Carboxylated Graphene Nanoribbons for Highly-Selective Ammonia Gas Sensors: Ab Initio Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Atomic Models of Carboxylated Graphene Nanoribbons (GRNR–COOH)
3.2. Sensory Properties
3.2.1. Zigzag Nanoribbon
3.2.2. Armchair Nanoribbon
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kiani, M.J.; Ahmadi, M.T.; Akbari, E.; Karimi, H.; Che Harun, F. Graphene Nanoribbon Based Gas Sensor. Key Eng. Mater. 2013, 553, 7–11. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.; Kumar, A.; Kashyap, R.; Kumar, D.; Kumar, M. Chemically functionalized graphene oxide thin films for selective ammonia Gas sensing. Mater. Res. Express 2020, 7, 015612. [Google Scholar] [CrossRef]
- Liu, B.; Sun, H.; Peng, T.; Yang, J.; Ren, Y.; Ma, J.; Tang, G.; Wang, L.; Huang, S. High Selectivity Humidity Sensors of Functionalized Graphite oxide with More Epoxy Groups. Appl. Surf. Sci. 2020, 503, 144312. [Google Scholar] [CrossRef]
- Shekhirev, M.; Lipatov, A.; Torres, A.; Vorobeva, N.S.; Harkleroad, A.; Lashkov, A.; Sysoev, V.; Sinitskii, A. Highly Selective Gas Sensors Based on Graphene Nanoribbons Grown by Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2020, 12, 7392–7402. [Google Scholar] [CrossRef] [PubMed]
- Bannov, A.G.; Popov, M.V.; Brester, A.E.; Kurmashov, P.B. Recent Advances in Ammonia Gas Sensors Based on Carbon Nanomaterials. Micromachines 2021, 12, 186. [Google Scholar] [CrossRef]
- Cadore, A.R.; Mania, E.; Alencar, A.B.; Rezende, N.P.; de Oliveira, S.; Watanabe, K.; Taniguchi, T.; Chacham, H.; Campos, L.C.; Lacerda, R.G. Enhancing the response of NH3 graphene-sensors by using devices with different graphene-substrate distances. Sens. Actuators B Chem. 2018, 266, 438–446. [Google Scholar] [CrossRef] [Green Version]
- Leenaerts, O.; Partoens, B.; Peeters, F.M. Adsorption of H2O, NH3, CO, NO2, and NO on graphene: A first-principles study. Phys. Rev. B 2008, 77, 125416. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Ni, J.; Fang, C. Adsorption capacity of H2O, NH3, CO, and NO2 on the pristine graphene. J. Appl. Phys. 2013, 113, 034306. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Luo, W.; Yang, H.; He, Y.; Liu, Y.; Zhang, X.; Peng, G. Study on adsorption and desorption of ammonia on graphene. Nanoscale Res. Lett. 2015, 10, 359. [Google Scholar] [CrossRef] [Green Version]
- Gupta, B.; Kumar, N.; Panda, K.; Kanan, V.; Joshi, S.; Visoly-Fisher, I. Role of oxygen functional groups in reduced graphene oxide for lubrication. Sci. Rep. 2017, 7, srep45030. [Google Scholar] [CrossRef]
- Minitha, C.R.; Anithaa, V.S.; Subramaniam, V.; Kumar, R.T.R. Impact of Oxygen Functional Groups on Reduced Graphene Oxide-Based Sensors for Ammonia and Toluene Detection at Room Temperature. ACS Omega 2018, 3, 4105–4112. [Google Scholar] [CrossRef]
- Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L. Progress in the functional modification of graphene/graphene oxide: A review. RSC Adv. 2020, 10, 15328–15345. [Google Scholar] [CrossRef]
