Metallo-Liposomes Derived from the [Ru(bpy)3]2+ Complex as Nanocarriers of Therapeutic Agents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Liposome Formation
2.3. Lipoplex Formation
2.4. Dynamic Light-Scattering Measurements (DLS)
2.5. Zeta-Potential Measurements
2.6. Electronic Transsmision Microscopy (TEM)
2.7. Emission Spectra
2.8. Circular Dichroism Spectra
2.9. Encapsulation Efficiency Measurements
2.10. In Vitro Assays
3. Results and Discussion
3.1. Characterization of Metallo-Liposomes
3.2. Formation of Metallolipoplexes. Binding of Metallo-Liposomes to ct-DNA
Liposome + DNA ⇄ Liposome/DNA (Lipoplex)
3.3. Encapsulation of Doxorubicin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parera, E.; Marín-García, M.; Pons, R.; Comelles, F.; Suades, J.; Barnadas Rodríguez, R. Supramolecular arrangement of molybdenum carbonyl metallosurfactants with CO-releasing properties. Organometallics 2016, 35, 484–493. [Google Scholar] [CrossRef] [Green Version]
- Owen, T.; Butler, A. Metallosurfactants of bioinorganic interest: Coordination induced self-assembly. Coord. Chem. Rev. 2011, 225, 678–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garg, P.; Kaur, G.; Sharma, B.; Chaudhary, G.R. Fluorescein–metal hybrid surfactant conjugates as a smart material for antimicrobial photodynamic therapy against Staphylococcus aureus. ACS Appl. Biol. Mater. 2020, 3, 4674–4683. [Google Scholar] [CrossRef]
- Marín-García, M.; Benseny-Cases, N.; Camacho, M.; Perrie, Y.; Suades, J.; Barnadas-Rodríguez, R. Metallosomes for biomedical applications by mixing molybdenum carbonyl metallosurfactants and phospholipids. Dalton Trans. 2018, 47, 14293–14303. [Google Scholar] [CrossRef] [Green Version]
- Wagay, T.A.; Charingia, A.; Sutin, S.; Askari, H. Aggregation and adsorption properties of benzyldimethylhexadecylammonium tetrachloromanganate(II) metallosurfactant in water–ethylene glycol medium. J. Disper. Sci. Technol. 2020, 27, 1–10. [Google Scholar] [CrossRef]
- Ahmad, T.; Askari, H.; Ismail, K. Synthesis, aggregation and adsorption behavior of benzyldimethylhexadecylammonium based double-chained metallosurfactants. J. Mol. Liq. 2020, 299, 112234. [Google Scholar]
- Kaur, N.; Dhairwal, P.; Brar, A.; Kaur, G.; Bhalla, A.; Prakash, C.; Chaudhary, G.R. Amphiphilic metallosurfactants as potential scaffolds for facile fabrication of PdO-NiO nanocomposites for environmentally benign synthesis of xanthene derivatives. Mater. Today Chem. 2019, 14, 100194. [Google Scholar] [CrossRef]
- Dogra, V.; Kaur, G.; Jindal, S.; Kumar, R.; Kumar, S.; Singhal, N.K. Bactericidal effects of metallosurfactants based cobalt oxide/hydroxide nanoparticles against Staphylococcus aureus. Sci. Total Environ. 2019, 681, 350–364. [Google Scholar] [CrossRef]
- Sharma, B.; Kaur, G.; Chaudhay, G.R.; Gawali, S.L.; Hassan, P.A. High antimicrobial photodynamic activity of photosensitizer encapsulated dual-functional metallocatanionic vesicles against drug-resistant bacteria S. aureus. Biomater. Sci. 2020, 8, 2905–2920. [Google Scholar] [CrossRef]
- Mitchell, N.; Kalber, T.L.; Cooper, M.S.; Sunassee, K.; Chalker, S.L.; Shaw, K.P.; Ordidge, K.L.; Badar, A.; Janes, S.M.; Blower, P.J.; et al. Incorporation of paramagnetic, fluorescent and PET/SPECT contrast agents into liposomes for multimodal imaging. Biomaterials 2013, 34, 1179–1192. [Google Scholar] [CrossRef] [Green Version]
