
chemosensors

Article

Carboxylated Graphene Nanoribbons for Highly-Selective
Ammonia Gas Sensors: Ab Initio Study

Pavel V. Barkov 1 and Olga E. Glukhova 2,*

����������
�������

Citation: Barkov, P.V.; Glukhova,

O.E. Carboxylated Graphene

Nanoribbons for Highly-Selective

Ammonia Gas Sensors: Ab Initio

Study. Chemosensors 2021, 9, 84.

https://doi.org/10.3390/

chemosensors9040084

Academic Editor: Yusuke Tahara

Received: 15 March 2021

Accepted: 16 April 2021

Published: 18 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Physics, Saratov State University, 410012 Saratov, Russia; barkovssu@mail.ru
2 Institute for Bionic Technologies and Engineering, I.M. Sechenov First Moscow State Medical

University (Sechenov University), 119991 Moscow, Russia
* Correspondence: glukhovaoe@info.sgu.ru; Tel.: +7-845-251-4688

Abstract: The character and degree of influence of carboxylic acid groups (COOH) on the sensory
properties (particularly on the chemoresistive response) of a gas sensor based on zigzag and armchair
graphene nanoribbons are shown. Using density functional theory (DFT) calculations, it is found that
it is more promising to use a carboxylated zigzag nanoribbon as a sensor element. The chemoresistive
response of these nanoribbons is higher than uncarboxylated and carboxylated nanoribbons. It is also
revealed that the wet nanoribbon reacts more noticeably to the adsorption of ammonia. In this case,
carboxyl groups primarily attract water molecules, which are energetically favorable to land precisely
on these regions and then on the nanoribbon’s basal surface. Moreover, the COOH groups with
water are adsorption centers for ammonia molecules. That is, the carboxylated zigzag nanoribbon
can be the most promising.

Keywords: carboxylated graphene nanoribbons; chemoresistive response; carboxyl groups

1. Introduction

Currently, graphene-based materials are widely used to create sensitive elements of
various sensors [1–6]. Many theoretical studies are devoted to the adsorption of various
molecules on pure graphene [7–9]. The emergence of new technologies facilitates the inten-
sive development of sensorics on graphene for modifying graphene structures by various
groups, such as carbonyl and carboxyl [10–13]. The edges of graphene layers, nanoflakes,
ribbons, holes in graphene monolayers are modified. Indeed, the presence of extended
open edges in graphene structures opens up great prospects for their enrichment with
various functional groups that enhance graphene properties. Further, functional groups act
as active elements of graphene, which are capable of adsorbing various molecules, and, in
turn, can be additionally functionalized. The graphene nanoflakes decorated with mainly
COOH groups show excellent dispersion properties. Herewith, the COOH groups can
be easily functionalized using carboxylate chemistry [14]. Functionalized graphene was
the basis to detect a wide range of chemical and biochemical species, such as H2O2 [15],
dopamine [16], ascorbic acid [17], glucose [18], DNA [19] or antigens [20]. It has been theo-
retically proved that the reactions of the formation of complexes of graphene with hydroxyl
and carboxyl groups are thermodynamically favorable in solutions [21]. R. Ziółkowski
et al. demonstrated the outstanding selectivity of a sensor for the electrochemical detection
of uranyl ions using carboxyl-modified graphene (GCOOH) as the sensing element [22].
Moreover, GCOOH can be considered as promising electrode material for sensor, e.g., with
the additional use of nucleic acids as the receptor layer [23,24]. Technologies for obtaining
functionalized graphene structures continue to improve. For example, it has been shown
that the graphene oxide films with the restored conjugated network and many edges
terminated with carboxyl groups can be obtained using the photoreduction process in the
argon atmosphere. Carboxylated graphene films can be used in several applications, such
as the production of gas sensors and organic light-emitting devices [25]. An approach such
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as the modification of edges with functional groups, allows one to control the electronic
and electrophysical properties of graphene. In particular, the bandgap can be controlled by
the number of epoxides [26]; the electrochemical properties of graphene can be controlled
by the number of hydroxyls [27,28].

