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Abstract: Mints emit diverse scents that exert specific biological functions and are relevance for
applications. The current work strives to develop electronic noses that can electronically discrimi-
nate the scents emitted by different species of Mint as alternative to conventional profiling by gas
chromatography. Here, 12 different sensing materials including 4 different metal oxide nanoparticle
dispersions (AZO, ZnO, SnO2, ITO), one Metal Organic Frame as Cu(BPDC), and 7 different polymer
films, including PVA, PEDOT:PSS, PFO, SB, SW, SG, and PB were used for functionalizing of Quartz
Crystal Microbalance (QCM) sensors. The purpose was to discriminate six economically relevant
Mint species (Mentha x piperita, Mentha spicata, Mentha spicata ssp. crispa, Mentha longifolia, Agastache
rugosa, and Nepeta cataria). The adsorption and desorption datasets obtained from each modified
QCM sensor were processed by three different classification models, including Principal Component
Analysis (PCA), Linear Discriminant Analysis (LDA), and k-Nearest Neighbor Analysis (k-NN). This
allowed discriminating the different Mints with classification accuracies of 97.2% (PCA), 100% (LDA),
and 99.9% (k-NN), respectively. Prediction accuracies with a repeating test measurement reached
up to 90.6% for LDA, and 85.6% for k-NN. These data demonstrate that this electronic nose can
discriminate different Mint scents in a reliable and efficient manner.

Keywords: mint; plant volatiles; electronic nose; principal component analysis; linear discriminant
analysis; k-nearest-neighbors analysis

1. Introduction

As sessile organisms, plants have to rely on chemistry to cope with their biotic environ-
ment. As a result, they have evolved an elaborate and proficient secondary metabolism. So
far, an estimated 100,000 of compounds specific for plants have already been identified [1].
These compounds include volatile compounds that are signals with the function to steer
the interaction of neighboring plants or the interaction with other organisms, such as
insects or microorganisms. For instance, in response to an attack by caterpillars, tomato
plants warn their neighbors by emitting (Z)-3-hexenol, such that these neighbors can al-
ready synthetize defense compounds prior to being attacked [2]. A specific subset of plant
volatiles act to inhibit growth or development of their competitors, a phenomenon termed
as allelopathy [3,4].

The profile of such volatile compounds can differ even between closely related species
of the same genus, indicating a high degree of specificity. A classic example are the Mints
(Mentha spec. and neighboring genera of the Mentheae), where each species is endowed
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with a characteristic and specific bouquet of volatile compounds that are emitted from
glandular hairs [5]. This specificity may relate to the fact that the sending plants needs to
evade self-inhibition. A given species of Mint does not respond to this signal by itself, while
its neighbors are under extreme stress. In case of a signaling compound, one way to evade
self-inhibition would be to modify the respective receptor in a way that the ligand cannot
bind anymore. However, there are other possible mechanisms, such as sequestered release,
or metabolic conversion of the compound. Irrespective of this aspect, the allelopathic effect
of Mint scent is well known. For instance, Peppermint (M. x piperita) can block the germi-
nation of Mediterranean weeds [6,7]. The effects are often species specific. For instance, a
comparative analysis of germination inhibition in combination with activity-guided frac-
tionation revealed that menthone/isomenthone released by Korean Mint (Agastache rugosa)
caused a swift and complete breakdown of microtubules in the target plant such that
germination (requiring microtubules for cell division and cell expansion) is blocked, while
closely related compounds, such as menthol, were ineffective [8]. This specificity of biolog-
ical action may be valorized for the development of novel, environmentally compatible
bioherbicides that specifically affect a certain type of weed without damaging the useful
crop [9]. The biological specificity of Mint oil is also of commercial relevance. Peppermint
(M. x piperita), Spearmint (M. spicata), and Corn Mint (M. canadensis) differ in their oil
composition. For instance, Spearmint is rich in carvone, making it interesting as spice [10],
while Corn Mint is commercially relevant as the richest source of natural menthol [11]. The
authentication of Mint oil is, therefore, subject to legal regulation, but, so far, has to rely on
time-consuming and skill-requiring technology. For instance, to discriminate oil from M. x.
piperita and M. arvensis, the Japanese Custom Authorities have established a sophisticated
Gas Chromatography GC-MS method [12,13]. The availability of user-friendly, specific,
and easy-to-handle alternatives would safeguard a lot of time, labor, and costs.