- Bera, S.; Chowdhury, A.; Sarkar, K.; Dastidar, P. Design and synthesis of ZnII-coordination polymers anchored with NSAIDs: Metallovesicle formation and multi-drug delivery. Chem. Asian J. 2020, 15, 503–510. [Google Scholar] [CrossRef]
- Dan, N. Vesicle-based drug carriers: Liposomes, polymersomes, and niosomes. In Design and Development of New Nanocarriers; Grumezescu, A.M., Ed.; William Andrew Publishing: Burlington, MA, USA, 2018; Chapter 1; pp. 1–55. [Google Scholar]
- Hu, X.-Y.; Gao, L.; Mosel, S.; Ehlers, M.; Zellermann, E.; Jiang, H.; Knauer, S.K.; Wang, L.; Schmuck, C. From Supramolecular Vesicles to Micelles: Controllable construction of tumor-targeting nanocarriers based on host-guest interaction between a pillar[5]arene-based prodrug and a RGD-sulfonate guest. Small 2018, 14, e1803952. [Google Scholar] [CrossRef]
- Chamundeeswari, M.; Jeslin, J.; Verma, M.L. Nanocarriers for drug delivery applications. Environ. Chem. Lett. 2018, 17, 849–865. [Google Scholar] [CrossRef]
- Moyá, M.L.; López-López, M.; Lebrón, J.A.; Ostos, F.J.; Pérez, D.; Camacho, V.; Beck, I.; Merino-Bohórquez, V.; Cameán, M.; Madinabeitia, N.; et al. Preparation and Characterization of New Liposomes. Bactericidal Activity of Cefepime Encapsulated into Cationic Liposomes. Pharmaceutics 2019, 11, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bar-Zeev, M.; Assaraf, Y.G.; Livney, Y.D. β-casein nanovehicles for oral delivery of chemotherapeutic drug combinations overcoming P-glycoprotein-mediated multidrug resistance in human gastric cancer cells. Oncotarget 2016, 7, 23322–23334. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.; Lee, J.H.; Park, C.; Lee, H.; Kim, C.; Park, C.; Lee, M.-H.; Lee, W.; Park, J.; Kim, K.; et al. A highly efficient organic sensitizer for dye-sensitized solar cells. Chem. Commun. 2007, 46, 4887–4889. [Google Scholar] [CrossRef]
- Devi, R.S.; Kumaraguru, N. Interaction of CT-DNA with Ruthenium(II) Metallosurfactant Complexes: Synthesis, CMC Determination, Antitumour and Antimicrobial Activities. Asian J. Chem. 2020, 32, 665–677. [Google Scholar] [CrossRef]
- Garg, P.; Kaur, G.; Chaudhary, G.R.; Kaur, S.; Gawali, S.L.; Hassan, P.A. Investigating the structural integrity of Bovine serum albumin in presence of newly synthesized metallosurfactants. Colloids Surf. B 2018, 164, 116–124. [Google Scholar] [CrossRef]
- Kashapov, R.; Razuvayeva, Y.; Ziganshina, A.; Sergeeva, T.; Lukashenko, S.; Sapunova, A.; Voloshina, A.; Kashapova, N.; Nizameev, I.; Salnikov, V.; et al. Supra-amphiphilic systems based on metallosurfactant and calix[4]resorcinol: Self-assembly and drug delivery potential. Inorg. Chem. 2020, 59, 18276–18286. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, L.; Huang, J.; Zha, J.; Yan, Y. Multifunctional metallo-organic vesicles displaying aggregation-induced emission: Two-photon cell-imaging, drug delivery and specific detection of zinc ion. ACS Appl. Nano Mater. 2018, 1, 1819–1827. [Google Scholar] [CrossRef]