- Aliyev, E.; Filiz, V.; Khan, M.M.; Lee, Y.J.; Abetz, C.; Abetz, V. Structural Characterization of Graphene Oxide: Surface Functional Groups and Fractionated Oxidative Debris. Nanomaterials 2019, 9, 1180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salzmann, C.G.; Nicolosi, V.; Green, M.L.H. Edge-carboxylated graphene nanoflakes from nitric acid oxidised arc-discharge material. J. Mater. Chem. 2010, 20, 314–319. [Google Scholar] [CrossRef]
- Guo, Y.; Li, J.; Dong, S. Hemin functionalized graphene nanosheets-based dual biosensor platforms for hydrogen peroxide and glucose. Sens. Actuators B Chem. 2011, 160, 295–300. [Google Scholar] [CrossRef]
- Jarczewska, M.; Sheelam, S.R.; Ziółkowski, R.; Górski, Ł. A Label-Free Electrochemical DNA Aptasensor for the Detection of Dopamine. J. Electrochem. Soc. 2015, 163, B26–B31. [Google Scholar] [CrossRef]
- Ruan, H.; Liu, B.; Li, H. Controlled synthesis of graphene–Gd(OH)3 nanocomposites and their application for detection of ascorbic acid. RSC Adv. 2015, 5, 21242–21248. [Google Scholar] [CrossRef]
- Tian, Y.; Liu, Y.; Wang, W.-p.; Zhang, X.; Peng, W. CuO nanoparticles onsulfur-doped graphene for nonenzymatic glucose sensing. Electrochim. Acta 2015, 156, 244–251. [Google Scholar] [CrossRef]
- Benvidi, A.; Rajabzadeh, N.; Zahedi, H.; Mazloum-Ardakani, M.; Heidari, M.; Hosseinzadeh, L. Simple and label-free detection of DNA hybridization on a modified graphene nanosheets electrode. Talanta 2015, 137, 80–86. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, G.; Huanga, H.; Wang, L. Graphene-Prussian blue/gold nanoparticles based electrochemical immunoassay of carcinoembryonicantigen. Anal. Methods 2011, 3, 2082–2087. [Google Scholar]
- Wu, Q.-Y.; Lan, J.-H.; Wang, C.-Z.; Xiao, C.-L.; Zhao, Y.-L.; Wei, Y.-Z.; Chai, Z.-F.; Shi, W.-Q. Understanding the Bonding Nature of Uranyl Ion and Functionalized Graphene: A Theoretical Study. J. Phys. Chem. A 2014, 118, 2149–2158. [Google Scholar] [CrossRef] [PubMed]
- Ziółkowski, R.; Górski, Ł.; Malinowska, E. Carboxylated graphene as a sensing material for electrochemical uranyl ion detection. Sens. Actuators B Chem. 2017, 238, 540–547. [Google Scholar] [CrossRef]
- Ziółkowski, R.; Górski, Ł.; Oszwałdowski, S.; Malinowska, E. Electrochemical uranyl biosensor with DNA oligonucleotides as receptor layer. Anal. Bioanal. Chem. 2012, 402, 2259–2266. [Google Scholar] [CrossRef] [Green Version]
- Ma, F.; Nian, J.; Bi, C.; Yang, M.; Zhang, C.; Liu, L.; Dong, H.; Zhu, M.; Dong, B. Preparation of carboxylated graphene oxide for enhanced adsorption of U(VI). J. Solid State Chem. 2019, 277, 9–16. [Google Scholar] [CrossRef]
- Rabchinskii, M.K.; Shnitov, V.V.; Dideikin, A.T.; Aleksenskii, A.E.; Vul’, S.P.; Baidakova, M.V.; Pronin, I.I.; Kirilenko, D.A.; Brunkov, P.N.; Weise, J.; et al. Nanoscale Perforation of Graphene Oxide during Photoreduction Process in the Argon Atmosphere. J. Phys. Chem. C 2016, 120, 28261–28269. [Google Scholar] [CrossRef]
- Jin, Y.; Zheng, Y.; Podkolzin, S.G.; Lee, W. Band gap of reduced graphene oxide tuned by controlling functional groups. J. Mater. Chem. C 2020, 8, 4885–4894. [Google Scholar] [CrossRef]
- Fang, Y.; Luo, B.; Jia, Y.; Li, X.; Wang, B.; Song, Q.; Kang, F.; Zhi, L. Renewing Functionalized Graphene as Electrodes for High-Performance Supercapacitors. Adv. Mater. 2012, 24, 6348–6355. [Google Scholar] [CrossRef]