As arrays of sensors, electronic noses (e-nose) have capability of discrimination of
various gasses and their mixtures using machine learning techniques, such as Principal
Component Analysis (PCA) [14,15], Linear Discriminant Analysis (LDA) [16], and k-
Nearest Neighbor (k-NN) [17,18], using statistical analysis of large number of databases
obtained from various sensing materials. Metal-oxides [19,20], semiconductors [21], and
conducting polymers [22,23] have been used successfully as sensing films in various e-
nose applications. Sensitivity and selectivity of sensing materials for an e-nose system
determines the signal to noise ratio around the limits of detection [24,25]. Therefore, the
structural and chemical properties of the sensing material are very crucial. Nanoparticles
are promising materials for use in e-noses, due to their high surface areas, selectivity,
reproducibility, and tunability [26,27]. On the other hand, the diversity of the chemical
sensor materials with functional sites enhances the discrimination capability of e-nose
sensor arrays and their applications [28,29], since each different sensing element measures
a different property of the target chemical materials to be sensed and contributes as an
extra fingerprint information.

A QCM-based sensor measures the frequency change due to adsorbed masses of gas
molecules as a result of the attractive forces, such as Van der Walls forces, due to induced
dipoles and local charge distributions [30]. QCM type electronic noses have been used as
a powerful method for discrimination of plant volatiles, including peppermint [31] and
spearmint [32], which is of relevance for applications in the plant sciences [33], agricul-
ture [34], forestry [35], and plant biotechnology [36,37].

In the current work, 12 sensing materials including 4 different metal oxide nanoparticle
dispersions, one Surface-Anchored Metal-Organic Frameworks (SURMOFs) and 7 different
polymer thin films for the modification of QCM sensors to discriminate and identify six
different Mint species. These included Pepper Mint M. x piperita (PM), Horse Mint M.
longifolia (MLF), Korean Mint Agastache rugosa (AR), Cat Mint Nepeta cataria (NCL), and
even two chemotypes of the same species of Spearmint Mentha spicata var. spicata (MS), and
Mentha spicata var. crispa (MC). The adsorption and desorption datasets obtained from each
sensor were used for the discrimination and prediction of those scents using three different
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classification methods, i.e., PCA, LDA, and k-NN techniques. We show that this set-up
allows for differentiation between essential oils from these species with high accuracy
and efficiency, even down to the level of chemotypes belonging to the same species. Our
work paves the way for new and versatile applications in quality control and product
authentication as alternative to the currently used GC-MS based approaches.

2. Materials and Methods
2.1. Plant Material and Extraction of Essential Oils

The study included six species of Mints grown in the Botanical Institute of Karlsruhe
Institute of Technology (KIT), Germany (Table 1). Since Mints are chemically diverse and
taxonomically demanding, all accessions had been authenticated by morphological and
molecular markers [38]. The scents were collected from 1 g weight of freshly collected
leaves. Due to the different leaf size, this comprised different numbers of leaves. The data
set included members of the genus Mentha, as well as from two neighboring genera of the
Mentheae (Agastache rugosa, Nepeta cataria). In addition, for one species (M. spicata), two
different chemotypes were tested, whether the approach provided resolution beyond the
species level.

Table 1. Accessions used in this study. The voucher number gives the code, under which the plants are available in the Botanical
Garden of the Karlsruhe Institute of Technology (KIT). The number of leaves harvested to reach 1 g is indicated, as well.

Mint Accession Common Name Abbreviation KIT Voucher # of Leaves for 1 g

Mentha x piperita L. Pepper Mint PM 5393 10
Mentha longifolia (L.) Horse Mint MLF 8682 10

Mentha spicata L. var. spicata Spear Mint MS 7579 23
Mentha spicata L. var. crispa (MC) Curly Mint MC 5391 7

Agastache rugosa (Fisch. & C.A.Mey.) Kuntze Korean Mint AR 7576 12
Nepata cataria L. Catnip NCL 4643 11

