Identification of Mint Scents Using a QCM Based E-Nose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction of Essential Oils
2.2. Chemicals and Fabrication of Sensors
2.3. Data Acquisition with the E-nose
2.4. Data Analysis and Classification
3. Results and Discussion
3.1. Sensor Array Response
3.2. Principal Component Analysis (PCA)
3.3. Linear Discrimination Analysis (LDA)
3.4. Nearest Neighbor Analysis (k-NN)
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goossens, A.; Häkkinen, S.T.; Laakso, I.; Seppänen-Laakso, T.; Biondi, S.; De Sutter, V.; Lammertyn, F.; Nuutila, A.M.; Söderlund, H.; Zabeau, M. A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc. Natl. Acad. Sci. USA 2003, 100, 8595–8600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugimoto, K.; Matsui, K.; Iijima, Y.; Akakabe, Y.; Muramoto, S.; Ozawa, R.; Uefune, M.; Sasaki, R.; Alamgir, K.M.; Akitake, S. Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc. Natl. Acad. Sci. USA 2014, 111, 7144–7149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, J.J.; Rathinasabapathi, B.; Chase, C.A. Allelopathy: How plants suppress other plants. EDIS 2013. [Google Scholar] [CrossRef]
- Schandry, N.; Becker, C. Allelopathic Plants: Models for Studying Plant–Interkingdom Interactions. Trends Plant Sci. 2020, 25, 176–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weir, T.L.; Park, S.-W.; Vivanco, J.M. Biochemical and physiological mechanisms mediated by allelochemicals. Curr. Opin. Plant Biol. 2004, 7, 472–479. [Google Scholar] [CrossRef]
- Cavalieri, A.; Caporali, F. Effects of essential oils of cinnamon, lavender and peppermint on germination of Mediterranean weeds. Allelopath. J. 2010, 25, 441–452. [Google Scholar]
- Campiglia, E.; Roberto, M.; Cavalieri, A.; Caporali, F. Use of Essential Oils of Cinnamon, Lavender and Peppermint for Weed Control. Ital. J. Agron. 2007, 2, 171–178. [Google Scholar] [CrossRef]
- Sarheed, M.M.; Rajabi, F.; Kunert, M.; Boland, W.; Wetters, S.; Miadowitz, K.; Kaźmierczak, A.; Sahi, V.P.; Nick, P. Cellular base of mint allelopathy: Menthone affects plant microtubules. Front. Plant Sci. 2020, 11, 1320. [Google Scholar] [CrossRef]
- Argyropoulos, E.I.; Vokou, D.; Eleftherochorinos, I. In Vitro Evaluation of Essential Oils from Mediterranean Aromatic Plants of the Lamiaceae for Weed Control in Tomato and Cotton Crops; Aristotle University of Thessaloniki: Aristotle, Greece, 2008. [Google Scholar]
- Kokkini, S.; Karousou, R.; Lanaras, T. Essential oils of spearmint (Carvone-rich) plants from the island of Crete (Greece). Biochem. Syst. Ecol. 1995, 23, 425–430. [Google Scholar] [CrossRef]
- Sharma, S.; Tyagi, B. Character correlation, path coefficient and heritability analyses of essential oil and quality components in Japanese mint. J. Genet. Breed. 1991, 45, 257–262. [Google Scholar]
- Analysis Method of Peppermint Oil—Japan Customs Analysis Methods, 302 ed. 2019. Available online: https://www.customs.go.jp/ccl_search/e_analysis_search/a_302_e.pdf (accessed on 18 January 2021).