- Lee, D.; Seo, J. Three-dimensionally networked graphene hydroxide with giant pores and its application in supercapacitors. Sci. Rep. 2014, 4, 7419. [Google Scholar] [CrossRef]
- Stassen, I.; Dou, J.-H.; Hendon, C.; Dincă, M. Chemiresistive Sensing of Ambient CO2 by an Autogenously Hydrated Cu3(hexaiminobenzene)2 Framework. ACS Central Sci. 2019, 5, 1425–1431. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhu, H.; Wei, G.; He, A.; Liu, Y. DFT calculation and analysis of the gas sensing mechanism of methoxy propanol on Ag decorated SnO2 (110) surface. RSC Adv. 2019, 9, 35862–35871. [Google Scholar] [CrossRef] [Green Version]
- Klyamer, D.; Sukhikh, A.; Gromilov, S.; Krasnov, P.; Basova, T. Fluorinated Metal Phthalocyanines: Interplay between Fluorination Degree, Films Orientation, and Ammonia Sensing Properties. Sensors 2018, 18, 2141. [Google Scholar] [CrossRef] [Green Version]
- Yoosefian, M.; Raissi, H.; Mola, A. The hybrid of Pd and SWCNT (Pd loaded on SWCNT) as an efficient sensor for the for-maldehyde molecule detection: A DFT study. Sens. Actuat. B Chem. 2015, 212, 55–62. [Google Scholar] [CrossRef]
- Epifani, M.; Prades, J.D.; Comini, E.; Cirera, A.; Siciliano, P.; Faglia, G.; Morante, J.R. Chemoresistive sensing of light alkanes with SnO2 nanocrystals: A DFT-based insight. Phys. Chem. Chem. Phys. 2009, 11, 3634–3639. [Google Scholar] [CrossRef]
- Lee, S.W.; Kim, J.M.; Park, W.; Lee, H.; Lee, G.R.; Jung, Y.; Jung, Y.S.; Park, J.Y. Controlling hot electron flux and catalytic selectivity with nanoscale metal-oxide interfaces. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Kwak, D.; Sokol, H.; Moser, B.P.; Ryu, H.; Koski, K.J.; Maric, R.; Zhang, L.; Lei, Y. Ultrasensitive ammonia (NH3) gas sensor: DFT Simulation-Directed Selection of High-Performance Metal-Doped Molybdenum Tri-oxide (α-MoO3) Nanoribbons for NH3 Detection. IEEE Sens. 2019, 1–4. [Google Scholar] [CrossRef]
- Fedorov, F.S.; Solomatin, M.A.; Uhlemann, M.; Oswald, S.; Kolosov, D.A.; Morozov, A.; Varezhnikov, A.S.; Ivanov, M.A.; Grebenko, A.K.; Sommer, M.; et al. Quasi-2D Co3O4 nanoflakes as an efficient gas sensor versus alcohol VOCs. J. Mater. Chem. A 2020, 8, 7214–7228. [Google Scholar] [CrossRef]
- Soler, J.M.; Artacho, E.; Gale, J.D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys. Cond. Matt. 2002, 14, 2745. [Google Scholar] [CrossRef] [Green Version]
- García, A.; Papior, N.; Akhtar, A.; Artacho, E.; Blum, V.; Bosoni, E.; Brandimarte, P.; Brandbyge, M.; Cerdá, J.I.; Corsetti, F.; et al. Siesta: Recent developments and applications. J. Chem. Phys. 2020, 152, 204108. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berland, K.; Hyldgaard, P. Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional. Phys. Rev. B 2014, 89, 035412. [Google Scholar] [CrossRef] [Green Version]