2.2. Chemicals and Fabrication of Sensors

The nanoparticles with various sizes and dispersions used in this work were com-
mercially obtained. Zinc Oxide (ZnO) nanoparticles with a size of 10–15 nm with (2.5%
w/v. in isopropanol (Avantama AG, Stäfa, Switzerland) were diluted to 1.25%. Al doped
ZnO nanoparticles N-21X-Jet (AZO) (Avantama AG, Stäfa, Switzerland) with 2.5% w/v
in ethanol were diluted to 1.25% w/v. Thin Oxide (SnO2) nanoparticles 2.5% w/v. in bu-
tanol (Avantama AG, Stäfa, Switzerland) were diluted to 1.25% w/v. Indium Tin Oxide
(ITO) nanoparticles with the size of less than 100 nm, and with 30% w/v in isopropanol
(Sigma-Aldrich Chemie GmbH, Munich, Germany) were diluted to 0.6% w/v. Spiro-based
conjugated polymers, such as SPW-111 (SW), SPG-01T (SG), SPB-02T (PB) from Merck
KGaA (Darmstadt, Germany), and the conjugated polymer ADS229BE (PFO) from Amer-
ican Dye Source (Quebec, Canada), were selected as sensing thin film material for the
QCM array. The sensor polymers were dissolved in toluene to a concentration of 5 g/L.
The photophysical properties have been published previously [39,40]. Poly(vinyl alcohol)
99% hydrolyzed (PVA) purchased from Aldrich was dissolved in distilled water. Poly(3,4-
ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) 2.8% w/v dispersion in H2O
was purchased from Merck. The Cu(BPDC) MOF thin-film (Copper Biphenyl-4,4′-Di-
Carboxylic Acid) structures were prepared in a layer-by-layer fashion, following an opti-
mized synthesis protocol published previously [18,41]. Alternatively, the samples were
prepared by alternately exposing the substrate to the metal node and to the linker solutions,
using a spray method [42]. A MOF thin Cu(BPDC) film [43] was prepared from ethanolic
1 mM copper acetate and ethanolic 0.2 mM biphenyl dicarboxylic acid (BPDC). Prior to
SURMOF synthesis, the QCM substrates were functionalized by plasma treatment for
30 min. Cu(BPDC) was prepared in 30 synthesis cycles. The optical micrographs showing
the topographical surface profiles of the sensing films were obtained by using a Zeiss
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Discovery V12 stereo Microscope with x100 zoom with an attached digital camera Axiocam
105 color. See Supplementary Materials Figure S1 in the Supporting Information: (a) bare
Ag, (b) Cu(BPDC), (c) ZnO, (d) AZO, (e) SnO2, (f) ITO, (g) PEDOTPSS, (h) PVA, (k) PB, (l)
SB, (m) SG, (n) SW. The polymer films show relatively more homogenous and smoother
surface structure compared to the films made of nanoparticles. The thicknesses of polymers
were obtained around 30 nm. The thicknesses of nanoparticle films varied between 50–200
nm.

Commercially available AT-cut HC-49U type 200 nm silver coated 10 MHz quartz
crystals with 8 mm electrode radius produced as an electronic element (JWT, China) were
used as QCM electrodes. Before spin coating, the QCM sensors were sonicated in acetone
and isopropanol for 10 min sequentially. After drying on a hot plate at 80 ◦C for 5 min,
10 µL of dispersed nanoparticles were used for spin coating with a spin speed between
1000–2000 rpm with 30 s spinning time. In case of the polymers, all samples were prepared
with a solution of 5 g/L for spin coating, and a spin speed between 1300–2100 rpm with
30 s spinning time. Following the coating, the samples were annealed at 80 ◦C for 10 min on
a heating plate. Table 2 shows the frequency shifts after spin coating that ranged between
7–82 kHz, which are related to the mass and thickness of the uploaded film depending on
the material. The first harmonics were used to perform the experiments.

Table 2. Frequency shifts after spin coating.

Materials Spin Speed (RPM) Initial f0 (MHz) Frequency Shift (kHz)

ZnO 2000 9,9998 45.1
AZO 2000 10,0000 43.6
SnO2 1000 9,9999 36.5
ITO 1000 9,9996 81.8
PVA 2000 10,0200 51.8

PEDOT.PSS 2000 10,0001 50.4
PB 2100 10,0064 7.5
SW 1550 10,0154 9.2
PFO 1300 10,0061 9.7
SB 2100 10,0021 16.7
SG 1300 10,0061 8.4

Cu(BPDC) - 10,0001 13.9

2.3. Data Acquisition with the E-nose

A home-built 12-channel e-nose system [15] was used to perform the experiments.
For the QCM data acquisition, 5 V/16 MHz ATMega32U4 microcontrollers and open
source Pierce oscillator circuits designed by openQCM have been used [44] to read the
frequency change. Temperature and humidity were measured with Adafruit HHTU21D-F
temperature & humidity sensor breakout board. MATLAB has been used to record and
analyze the data. Figure 1 shows the working principle of the 12-channel homemade
E-nose system used for the Mint scent adsorption/desorption process and data collection.
A 400 mL stainless cylindrical chamber was used for the sensor array. The chamber was
first evacuated for 10 min with a diaphragm pump and then purged with dry N2 gas
for 10 min with a flow rate of 10 L/min by keeping V1 open and V2 closed before each
measurement. From each Mint accession, 1 g in weight of freshly collected leaves was
placed into a 100-mL glass bottles separately for the measurement. The emitted scents
from the leaves inside the bottles were transferred to the chamber with 10 mL/min of N2
flowing into the chamber with the sensor array by keeping V2 open and V1 closed. For
each Mint accession, the change in resonance frequency was followed with 2 cycles of
adsorption over 30 min exposure, and, subsequently, 60 min desorption during cleaning
with dry N2 gas. The temperature of the chamber was kept constant at 25 ± 0.5 ◦C.