Regardless of the material used as a sensitive element of sensors, DFT methods are
actively used to clarify the physicochemical phenomena that form the chemoresistive
response. In [29], the high sensitivity of the surface of a two-dimensional (2D) metal–
organic frameworks (MOF) material to CO2 molecules was explained by the formation
of adsorption centers and redistribution of the surface charge using an ab initio method,
which provided high-precision calculations of energy and density of electronic states (DOS).
The chemoresistive response was not calculated, but the theoretical contribution to the
study was important and effective. In addition, an electron transfer scheme at the interface
between silver grains and the surface of a sensor based on SnO2 was discovered using the
DFT method, which made it possible to reveal the large role of surface modification [30].
In [31], the sensory response of MPcFx films (M = Cu, Co, Zn; x = 0, 4, 16) to gaseous
NH3 (10–50 ppm) was investigated by the chemoresistive method. Using the DFT method,
from the standpoint of the energy approach, it was explained why the sensory response of
MPcF4 films to ammonia is noticeably higher than that of MPc films. The use of various
approximations of the DFT method has shown that they can successfully solve similar
problems and answer questions from sensor developers [32–34]. In particular, a numerical
experiment using DFT methods makes it possible to determine the activation barrier,
the change in free energy and the position of the Fermi level when gas molecules land
on the sensor surface, and to predict the effect of moisture and other types of surface
modification. DFT methods in various approximations in combination with the apparatus
of non-equilibrium green’s functions (NEGFs) are actively used in predictive modeling of
sensory properties based on the analysis of the dynamics of charge transfer between the
surface of a sensitive element and analyte. Despite the high requirements for computing
resources in such problems, this physical and mathematical apparatus is successfully used
in the search for physically correct solutions to the problem of increasing the efficiency of
the sensitive element of a gas sensor based on metal oxides [35]. The standard approach
in all such works is the analysis of the energy profile of the interaction of the adsorbed
object with the working surface of the sensor, as well as the calculation of the map of the
adsorbing centers of the surface based on the calculation of the distribution of the electron
charge density. However, the calculation of the chemoresistive response S based on a
numerical experiment was not carried out in any such work. The pioneering work in the
field of calculating the chemoresistive response S of a gas sensor is a work [36] carried
out with the participation of one of the team members of this paper. The chemoresistive
response mechanism for a gas sensor based on Co3O4 oxide was investigated in [36].

This paper is devoted to a quantum mechanical study of the effect of functionalization
of edge atoms of zigzag/armchair graphene nanoribbons by COOH groups on their
electronic properties and chemoresistive response.

2. Materials and Methods

The search for equilibrium atomic configurations of supercells of carboxylated graphene
nanoribbons was carried out using the DFT method implemented in the SIESTA software
package [37,38]. The DZP (double-ζ-polarized) basis was used. This basis set includes
polarization functions. The finite mesh in coordinate space is used in SIESTA to calculate
integrals and represent charge densities and potentials. The speed and accuracy of cal-
culations are determined by the value of plane-wave cutoff (Mesh Cutoff), which is set
externally. The tradeoff between speed and accuracy is 350 Ry, which is used for most
systems with no more than a thousand atoms. To relax the structure’s geometry, we used
a 24 × 1 × 1 Monkhorst–Pack k-mesh [39]. The convergence conditions of the geometry
optimization were set at an atomic force smaller than 10−3 eV/Å. To perform the crystal
lattice’s geometric optimization and its tetragonal distortion, the “smearing” and “tetrahe-
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dra” modes were used, respectively. To consider the electron–ion interaction, the projection
augmented wave (PAW) method was used. The exchange-correlation interaction was de-
scribed in the generalized gradient approximation (GGA) in the Perdew–Burke–Ernzerhof
(PBE) parameterization [40].