- Buleandra, M.; Oprea, E.; Popa, D.E.; David, I.G.; Moldovan, Z.; Mihai, I.; Badea, I.A. Comparative chemical analysis of Mentha piperita and M. spicata and a fast assessment of commercial peppermint teas. Nat. Prod. Commun. 2016, 11, 1934578X1601100433. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhu, J.; Wu, B.; Zhao, C.; Sun, J.; Dai, C. Discrimination of Chinese Liquors Based on Electronic Nose and Fuzzy Discriminant Principal Component Analysis. Foods 2019, 8, 38. [Google Scholar] [CrossRef] [Green Version]
- Okur, S.; Zhang, Z.; Sarheed, M.; Nick, P.; Lemmer, U.; Heinke, L. Towards a MOF e-Nose: A SURMOF sensor array for detection and discrimination of plant oil scents and their mixtures. Sens. Actuators B Chem. 2020, 306, 127502. [Google Scholar] [CrossRef]
- Gorji-Chakespari, A.; Nikbakht, A.M.; Sefidkon, F.; Ghasemi-Varnamkhasti, M.; Brezmes, J.; Llobet, E. Performance Comparison of Fuzzy ARTMAP and LDA in Qualitative Classification of Iranian Rosa damascena Essential Oils by an Electronic Nose. Sensors 2016, 16, 636. [Google Scholar] [CrossRef] [Green Version]
- Shao, X.; Li, H.; Wang, N.; Zhang, Q. Comparison of different classification methods for analyzing electronic nose data to characterize sesame oils and blends. Sensors 2015, 15, 26726–26742. [Google Scholar] [CrossRef] [Green Version]
- Okur, S.; Qin, P.; Chandresh, A.; Li, C.; Zhang, Z.; Lemmer, U.; Heinke, L. An enantioselective e-nose: An array of nanoporous homochiral MOF films for stereospecific sensing of chiral odors. Angew. Chem. Int. Ed. 2020, 132, 1–7. [Google Scholar]
- Berna, A. Metal oxide sensors for electronic noses and their application to food analysis. Sensors 2010, 10, 3882–3910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horzum, N.; Tascioglu, D.; Ozbek, C.; Okur, S.; Demir, M.M. VOC sensors based on a metal oxide nanofibrous membrane/QCM system prepared by electrospinning. New J. Chem. 2014, 38, 5761–5768. [Google Scholar] [CrossRef] [Green Version]
- Moon, S.E.; Choi, N.J.; Lee, H.K.; Lee, J.; Yang, W.S. Semiconductor-Type MEMS Gas Sensor for Real-Time Environmental Monitoring Applications. ETRI J. 2013, 35, 617–624. [Google Scholar] [CrossRef]
- Darwish, H.; Jafarian, A.; Baleanu, D.; Senel, M.; Okur, S. Applications of Artificial Neural Network Technique to Polypyrrole Gas Sensor Data for Environmental Analysis. J. Comput. Theor. Nanosci. 2015, 12, 4392–4398. [Google Scholar] [CrossRef]
- Darwish, H.M.B.; Okur, S. CO adsorption kinetics of ferrocene-conjugated polypyrrole using quartz microbalance technique. Sens. Actuators B Chem. 2014, 200, 325–331. [Google Scholar] [CrossRef]
- Bieg, C.; Fuchsberger, K.; Stelzle, M. Introduction to polymer-based solid-contact ion-selective electrodes-basic concepts, practical considerations, and current research topics. Anal. Bioanal. Chem. 2017, 409, 45–61. [Google Scholar] [CrossRef]
- Broza, Y.Y.; Haick, H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine 2013, 8, 785–806. [Google Scholar] [CrossRef]
- Tung, T.T.; Losic, D.; Park, S.J.; Feller, J.F.; Kim, T. Core-shell nanostructured hybrid composites for volatile organic compound detection. Int. J. Nanomed. 2015, 10, 203–214. [Google Scholar]
- Ramgir, N.S. Electronic Nose Based on Nanomaterials: Issues, Challenges, and Prospects. ISRN Nanomater. 2013, 2013, 941581. [Google Scholar] [CrossRef] [Green Version]