Chemosensors 2021, 9, 31 5 of 14

Figure 1. E-nose setup used for measuring the Mint scent.

2.4. Data Analysis and Classification

The first cycle of the adsorption/desorption curve was used for the discrimination of
the scents, while the second cycle was used for testing and prediction or identification of
the six different scents emitted from the plant source under investigation. For this purpose,
intervals of the frequency curves extending over 10 min were excised from the final range
of the adsorption phase (20–30 min after the onset of adsorption, when responses were
maximal) and used for the training for the discrimination of the six different Mint samples.
Three different classification algorithms were tested: PCA, LDA, and k-NN based on scripts
written in MATLAB. A cross-validation threshold of 10-fold was used for classification,
using 1800 individual observations. Hereby, 1620 observations were collected during the
first cycle and represented the training set, and 180 observations were chosen randomly
from the second cycle and represented the identification set. The data sets for training
and for identification data sets were obtained by repeating the experiment under the same
conditions. For the identification (second cycle), similarly, a time interval of 10 min from the
adsorption phase was recorded, when the response was maximal (between 110–120 min
from the start of the experiment). This frequency course served for the identification of the
specimen.

For the QCM measurements, Sauerbrey’s equation [45] was used to verify the linear
dependence of the QCM frequency shift on the mass upload on the piezo electric sensor [15].

PCA was used as one the most effective quantitative methods to discriminate volatile
gasses and odors [46]. In PCA, a new set of variables derives as principal components from
a linear combination of the original variables, being orthogonal to each other. The criterion
to define this pair of variables is that their variance is maximal among all the other possible
choices of the first axis. LDA is closely related to PCA and explicitly attempts to maximize
the variance difference between data classes while minimizing the variance differences
inside each individual class. Hereby, the fitting function estimates the parameters assuming
linear boundaries between classes.

In the k-Nearest Neighbor classification, the algorithm searches and classifies an un-
known point by counting each number of closest members of already known neighboring
classes. Each known object contributes for its class, and the closest class with the highest
number of members yields the predictive decision. In this work, for the k-NN discrim-
ination, k was chosen as 10, and the effect of the number of neighbors up to 300 on the
discrimination accuracy of k-NN model was estimated based on Euclidean distances.
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3. Results and Discussion
3.1. Sensor Array Response

Figure 2 illustrates the changes in resonance frequencies of the sensor array with 12
different sensing materials (Figure 2, (a) AZO, (b) ZnO, (c) SnO2, (d) ITO, (e) Cu(BPDC), (f)
PVA, (g) PEDOT:PSS, (h) PFO, (i) SB, (j) SG, (k) SW, and (l) PB) as 2 cycles of adsorption
(30 min) after exposure to each fresh Mint leaf and 60 min desorption by cleaning with
dry N2 gas. In general, each sensor showed different cyclic response to each emitted
concentration of each Mint scent. AZO produced the highest response among the sensor
array and saturated within a few minutes, while most of the remaining sensors reached
saturation only upon exposure to Agastache rugosa (AR) scent with the lowest response.

Figure 2. Cont.
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Figure 2. (a–l) show the resonance frequency shifts of the sensor array with 12 different sensing materials e.g., (a) AZO, (b) ZnO, (c)
SnO2, (d) ITO, (e) Cu(BPDC), (f) PVA, (g) PEDOT:PSS, (h) PFO, (i) SB,(j) SG, (k) SW, and (l) PB during two cycles of exposure to the
individual Mint leaves (see Table 1 for abbreviations).

A radar plot of the maximum frequency shifts responses for the sensor arrays is given
in Figure 3 for comparison. This radar plot, too, shows a clear discrimination. All the
sensors exhibit a maximal response upon exposure to the scent of Mentha spicata (MS), and
the lowest response upon exposure to the scent of Agastache rugosa (AR). On the other hand,
the responses to the scents of the remaining Mints (i.e., MC, PM, MLF, and NCL) are very
close to each other.

