangaroo Mother Care 20 Years Later: Connecting Infants and Families. Pediatrics 2017, 139, e20163332. [Google Scholar] [CrossRef] [PubMed]
- Sloan, N.L.; Ahmed, S.; Mitra, S.N.; Choudhury, N.; Chowdhury, M.; Rob, U.; Winikoff, B. Community-based kangaroo mother care to prevent neonatal and infant mortality: A randomized, controlled cluster trial. Pediatrics 2008, 121, e1047–e1059. [Google Scholar] [CrossRef] [PubMed]
- Boundy, E.O.; Dastjerdi, R.; Spiegelman, D.; Fawzi, W.W.; Missmer, S.A.; Lieberman, E.; Kajeepeta, S.; Wall, S.; Chan, G.J. Kangaroo Mother Care and Neonatal Outcomes: A Meta-analysis. Pediatrics 2016, 137, e20152238. [Google Scholar] [CrossRef]
- Samra, N.M.; El Taweel, A.; Cadwell, K. The effect of kangaroo mother care on the duration of phototherapy of infants re-admitted for neonatal jaundice. J. Matern.-Fetal Neonatal Med. 2012, 25, 1354–1357. [Google Scholar] [CrossRef] [PubMed]
- Jajoo, M.; Dhingra, D.; Chandil, A.; Jain, R. Effect of Kangaroo Mother Care on Duration of Phototherapy on Neonatal Jaundice: A Randomized Controlled Trial. Indian J. Pediatr. 2022, 89, 507–509. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Jiang, L. Study on the value of KMC combined with blue light irradiation in improving the therapeutic effect of neonatal jaundice. Biotechnol. Genet. Eng. Rev. 2023, 1–11. [Google Scholar] [CrossRef]
- Nawaz, H.; Aslam, M.; Rehman, T. Neonatal hyperbilirubinemia: Background and recent literature updates on the diagnosis and treatment. Physiol. Int. 2021, 108, 151–171. [Google Scholar] [CrossRef]
- Shahbazi, M.; Khazaei, S.; Moslehi, S.; Shahbazi, F. Effect of Massage Therapy for the Treatment of Neonatal Jaundice: A Systematic Review and Dose-Response Meta-analysis. Int. J. Pediatr. 2022, 2022, 9161074. [Google Scholar] [CrossRef]
- Dogan, E.; Kaya, H.D.; Gunaydin, S. The effect of massage on the bilirubin level in term infants receiving phototherapy. Explore 2023, 19, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Rashwan, Z.I.; Abohadida, R.M.; Khonji, L.M.; Saleh, S.E.S. Bundling gentle body massage along with regular position change under phototherapy among full-term neonates with hyperbilirubinemia: Is it effective? J. Neonatal Nurs. 2023, 29, 464–470. [Google Scholar] [CrossRef]
- Al-Bedah, A.; Ali, G.; Abushanab, T.; Qureshi, N. Tui Na (or Tuina) massage: A minireview of pertinent literature, 1970–2017. J. Complement. Altern. Med. Res. 2017, 3, 1–14. [Google Scholar] [CrossRef]
- Yan, H.; Zhou, Q.; Zhu, H.; Yang, H.; Wang, H.; Ling, J.; Wang, J.; Cao, Y.; Tao, M. Effects of Tuina on newborns with jaundice: A meta-analysis. Medicine 2022, 101, e29675. [Google Scholar] [CrossRef] [PubMed]
- Yu, W. Clinical observation of traditional Chinese medicine bath on neonatal jaundice. Int. J. Front. Med. 2022, 4, 21–26. [Google Scholar]
- Fok, T.F. Neonatal jaundice—Traditional Chinese medicine approach. J. Perinatol. 2001, 21 (Suppl. 1), S98–S100, discussion S104–S107. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.H.; Feng, S.; Han, M.; Caldwell, P.; Liu, S.G.; Zhang, J.; Liu, J.P. Yinzhihuang oral liquid combined with phototherapy for neonatal jaundice: A systematic review and meta-analysis of randomized clinical trials. BMC Complement. Altern. Med. 2018, 18, 228. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Huang, Z.; Su, L.; Fan, Y.; Guan, Y.; Zhang, G. Therapeutic efficacy and safety of Yinzhihuang granules with phototherapy in neonatal pathologic jaundice: An updated systematic review and meta-analysis. Phytomed. Int. J. Phytother. Phytopharm. 2022, 100, 154051. [Google Scholar] [CrossRef]
- Fakhri, M.; Azadbakht, M.; Hamze Gardeshi, Z.; Farhadi, R. Purgative manna from Cotoneaster spp. in Iranian traditional medicine and new sources. J. Islam. Iran. Trad. Med. 2016, 6, 347–353. [Google Scholar]
- Sajedi, F.; Fatollahierad, S. Effect of Purgative Manna on Neonatal Hyperbilirubinemia: A Systematic Review and Meta-analysis. Iran. J. Pharm. Res. 2019, 18, 1020–1031. [Google Scholar] [CrossRef]
- Fakhri, M.; Farhadi, R.; Mousavinasab, S.N.; Yosefi, S.S.; Hosseinimehr, S.J.; Azadbakht, M. Effect of Natural Products on Jaundice in Iranian Neonates. Jundishapur. J. Nat. Pharm. Prod. 2019, 14, e83042. [Google Scholar] [CrossRef]