- Wilson, A.D.; Baietto, M. Applications and advances in electronic-nose technologies. Sensors 2009, 9, 5099–5148. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N. QCM Sensor Arrays for Monitoring Volatile Plant Emanations via Molecularly Imprinted Polymers. Ph.D. Thesis, University of Vienna, Vienna, Austria, 2011. [Google Scholar]
- Staii, C.; Johnson, A.T., Jr.; Chen, M.; Gelperin, A. DNA-decorated carbon nanotubes for chemical sensing. Nano Lett. 2005, 5, 1774–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, N.; Mustafa, G.; Rehman, A.; Biedermann, A.; Najafi, B.; Lieberzeit, P.A.; Dickert, F.L. QCM-arrays for sensing terpenes in fresh and dried herbs via bio-mimetic MIP layers. Sensors 2010, 10, 6361–6376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Real-time aroma monitoring of mint (Mentha spicata L.) leaves during the drying process using electronic nose system. Measurement 2018, 124, 447–452. [Google Scholar] [CrossRef]
- Kiani, S.; Minaei, S.; Ghasemi-Varnamkhasti, M. Application of electronic nose systems for assessing quality of medicinal and aromatic plant products: A review. J. Appl. Res. Med. Aromat. Plants 2016, 3, 1–9. [Google Scholar] [CrossRef]
- Dhanekar, S. Smart and Intelligent E-nose for Sensitive and Selective Chemical Sensing Applications. Smart Sens. Environ. Med. Appl. 2020, 149–171. [Google Scholar]
- Wilson, A.D. Diverse applications of electronic-nose technologies in agriculture and forestry. Sensors 2013, 13, 2295–2348. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Ling, P.; Zhu, H.; Keener, H.M. Plant Pest Detection Using an Artificial Nose System: A Review. Sensors 2018, 18, 378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laothawornkitkul, J.; Moore, J.P.; Taylor, J.E.; Possell, M.; Gibson, T.D.; Hewitt, C.N.; Paul, N.D. Discrimination of plant volatile signatures by an electronic nose: A potential technology for plant pest and disease monitoring. Environ. Sci. Technol. 2008, 42, 8433–8439. [Google Scholar] [CrossRef] [PubMed]
- Sarheed, M.M. Allelopathic Compounds from Mint Target the Cytoskeleton from Cell Biology towards Application as Bioherbicides; KIT-Bibliothek: Karlsruhe, Germany, 2019. [Google Scholar]
- Bolse, N.; Eckstein, R.; Schend, M.; Habermehl, A.; Eschenbaum, C.; Hernandez-Sosa, G.; Lemmer, U. A digitally printed optoelectronic nose for the selective trace detection of nitroaromatic explosive vapours using fluorescence quenching. Flex. Print. Electron. 2017, 2, 024001. [Google Scholar] [CrossRef]
- Bolse, N.; Huber, R.; Habermehl, A.; Eckstein, R.; Hernandez-Sosa, G.; Mertens, A.; Eschenbaum, C.; Lemmer, U. A Low-Cost Versatile Fluorescence Quenching Detection System for Liquid-and Vapor-Phase Sensing. In Proceedings of the 2017 IEEE Sensors, Glasgow, UK, 29 October–1 November 2017; IEEE: New York, NY, USA, 2017; pp. 1–3. [Google Scholar]
- Shekhah, O.; Wang, H.; Kowarik, S.; Schreiber, F.; Paulus, M.; Tolan, M.; Sternemann, C.; Evers, F.; Zacher, D.; Fischer, R.A.; et al. Step-by-step route for the synthesis of metal-organic frameworks. J. Am. Chem. Soc. 2007, 129, 15118–15119. [Google Scholar] [CrossRef] [PubMed]
- Arslan, H.K.; Shekhah, O.; Wohlgemuth, J.; Franzreb, M.; Fischer, R.A.; Wöll, C. High-Throughput Fabrication of Uniform and Homogenous MOF Coatings. Adv. Funct. Mater. 2011, 21, 4228–4231. [Google Scholar] [CrossRef]
- Liu, J.X.; Lukose, B.; Shekhah, O.; Arslan, H.K.; Weidler, P.; Gliemann, H.; Bräse, S.; Grosjean, S.; Godt, A.; Feng, X.L.; et al. A novel series of isoreticular metal organic frameworks: Realizing metastable structures by liquid phase epitaxy. Sci. Rep. 2012, 2, 921. [Google Scholar] [CrossRef] [Green Version]