To study the interaction of a surface with an analyte, the van der Waals density
functional approximation (vdW-DF) with the exchange-correlation functional by K. Berland
and P. Hyldgaard (BH) was used [41]. This exchange-correlation functional is the newest
in the series of functionals of the van der Waals density functional method vdW-DF and
is reliably used both for calculating the topology of the structure and for calculating the
quantum transport of electrons [42,43].

To calculate the chemoresistive response, the electrical resistances were calculated
before and after the landing of the analyte. For this, we used TranSIESTA—a method for
calculating the electronic structure formed by a finite subsystem sandwiched between two
endless conducting contacts. The TranSIESTA method is closely related to the SIESTA code
since the TranSIESTA calculations involve the calculation of the electron density from the
DFT Hamiltonian using the NEGFs method instead of the usual diagonalization procedure.
The calculation of transport properties includes the calculation of electrodes and scattering
regions for the object under the study/electrodes system. Calculation of the scattering
region by TranSIESTA begins with the usual SIESTA procedure, which generates a density
matrix using the Kohn–Sham scheme for periodic systems. This solution is used as the
initial one for the self-consistent cycle of the NEGF method. The result of calculating
by TranSIESTA, as well as calculating by SIESTA, is an equilibrium density matrix. To
calculate the transport properties, a transmission function is required. This function can be
calculated using the scattering matrix formalism and obtained from the green’s function
using the generalized Fisher–Lee relation or the Lippmann–Schwinger equation. Within
the SIESTA code, the transmission function is calculated in the TBtrans program included
in the software package.

3. Results
3.1. Atomic Models of Carboxylated Graphene Nanoribbons (GRNR–COOH)

As is known, all zigzag GRNR (ZGRNR) exhibit metallic conductivity properties.
Due to edge localized states, these nanoribbons are distinguished by the presence of a
high-intensity peak of the DOS at the Fermi level. Since we use the DFT approach, the
supercells of nanoribbons were selected within a few hundred atoms to be able to apply
the complete DZP basis set in calculations of energy and atomic structure.

First of all, we considered such supercells as the supercells of the 16ZGRNR–2COOH
nanoribbon containing 16 carbon atoms and two COOH groups attached to nanoribbon
edge atoms. This nanoribbon has two isomers: cis and trans, as shown in Figure 1a
(left figure). Carboxyl groups are highlighted in green in the figure. The optimization of
the supercells of these isomers showed that these structures are energetically favorable
since the heat of formation ∆Hf for them has a negative value. Table 1 shows energy
characteristics, such as ∆Hf, energy gap Egap, and Fermi level EF. Both cis and trans
isomers are practically indistinguishable in all energy parameters. From the standpoint of
geometric characteristics, these two isomers differ in the bond length between the COOH
group and the edge C-atom of the nanoribbon and the magnitude of the translation vector.
As shown in Figure 1, the translation vector is directed along the X-axis.
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Figure 1. Atomistic models of carboxylated graphene nanoribbons: (a) zigzag nanoribbon; (b) armchair nanoribbon
(carboxyl groups in the figure are circled in green).

Table 1. Metric and energy characteristics of carboxylated graphene nanoribbons.

Structure Length
C–COOH, Å Lattice Vector, Å ∆Hf, eV Egap, eV EF, eV Charge on COOH, e