- Hansen, T.W. Nils Rosen von Rosenstein and neonatal jaundice in the 18th century. Acta Paediatr. 2005, 94, 1834–1836. [Google Scholar] [CrossRef] [PubMed]
- Weisman, L.E.; Merenstein, G.B.; Digirol, M.; Collins, J.; Frank, G.; Hudgins, C. The effect of early meconium evacuation on early-onset hyperbilirubinemia. Am. J. Dis. Child. 1983, 137, 666–668. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aziz Ali, S.M.; Mansour Galal, S.; Sror, S.M.; Hussein, O.; Abd-El-Haseeb Ahmed, A.O.; Hamed, E.A. Efficacy of oral agar in management of indirect hyperbilirubinemia in full-term neonates. J. Matern.-Fetal Neonatal Med. 2022, 35, 975–980. [Google Scholar] [CrossRef] [PubMed]
- Radwan, I.M.; Sakr, M.M.A.; Mohamed, S.A. Is Oral Agar Combined with Phototherapy Superior than Phototherapy in Treatment of Neonatal Indirect Hyperbilirubinemia. Sci. J. Med. Sch. 2023, 2, 25–28. [Google Scholar] [CrossRef]
- Bader, D.; Yanir, Y.; Kugelman, A.; Wilhelm-Kafil, M.; Riskin, A. Induction of early meconium evacuation: Is it effective in reducing the level of neonatal hyperbilirubinemia? Am. J. Perinatol. 2005, 22, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Burchard, P.R.; Lay, R.; Ruffolo, L.I.; Ramazani, S.N.; Walton, J.M.; Livingston, M.H. Glycerin Suppositories and Enemas in Premature Infants: A Meta-analysis. Pediatrics 2022, 149, e2021053413. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Xu, L. The efficacy of glycerin suppositories for preterm infants: A meta-analysis of randomized controlled studies. Medicine 2023, 102, e32516. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Y.; Zhou, L.; Long, W.; Yu, B.; Wang, H. Molecular Genetic Screening of Neonatal Intensive Care Units: Hyperbilirubinemia as an Example. Appl. Clin. Genet. 2022, 15, 39–48. [Google Scholar] [CrossRef]
- Watchko, J.F. The contribution of genetic factors to hyperbilirubinemia and kernicterus risk in neonates: A targeted update. Pediatr. Med. 2021, 4, 1–15. [Google Scholar] [CrossRef]
- Bhutani, V.K.; Committee on Fetus and Newborn. Phototherapy to prevent severe neonatal hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 2011, 128, e1046–e1052. [Google Scholar] [CrossRef]
- Subcommittee on Hyperbilirubinemia. Management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation. Pediatrics 2004, 114, 297–316. [Google Scholar] [CrossRef]
- Landman, G.; Hoffman, K.; Sun, Y.; Shimotake, T.; Clyman, R.; Shotkin, A.; McGuire, J.; Newman, T.B. Consensus Guidelines for Screening & Management of Hyperbilirubinemia in Neonates UCSF NCNC (Northern California Neonatal Consortium); UCSF Northern California Neonatal Consortium (NCNC): San Francisco, CA, USA, 2017. [Google Scholar]
- Cahill, C.; Jegatheesan, P.; Song, D.; Cortes, M.; Adams, M.; Narasimhan, S.R.; Huang, A.; Angell, C.; Stemmle, M. Implementing Higher Phototherapy Thresholds for Jaundice in Healthy Infants 35 Plus Weeks. Hosp. Pediatr. 2023, 13, 857–864. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shoris, I.; Gover, A.; Toropine, A.; Iofe, A.; Zoabi-Safadi, R.; Tsuprun, S.; Riskin, A. “Light” on Phototherapy—Complications and Strategies for Shortening Its Duration, A Review of the Literature. Children 2023, 10, 1699. https://doi.org/10.3390/children10101699
Shoris I, Gover A, Toropine A, Iofe A, Zoabi-Safadi R, Tsuprun S, Riskin A. “Light” on Phototherapy—Complications and Strategies for Shortening Its Duration, A Review of the Literature. Children. 2023; 10(10):1699. https://doi.org/10.3390/children10101699
Chicago/Turabian StyleShoris, Irit, Ayala Gover, Arina Toropine, Adir Iofe, Rasha Zoabi-Safadi, Svetlana Tsuprun, and Arieh Riskin. 2023. "“Light” on Phototherapy—Complications and Strategies for Shortening Its Duration, A Review of the Literature" Children 10, no. 10: 1699. https://doi.org/10.3390/children10101699
APA StyleShoris, I., Gover, A., Toropine, A., Iofe, A., Zoabi-Safadi, R., Tsuprun, S., & Riskin, A. (2023). “Light” on Phototherapy—Complications and Strategies for Shortening Its Duration, A Review of the Literature. Children, 10(10), 1699. https://doi.org/10.3390/children10101699