- Muckley, E.S.; Anazagasty, C.; Jacobs, C.B.; Hianik, T.; Ivanov, I.N. Low-cost scalable quartz crystal microbalance array for environmental sensing. In Organic Sensors and Bioelectronics IX; International Society for Optics and Photonics: Bellingham, WA, USA, 2016; p. 99440Y. [Google Scholar]
- Sauerbrey, G.; Jung, G. Vibrational Modes of Planoconvex Quartz Plates. Z. Angew. Phys. 1968, 24, 100–106. [Google Scholar]
- Zarzo, M.; Stanton, D.T. Identification of Latent Variables in a Semantic Odor Profile Database Using Principal Component Analysis. Chem. Senses 2006, 31, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.; Zhou, J.; Wang, A.; Wang, N.; Yang, X. Synthesis of aluminium-doped ZnO nanocrystals with controllable morphology and enhanced electrical conductivity. J. Mater. Chem. 2011, 21, 4161–4167. [Google Scholar] [CrossRef]
- Sankar ganesh, R.; Navaneethan, M.; Mani, G.K.; Ponnusamy, S.; Tsuchiya, K.; Muthamizhchelvan, C.; Kawasaki, S.; Hayakawa, Y. Influence of Al doping on the structural, morphological, optical, and gas sensing properties of ZnO nanorods. J. Alloy. Compd. 2017, 698, 555–564. [Google Scholar] [CrossRef]
- Patil, A.; Dighavkar, C.; Borse, R. Al doped ZnO thick films as CO2 gas sensors. J. Optoelectron. Adv. Mater. 2011, 13, 1331–1337. [Google Scholar]
- Bahadori, M.B.; Zengin, G.; Bahadori, S.; Dinparast, L.; Movahhedin, N. Phenolic composition and functional properties of wild mint (Mentha longifolia var. calliantha (Stapf) Briq.). Int. J. Food Prop. 2018, 21, 183–193. [Google Scholar] [CrossRef] [Green Version]
Mint Accession | Common Name | Abbreviation | KIT Voucher | # of Leaves for 1 g |
---|---|---|---|---|
Mentha x piperita L. | Pepper Mint | PM | 5393 | 10 |
Mentha longifolia (L.) | Horse Mint | MLF | 8682 | 10 |
Mentha spicata L. var. spicata | Spear Mint | MS | 7579 | 23 |
Mentha spicata L. var. crispa (MC) | Curly Mint | MC | 5391 | 7 |
Agastache rugosa (Fisch. & C.A.Mey.) Kuntze | Korean Mint | AR | 7576 | 12 |
Nepata cataria L. | Catnip | NCL | 4643 | 11 |
Materials | Spin Speed (RPM) | Initial f0 (MHz) | Frequency Shift (kHz) |
---|---|---|---|
ZnO | 2000 | 9,9998 | 45.1 |
AZO | 2000 | 10,0000 | 43.6 |
SnO2 | 1000 | 9,9999 | 36.5 |
ITO | 1000 | 9,9996 | 81.8 |
PVA | 2000 | 10,0200 | 51.8 |
PEDOT.PSS | 2000 | 10,0001 | 50.4 |
PB | 2100 | 10,0064 | 7.5 |
SW | 1550 | 10,0154 | 9.2 |
PFO | 1300 | 10,0061 | 9.7 |
SB | 2100 | 10,0021 | 16.7 |
SG | 1300 | 10,0061 | 8.4 |
Cu(BPDC) | - | 10,0001 | 13.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okur, S.; Sarheed, M.; Huber, R.; Zhang, Z.; Heinke, L.; Kanbar, A.; Wöll, C.; Nick, P.; Lemmer, U. Identification of Mint Scents Using a QCM Based E-Nose. Chemosensors 2021, 9, 31. https://doi.org/10.3390/chemosensors9020031
Okur S, Sarheed M, Huber R, Zhang Z, Heinke L, Kanbar A, Wöll C, Nick P, Lemmer U. Identification of Mint Scents Using a QCM Based E-Nose. Chemosensors. 2021; 9(2):31. https://doi.org/10.3390/chemosensors9020031
Chicago/Turabian StyleOkur, Salih, Mohammed Sarheed, Robert Huber, Zejun Zhang, Lars Heinke, Adnan Kanbar, Christof Wöll, Peter Nick, and Uli Lemmer. 2021. "Identification of Mint Scents Using a QCM Based E-Nose" Chemosensors 9, no. 2: 31. https://doi.org/10.3390/chemosensors9020031
APA StyleOkur, S., Sarheed, M., Huber, R., Zhang, Z., Heinke, L., Kanbar, A., Wöll, C., Nick, P., & Lemmer, U. (2021). Identification of Mint Scents Using a QCM Based E-Nose. Chemosensors, 9(2), 31. https://doi.org/10.3390/chemosensors9020031