- Arroyo, I.Z.; Gomez, C.; Alarcón, H.; Jiménez, A.; Pardo, A.; Montaño, G.; Armijos, R.X.; Noveron, J.C. Alkyl Length Effects on the DNA Transport Properties of Cu (II) and Zn(II) Metallovesicles: An In Vitro and In Vivo Study. J. Drug Deliv. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Pal, S.; Islam, M.T.; Moore, J.T.; Reyes, J.; Pardo, A.; Valera-Ramirez, A.; Noveron, J.C. Self-assembly of a Novel Cu(II) Coordination Complex Forms Metallo-Vesicles that are able to Transfect Mammalian Cells. New J. Chem. 2017, 41, 11230–11237. [Google Scholar] [CrossRef]
- Cruz-Campa, I.; Arzola, A.; Santiago, L.; Parsons, J.G.; Valera-Ramirez, A.; Aguilera, R.J.; Noveron, J.C. A novel class of metal-directed supramolecular DNA-delivery systems. Chem. Commun. 2007, 28, 2944–2946. [Google Scholar] [CrossRef]
- Lebrón, J.A.; Ostos, F.J.; López-López, M.; Moyá, M.L.; Sales, C.; García, E.; García-Calderón, C.B.; García-Calderón, M.; Peña-Gómez, M.J.; Rosado, I.V.; et al. Metallo-liposomes of ruthenium used as promising vectors of genetic material. Pharmaceutics 2020, 12, 482. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zong, W.; Wang, J.; Dong, M.; Cheng, W.; Sun, T.; Han, X. Multicompartmentalized vesosomes containing DOX loaded liposomes and 5FU loaded liposomes for synergistic tumor treatment. New J. Chem. 2019, 43, 4895–4899. [Google Scholar] [CrossRef]
- Español, L.; Larrea, A.; Andreu, V.; Mendoza, G.; Arruebo, M.; Sebastian, V.; Aurora-Prado, M.S.; Kedor-Hackmann, E.R.M.; Santoro, M.I.R.M.; Santamaria, J. Dual encapsulation of hydrophobic and hydrophilic drugs in PLGA nanoparticles by a single-step method: Drug delivery and cytotoxicity assays. RSC Adv. 2016, 6, 111060–111069. [Google Scholar] [CrossRef] [Green Version]
- Wu, D.; Pusuluri, A.; Vogus, D.; Krishnan, V.; Shields IV, C.W.; Kim, J.; Razmi, A.; Mitragotri, S. Design principles of drug combinations for chemotherapy. J. Control. Release 2020, 323, 36–46. [Google Scholar] [CrossRef]
- Kostova, I. Ruthenium Complexes as Anticancer Agents. Curr. Med. Chem. 2006, 13, 1085–1107. [Google Scholar] [CrossRef] [PubMed]
- Süss-Fink, G. Arene ruthenium complexes as anticancer agents. Dalton Trans. 2010, 7, 1673–1688. [Google Scholar] [CrossRef]
- Lebrón, J.A.; Ostos, F.J.; López-López, M.; Moyá, M.L.; Kardell, O.; Sánchez, A.; Carrasco, C.J.; García-Calderón, M.; García-Calderón, C.B.; Rosado, I.V.; et al. Preparation and characterization of metallomicelles of Ru(II). Cytotoxic activity and use as vector. Colloids Surf. B. 2019, 175, 116–125. [Google Scholar] [CrossRef]
- Menger, F.M.; Portnoy, C.E. Chemistry of reactions proceeding inside molecular aggregates. J. Am. Chem. Soc. 1967, 89, 4698–4703. [Google Scholar] [CrossRef]
- Carvalho, C.; Santos, R.; Cardoso, S.; Correia, S.; Oliveira, P.; Santos, M.; Moreira, P. Doxorubicin: The good, the bad and the ugly effect. Curr. Med. Chem. 2009, 16, 3267–3285. [Google Scholar] [CrossRef] [PubMed]
- Ostos, F.J.; Lebrón, J.A.; Moyá, M.L.; López-López, M.; Sánchez, A.; Clavero, A.; García-Calderón, C.B.; Rosado, I.V.; López-Cornejo, P. p-Sulfocalix[6]arene as nanocarrier for controlled delivery of doxorubicin. Chem. Asian J. 2017, 12, 679–689. [Google Scholar] [CrossRef] [PubMed]
- Thirumaran, R.; Prendergast, G.C.; Gilman, P.B. Cytotoxic chemotherapy in clinical treatment of cancer. In Cancer Immunotherapy; Prendergast, G.C., Jaffee, E.M., Eds.; Academic Press: Chicago, IL, USA, 2007; Chapter 7; pp. 101–116. [Google Scholar]