Zigzag nanoribbons

16ZGRNR–2COOH
(cis isomer) 1.522 2.455 −8.90 0 −5.88 −0.077

16ZGRNR–2COOH
(trans-isomer) 1.514 2.482 −9.38 0 −5.87 −0.076

32ZGRNR–4COOH 1.522 4.954 −27.56 0 −5.82 −0.100

Armchair nanoribbons

20AGRNR–2COOH
(cis isomer) 1.501 4.260 −31.90 1.024 −5.06 −0.020

20AGRNR–2COOH
(trans-isomer) 1.502 4.260 −31.91 1.028 −5.07 −0.021

42AGRNR–2COOH 1.512 4.254 −35.50 0.040 −4.95 −0.030

Despite the negative value of ∆Hf for 16ZGRNR–2COOH-based nanoribbons, we also
investigated other topological variants of supercells, each of which contained not 2 COOH
groups but 4 COOH groups. In fact, such a supercell consists of two 16ZGRNR supercells,
on the edge atoms, of which there are 2 COOH groups on each side, as shown in Figure 1a
(middle figure). The most energetically favorable topological variant is the configuration of
the arrangement of COOH groups shown in Figure 1a: two COOH groups located on one
diagonal are directed upwards, the other two are directed downwards. This provides an
equilibrium state from the standpoint of the heat of formation, which is significantly lower
than in the previous variant. The energy and metric parameters of the resulting 32ZGRNR–
4COOH new supercell are also presented in Table 1. It is clear from the data in the table that
the formation of such carboxylated graphene nanoribbon is energetically more favorable by
194%. This can be explained by the fact that the COOH groups of the 16ZGRNR–2COOH
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nanoribbon are located too close to each other during supercell translation, which leads
to the repulsion of electrons from the near COOH groups. All the main characteristics
for the obtained most energetically favorable 32ZGRNR–4COOH nanoribbon are also
presented in Table 1. Note that in all the considered cases of the carboxylated zigzag
graphene nanoribbons, the COOH groups take up part of the charge. In the case of the
32ZGRNR–4COOH nanoribbon, each COOH group takes the maximum amount of charge
equal to -0.1e. This suggests that these nanoribbons will have the maximum chemical
activity of carboxyl groups, which plays the most important role in improving sensory
properties. Thus, in the case of constructing a carboxylated zigzag nanoribbon based on
a supercell of 32 atoms, the density of carboxyl groups per the number of atoms of the
original supercell is achieved in a ratio of 1:8. Such a high density of COOH groups makes
the zigzag nanoribbon highly functionalized with many adsorption centers. A fragment
of this nanoribbon is shown on the right in Figure 1a. The DOS plot of this nanoribbon
is shown in Figure 2a, where clear, sharp DOS peaks are seen at the Fermi level for a
nanoribbon with passivated edge atoms (4Hblue curve) and functionalized COOH groups
(4 COOH—red curve). Moreover, upon functionalization of edge atoms with COOH
groups, the DOS peak at the Fermi level increases, which additionally indicates an increase
in the chemical activity of carboxylated zigzag graphene nanoribbons than conventional
passivated nanoribbons.
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Various topological configurations for carboxylated graphene armchair nanoribbons
were also considered. Unlike zigzag nanoribbons, armchair nanoribbons are distinguished
by the presence of an energy gap in the band structure, the value of which fluctuates
depending on the width of the nanoribbon. In this regard, two types of nanoribbons
(20AGRNR–2COOH and 42AGRNR–2COOH) were considered in detail. Both nanoribbons
have only two COOH groups and differ in the width of the nanoribbon. Table 1 shows
the values of the translation vectors (the translation vector is directed along the Y-axis,
as shown in Figure 1b) and the bond lengths between the COOH group and the edge
C-atom. This table also shows the energy characteristics. The first configuration of the
20AGRNR–2COOH nanoribbon is distinguished by a rather large energy gap Egap, which
makes these nanostructures not promising for their use in gas sensors since the electrical
resistance for them will reach hundreds of megohms.

Therefore, in spite of the energetically favorable functionalization of the edge atoms of
these nanostructures, we considered armchair nanoribbons of larger width, for which the
Egap value has a lower value. The functionalization of the edge atoms of these nanoribbons
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(42AGRNR–2COOH, see Figure 1b) is even more energetically favorable than 20AGRNR–
2COOH nanoribbons. The topology of the supercells of both nanoribbons is shown in
Figure 1b, which also shows the cis/trans isomers of the nanoribbon of a smaller width, as
well as the topology of the energetically favorable 42AGRNR–2COOH nanoribbon. For
the 42AGRNR–2COOH nanoribbon, the energetically most favorable supercell configura-
tion is shown when two COOH groups on opposite diagonally edges have an identical
arrangement (circled in green). The DOS plots of the original 42AGRNR supercell and
42AGRNR–2COOH supercells are presented in Figure 2b, which shows that the functional-
ization of the edges shifts the Fermi level as in the case of zigzag nanoribbons. In the case of
armchair nanoribbons, functionalization leads to a slight increase in the energy gap. How-
ever, the gap is small, so this type of nanoribbons can also be used in sensorics. The amount
of charge transferred over to each COOH group is less than that of zigzag nanoribbons,
but it is also quite significant and shows the chemical activity of carboxyl groups.