- Berland, K.; Cooper, V.R.; Lee, K.; Schröder, E.; Thonhauser, T.; Hyldgaard, P.; Lundqvist, B.I. van der Waals forces in den-sity functional theory: A review of the vdW-DF method. Rep. Prog. Phys. 2015, 78, 066501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyldgaard, P.; Jiao, Y.; Shukla, V. Screening nature of the van der Waals density functional method: A review and analysis of the many-body physics foundation. J. Phys. Condens. Matter 2020, 32, 393001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Structure | Length C–COOH, Å | Lattice Vector, Å | ΔHf, eV | Egap, eV | EF, eV | Charge on COOH, e |
---|---|---|---|---|---|---|
Zigzag nanoribbons | ||||||
16ZGRNR–2COOH (cis isomer) | 1.522 | 2.455 | −8.90 | 0 | −5.88 | −0.077 |
16ZGRNR–2COOH (trans-isomer) | 1.514 | 2.482 | −9.38 | 0 | −5.87 | −0.076 |
32ZGRNR–4COOH | 1.522 | 4.954 | −27.56 | 0 | −5.82 | −0.100 |
Armchair nanoribbons | ||||||
20AGRNR–2COOH (cis isomer) | 1.501 | 4.260 | −31.90 | 1.024 | −5.06 | −0.020 |
20AGRNR–2COOH (trans-isomer) | 1.502 | 4.260 | −31.91 | 1.028 | −5.07 | −0.021 |
42AGRNR–2COOH | 1.512 | 4.254 | −35.50 | 0.040 | −4.95 | −0.030 |
Eads, eV | EF, eV | Charge of ZGRNR, e | R, kOhm | S, % | |
---|---|---|---|---|---|
32ZGRNR–4H | |||||
Clean | – | −4.60 | 0 | 12.596 | – |
+NH3 | 0.013 ± 0.001 | −4.68 ± 0.01 | −0.0041 ± 0.0004 | 11.812 ± 0.07 | 6.2 ± 0.08 |
+H2O | 0.078 ± 0.002 | −4.70 ± 0.01 | −0.0046 ± 0.0003 | 11.104 ± 0.05 | – |
+H2O + NH3 | 0.015 ± 0.006 | −4.74 ± 0.02 | −0.0051 ± 0.0005 | 10.457 ± 0.03 | 8.3 ± 0.10 |
32ZGRNR−4COOH | |||||
Clean | – | −5.92 | 0 | 12.701 | – |
+NH3 | 0.103 ± 0.001 | −5.85 ± 0.01 | −0.0007 ± 0.00005 | 12.219 ± 0.04 | 3.4 ± 0.03 |
+H2O | 0.186 ± 0.002 | −5.82 ± 0.02 | −0.0014 ± 0.0002 | 10.573 ± 0.03 | – |
+H2O + NH3 | 0.128 ± 0.005 | −5.69 ± 0.03 | 0.002 ± 0.001 | 12.105 ± 0.02 | 15.2 ± 0.05 |
Eads, eV | EF, eV | Charge of AGRNR, e | R, kOhm | S, % | |
---|---|---|---|---|---|
42AGRNR–4H | |||||
Clean | – | −4.41 | – | 237.731 | – |
+NH3 | 0.008 ± 0.003 | −4.79 ± 0.02 | −0.0028 ± 0.0005 | 229.648 ± 1.8 | 3.3 ± 0.35 |
+H2O | 0.05 ± 0.005 | −4.54 ± 0.03 | −0.0047 ± 0.0003 | 227.955 ± 1.5 | – |
+H2O + NH3 | 0.010 ± 0.002 | −4.43 ± 0.02 | −0.0083 ± 0.0005 | 224.400 ± 1.6 | 1.57 ± 0.02 |
42AGRNR–2COOH-2H | |||||
Clean | – | −5.06 | – | 215.772 | – |
+NH3 | 0.005 ± 0.005 | −5.03 ± 0.02 | −0.0007 | 206.417 ± 1.5 | 4.30 ± 0.05 |
+H2O | 0.06 ± 0.03 | −5.10 ± 0.02 | −0.0014 | 204.052 ± 2.0 | – |
+H2O + NH3 | 0.022 ± 0.005 | −5.23 ± 0.03 | −0.018 ± 0.005 | 195.570 ± 1.8 | 4.13 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barkov, P.V.; Glukhova, O.E. Carboxylated Graphene Nanoribbons for Highly-Selective Ammonia Gas Sensors: Ab Initio Study. Chemosensors 2021, 9, 84. https://doi.org/10.3390/chemosensors9040084
Barkov PV, Glukhova OE. Carboxylated Graphene Nanoribbons for Highly-Selective Ammonia Gas Sensors: Ab Initio Study. Chemosensors. 2021; 9(4):84. https://doi.org/10.3390/chemosensors9040084
Chicago/Turabian StyleBarkov, Pavel V., and Olga E. Glukhova. 2021. "Carboxylated Graphene Nanoribbons for Highly-Selective Ammonia Gas Sensors: Ab Initio Study" Chemosensors 9, no. 4: 84. https://doi.org/10.3390/chemosensors9040084
APA StyleBarkov, P. V., & Glukhova, O. E. (2021). Carboxylated Graphene Nanoribbons for Highly-Selective Ammonia Gas Sensors: Ab Initio Study. Chemosensors, 9(4), 84. https://doi.org/10.3390/chemosensors9040084