- Storm, G.; van Bloois, L.; Steerenberg, P.A.; van Etten, E.; de Groot, G.; Crommelin, D.J.A. Liposome encapsulation of doxorubicin: Pharmaceutical and therapeutic aspects. J. Control. Release 1989, 9, 215–229. [Google Scholar] [CrossRef]
- Gokhale, P.C.; Radhakrishnan, B.; Husain, S.R.; Abernethy, D.R.; Sacher, R.; Dritschilo, A.; Rahman, A. An improved method of encapsulation of doxorubicin in liposomes: Pharmacological, toxicological and therapeutic evaluation. Br. J. Cancer 1996, 74, 43–48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Zhang, H.; Zhi, C.; Gao, X.-D.; Nakanishi, H. pH-responsive charge-reversal polymerfunctionalized boron nitride nanospheres for intracellular doxorubicin delivery. Int. J. Nanomed. 2018, 13, 641–652. [Google Scholar] [CrossRef] [Green Version]
SERIES | SAMPLE | Mass Ratio RuC1C19:PC:CHO | Mole Ratio RuC1C19:PC:CHO | α |
---|---|---|---|---|
1 | A | 1:0.1:0.083 | 1:0.11:0.20 | 0.76 |
B | 1:0.1:0.83 | 1:0.11:1.20 | 0.43 | |
C | 1:0.1:2.55 | 1:0.11:2.00 | 0.32 | |
2 | D | 1:0.05:0.17 | 1:0.058:0.51 | 0.69 |
E | 1:0.3:0.17 | 1:0.36:0.51 | 0.57 | |
F | 1:0.5:0.17 | 1:0.58:0.51 | 0.51 | |
3 | G | 1.16:0.33:0.17 | 1.16:0.23:0.40 | 0.65 |
H | 0.83:0.33:0.17 | 0.83:0.23:0.40 | 0.57 | |
I | 0.33:0.33:0.17 | 0.33:0.23:0.40 | 0.35 |
SERIES | SAMPLE | A | Size/nm | PDI | ζ/mV |
---|---|---|---|---|---|
1 | A | 0.76 | 206 ± 15 | 0.669 | 67.3 ± 3.2 |
B | 0.43 | 130 ± 10 | 0.0953 | 46.7 ± 1.6 | |
C | 0.32 | 136 ± 8 | 0.0686 | 38.8 ± 1.5 | |
2 | D | 0.69 | 147 ± 12 | 0.636 | 55.2 ± 2.2 |
E | 0.57 | 135 ± 15 | 0.262 | 51.4 ± 1.2 | |
F | 0.52 | 146 ± 6 | 0.241 | 43.5 ± 3.0 | |
3 | G | 0.65 | 128 ± 15 | 0.210 | 40.2 ± 1.2 |
H | 0.57 | 143 ± 10 | 0.289 | 48.6 ± 1.5 | |
I | 0.35 | 135 ± 14 | 0.089 | 52.9 ± 0.8 |
SERIES | SAMPLE | α | EE% |
---|---|---|---|
1 | A | 0.76 | 76 ± 3 |
B | 0.43 | 81 ± 4 | |
C | 0.32 | 93 ± 4 | |
2 | D | 0.69 | 90 ± 1 |
E | 0.57 | 86 ± 5 | |
F | 0.51 | 80 ± 6 | |
3 | G | 0.65 | 54 ± 6 |
H | 0.57 | 88 ± 2 | |
I | 0.37 | 87 ± 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moyá, M.L.; Ostos, F.J.; Moreno, I.; García, D.; Moreno-Gordillo, P.; V. Rosado, I.; López-Cornejo, P.; Lebrón, J.A.; López-López, M. Metallo-Liposomes Derived from the [Ru(bpy)3]2+ Complex as Nanocarriers of Therapeutic Agents. Chemosensors 2021, 9, 90. https://doi.org/10.3390/chemosensors9050090
Moyá ML, Ostos FJ, Moreno I, García D, Moreno-Gordillo P, V. Rosado I, López-Cornejo P, Lebrón JA, López-López M. Metallo-Liposomes Derived from the [Ru(bpy)3]2+ Complex as Nanocarriers of Therapeutic Agents. Chemosensors. 2021; 9(5):90. https://doi.org/10.3390/chemosensors9050090
Chicago/Turabian StyleMoyá, Maria Luisa, Francisco José Ostos, Izamar Moreno, Diandra García, Paula Moreno-Gordillo, Ivan V. Rosado, Pilar López-Cornejo, José Antonio Lebrón, and Manuel López-López. 2021. "Metallo-Liposomes Derived from the [Ru(bpy)3]2+ Complex as Nanocarriers of Therapeutic Agents" Chemosensors 9, no. 5: 90. https://doi.org/10.3390/chemosensors9050090
APA StyleMoyá, M. L., Ostos, F. J., Moreno, I., García, D., Moreno-Gordillo, P., V. Rosado, I., López-Cornejo, P., Lebrón, J. A., & López-López, M. (2021). Metallo-Liposomes Derived from the [Ru(bpy)3]2+ Complex as Nanocarriers of Therapeutic Agents. Chemosensors, 9(5), 90. https://doi.org/10.3390/chemosensors9050090