3.2. Sensory Properties

Sensory properties of non-functionalized 32ZGRNR–4H and 42AGRNR–4H nanorib-
bons and carboxylated 32ZGRNR–4COOH and 42AGRNR–2COOHnanoribbons were
studied. Ammonia was used as the analyte. The studies were carried out in the presence of
water and without it.

3.2.1. Zigzag Nanoribbon

To understand the nature of the nanoribbon interaction with water and analyte, a series
of calculations were carried out with various places of water and ammonia landing. Figure 3
shows such different situations with the landing of a water molecule (a), ammonia (b) and the
landing of ammonia on a wet surface (c). Three main places of adsorption of single molecules of
water and ammonia were selected: in the center and at two opposite ends, that is, on the basal
surface and beside the COOH groups, as shown in Figure 3a,b. Similarly, these molecules
were adsorbed individually and on a non-functionalized nanoribbon. Optimization of the
atomic structure, taking into account the van der Waals interaction of the adsorbate with the
nanoribbon, was carried out after each landing of molecules. It was found that the cases of
adsorption of both water and ammonia molecules on the edges are energetically favorable.
Moreover, in the case of carboxylated graphene nanoribbons, these are not just edges but
COOH groups. It should also be noted that there are several energetically favorable landing
positions at the edge, differing in energy within 0.01‰. Next, the ammonia molecule was
placed on a wet nanoribbon. In addition, different landing sites were chosen, and a series of
calculations were carried out. The water molecule was located at the edge of the nanoribbon
in one of the energetically favorable positions, and the NH3 molecule was located either
next to it, or in the center or at the other edge of the nanoribbon, where there was no water
(Figure 3c).In addition, every time, the whole system was re-optimized. Figure 4 shows
the cases of adsorption at optimal configurations of a water molecule and an ammonia
molecule on a wet nanoribbon for non-functionalized (a) and carboxylated (b) nanoribbons.

Table 2 presents the energy characteristics, including the Fermi level, the adsorption
energy and the charge on the nanoribbon. The adsorption energy Eads was calculated as
Eads = EFAR − Enear, where EFAR is the energy of a clean nanoribbon + the energy of a
molecule at a large distance between them (when they are far from each other), and Enear
is the energy of the nanoribbon + molecule system after adsorption. The energy charac-
teristics are given in the table, taking into account all the revealed energetically favorable
positioning of water and ammonia molecules concerning the nanoribbon; therefore, these
characteristics are given, taking into account the corresponding scatter. First of all, there is
a large difference between the Fermi level for a clean ribbon without COOH groups and a
clean ribbon with functionalized edges with COOH groups. Upon functionalization of the
nanoribbon, the Fermi level shifts sharply downward, which indicates a rearrangement of
the entire electronic system. Further, as water and ammonia molecules are adsorbed, the
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Fermi level shifts upward, that is, to zero. This is observed in both ZGRNR–4H nanoribbons
and ZGRNR–2COOH-2H nanoribbons.
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Table 2. Energy characteristics of non-functionalized zigzag 32ZGRNR–4H nanoribbon and carboxylated 32ZGRNR–
4COOH nanoribbon.

Eads, eV EF, eV Charge of ZGRNR, e R, kOhm S, %

32ZGRNR–4H

Clean – −4.60 0 12.596 –

+NH3 0.013 ± 0.001 −4.68 ± 0.01 −0.0041 ± 0.0004 11.812 ± 0.07 6.2 ± 0.08

+H2O 0.078 ± 0.002 −4.70 ± 0.01 −0.0046 ± 0.0003 11.104 ± 0.05 –

+H2O + NH3 0.015 ± 0.006 −4.74 ± 0.02 −0.0051 ± 0.0005 10.457 ± 0.03 8.3 ± 0.10

32ZGRNR−4COOH

Clean – −5.92 0 12.701 –

+NH3 0.103 ± 0.001 −5.85 ± 0.01 −0.0007 ± 0.00005 12.219 ± 0.04 3.4 ± 0.03

+H2O 0.186 ± 0.002 −5.82 ± 0.02 −0.0014 ± 0.0002 10.573 ± 0.03 –

+H2O + NH3 0.128 ± 0.005 −5.69 ± 0.03 0.002 ± 0.001 12.105 ± 0.02 15.2 ± 0.05

The next step was to calculate the chemoresistive response of 32ZGRNR–4H and
32ZGRNR–4COOH nanoribbons to the adsorption of ammonia in cases of dry and wet
surfaces. As is known, the chemoresistive response is calculated as the relative value of
the change in the electrical resistance of the nanoribbon upon adsorption of the molecular
object: S = |∆R|/R. The performed calculations show the following results: (1) the
adsorption of water and ammonia molecules on the 32ZGRNR–4H nanoribbon reduces the
resistance; (2) the adsorption on the 32ZGRNR–4COOH nanoribbon leads to a decrease in
the resistance in the case of water, and to an increase in the case of ammonia. In this case,
the reaction of 32ZGRNR–4H and 32ZGRNR–4COOH wet nanoribbons to ammonia is not
the same. The chemoresistive response of the dry nanoribbon to ammonia is small and
averages 6.2% and 3.4%, respectively. However, the response of the 32ZGRNR–4COOH
wet nanoribbon is very convincing as it exceeds 10%, reaching an average of 15.2%. How
can this be explained? To answer this question, let us again turn to the data presented
in Table 2. One of the important characteristics of the nanoribbon + adsorbate system is
charge transfer. In the case of adsorption of the water molecule on supercells and ammonia
molecules, the nanoribbon’s atomic framework received an additional charge, but upon
the adsorption of the NH3 molecule on the wet 32ZGRNR–4COOH nanoribbon, the charge
transfer changed direction. Now the nanoribbon, on the contrary, gave up part of the
charge, so the resistance value increased from 10.573 to 12.105 kOhm. In this case, the
chemoresistive response was 15.2%. For clarity, Figure 5 shows the patterns of charge
distribution over the 32ZGRNR–4H and 32ZGRNR–4COOH atoms upon the adsorption of
an NH3 molecule on a wet nanoribbon. The charges are calculated according to Mulliken
population analysis.

As shown in Figure 5, the nanoribbon’s functionalization by COOH groups radically
changes the pattern of the distribution of the electron charge density. If a non-functionalized
nanoribbon is characterized by a charge transfer from a water molecule and NH3 molecule
to the atomic framework of a nanoribbon, then for a functionalized nanoribbon, the oppo-
site is true. The charge from the nanoribbon framework and the water molecule flows to the
ammonia molecule, which explains the increase in the resistance of this ribbon to the wet
nanoribbon. In general, it should be noted that functionalization of the zigzag nanoribbon
by COOH groups played a positive role in improving sensory properties. As compared
to the non-functionalized nanoribbon, the chemoresistive response S increased almost
twofold. As a visualization of the characteristic differences between the functionalized
nanoribbon and the non-functionalized one, Figure 6 shows diagrams of the dynamics
of the Fermi level and resistance in the process of adsorption of ammonia, water, and
ammonia molecules on a wet surface. The presented diagrams very well demonstrate the
role of COOH groups since the nanoribbon reacts more noticeably to ammonia precisely
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in the presence of carboxyl groups. This is especially noticeable for wet nanoribbons. It
is clearly seen how strongly the resistance jumped when landing on a wet nanoribbon of
an ammonia molecule. This is a very important result since there are practically no clean
surfaces without water.
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3.2.2. Armchair Nanoribbon

Similar studies were carried out for the armchair nanoribbon. As in the case of the
zigzag nanoribbon, 42AGRNR–4H nanoribbon with passivated edges and 42AGRNR–
2COOH nanoribbon carboxylated edges were considered. Figure 7a,b show fragments
of these nanoribbons and their supercells, which are highlighted in blue. The landing
of ammonia and water molecules was also carried out in various ways, including the
nanoribbon’s edges and its middle part. As a result of a series of calculations, the most
energetically favorable landing regions were identified; they are shown in Figure 7c,d. En-
ergy characteristics, charge transfer, resistance and chemoresistive response are presented
in Table 3. Due to the small gap in these nanoribbons’ band structure, the resistance is
noticeably higher than zigzag nanoribbons. There is a chemoresistive response but within
a few percent.
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Table 3. Energy characteristics of non-functionalized 42AGRNR–4H zigzag nanoribbon and carboxylated 42AGRNR–
2COOH-2Hnanoribbon.

Eads, eV EF, eV Charge of AGRNR, e R, kOhm S, %

42AGRNR–4H

Clean – −4.41 – 237.731 –

+NH3 0.008 ± 0.003 −4.79 ± 0.02 −0.0028 ± 0.0005 229.648 ± 1.8 3.3 ± 0.35

+H2O 0.05 ± 0.005 −4.54 ± 0.03 −0.0047 ± 0.0003 227.955 ± 1.5 –

+H2O + NH3 0.010 ± 0.002 −4.43 ± 0.02 −0.0083 ± 0.0005 224.400 ± 1.6 1.57 ± 0.02

42AGRNR–2COOH-2H

Clean – −5.06 – 215.772 –

+NH3 0.005 ± 0.005 −5.03 ± 0.02 −0.0007 206.417 ± 1.5 4.30 ± 0.05

+H2O 0.06 ± 0.03 −5.10 ± 0.02 −0.0014 204.052 ± 2.0 –

+H2O + NH3 0.022 ± 0.005 −5.23 ± 0.03 −0.018 ± 0.005 195.570 ± 1.8 4.13 ± 0.03

Analysis of the data obtained shows that the adsorption energy of ammonia on a wet
armchair nanoribbon is higher, as in the case of a zigzag nanoribbon. Carboxylation of
nanoribbons of both types leads to a sharp shift of the Fermi level towards a decrease. The
adsorption of water and ammonia affects the energy in different ways. For comparison and
clarity, Figure 8 shows diagrams of changes in the Fermi level and resistance for armchair
nanoribbons. If in the case of zigzag nanoribbons, each adsorption shifted the Fermi level
in one direction (towards a decrease for a non-functionalized nanoribbon and an increase
for a carboxylated one), then, in this case, we see jumps in the behavior of the Fermi level.
However, the resistance behaves in the same way, and it decreases for both considered
armchair nanoribbons.
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4. Conclusions

In this work, we investigated the role of carboxyl groups in changing the sensor prop-
erties of gas sensors based on graphene zigzag and armchair nanoribbons. First of all, it was
found that the chemoresistive response is significantly higher when ammonia is adsorbed
on wet nanoribbons functionalized by COOH groups. This is an important result since
water is always present in the air and is inevitably present on graphene structures. Another
interesting point is that carboxyl groups primarily attract water molecules, which are ener-
getically advantageous to sit on these regions and then on the nanoribbon’s basal surface.
It was also found that the armchair nanoribbon is less suitable for an ammonia gas sensor
because the chemoresistive response of the carboxylated armchair nanoribbon is small
than the carboxylated zigzag nanoribbon. This is important because experimental studies
show that the zigzag edges are characteristic of graphene flakes, ribbons, and perforated
graphene. That is, the carboxylated nanoribbon zigzag can be the most promising.
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