AZO produces the highest response with −4450 Hz as change in the resonance
frequency, while the sensor with ZnO nanoparticles exhibits the lowest response among all
sensors with only−220 Hz. Likewise, PEDOT:PSS displays a high response with−3722 Hz
due to possible water content of fresh leaves of Mint species, while the sensor with SW and
SG yield the lowest response among the polymer sensors with around −35 Hz. In addition,
the Cu(BPDC) as SURMOFs relatively small responsive around −80 Hz as resonance
frequency change. This can be explained as following: An improved electrical conductivity
of ZnO nanomaterials by Al doping have been already demonstrated in the literature [47].
Metal oxide nanoparticles as gas sensors have higher sensitivities and faster response
times due to very large surface-to-volume ratio, and creating more active sites for gas
interaction on the metal oxide semiconductor surface [48]. Al impurity plays a crucial role
in increasing the affinity between gas molecules and active surface sides in the sensing films.
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The sensitivity and selectivity can be enhanced and optimized by introducing dopants,
like Al, in the ZnO structures by changing the energy band structure and morphology.
A considerable greater sensitivity of Al-doped films to CO2 gas over that of pure ZnO
film has been demonstrated Patil et al. [49]. FTIR studies of ZnO and AZO nanoparticles
show broad absorption bands at 1620 cm−1 and 3440 cm−1 were ascribed to O–H bending
vibration modes of water molecules absorbed onto the ZnO and AZO nanoparticles [48]. A
freshly collected mint leave contains water and a mixture of plant oils, such as mentone,
menthol, and limonene [8]. Quantitative analysis in literature show that Mint species
also contain phenolic compounds, flavonoids, and rosmarinic acid and its derivatives [50].
Cumulative affinities of the constituent compounds in mint species reveal the highest
frequency change as a result of the highest adsorption on the AZO films among other
sensing materials on the QCM electrode.

Figure 3. Maximum frequency shifts responses of sensor array.

3.2. Principal Component Analysis (PCA)

Figure 4 shows a 2D plot for the coefficients of the Principal Component Analysis
from 1800 observations for the six different Mint scents that group into six different clusters.
Each scent is shown in different colors for visual discrimination. While these clusters
separated from each other, the borders between Pepper Mint (PM) and Curly Mint (MC),
as well as between Horse Mint (MLF) and Cat Mint (NCL), are not well defined. The sum
of the 2 percentages of the total variance explained by each principal component is equal
to 97.2. This shows very high discrimination accuracy close to 99% as compared to the rest
of the variance components.
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Figure 4. Two-dimensional plot of the Principal Component coefficients from 1800 observations.

3.3. Linear Discrimination Analysis (LDA)

Figure 5 shows a 2D plot of the Linear Discriminant Analysis with the 95% confidence
ellipses obtained for the different species (Figure 5a) obtained from 10 rounds of LDA
calculation using the data obtained from the first cycle of the e-nose measurements given
in Figure 2. The LDA plot shows a clear visual discrimination for the six types of Mints.
The sum of the first two components of the LDA vector components is 98.6%, and the
discrimination accuracy with the LDA method reached 100%, even though the LDA scores
obtained for Menta spicata crispa (MC, blue) and Mentha x piperita (PM, yellow) are very
close to each other.

To get a further readout for the quality of the prediction, a so-called confusion matrix
was calculated (Figure 5b). A confusion matrix is a chart for comparison of the predicted
(identified) labels with the true labels. The rows of the confusion matrix correspond to the
true class and the columns correspond to the predicted class. Diagonal and off-diagonal
cells correspond to correctly and incorrectly classified observations, respectively. The
obtained confusion matrix also confirms the discrimination accuracy without any misclassi-
fication between groups of ten training data sets and randomly chosen test data sets. In this
figure, the first two diagonal cells show the number and percentage of correct classifications
by the trained observation data sets. For instance, in 291 cases scents from Agastache rugosa
(AR) scents were correctly classified corresponding to 16% of all 1800 observed data sets.
Since there was no single case of misclassification, the discrimination value was 100%
correct.

Figure 6a shows a 2D plot of the 10-fold Linear Discriminant Analysis obtained
from the training data sets. The colored symbols represent the measurements from the
first cycle, while the black symbols give the data from the second cycle of the e-nose
measurements. The LDA vector points calculated from the data sets from second cycle of
the e-nose measurement allowed prediction of the unknown observations. The six different
Mints segregate into fully distinct clusters. The first two components of the LDA vector
components sum up to more than 99% reflecting the good separation of these clusters. With
exception of Cat Mint (NCL), prediction classes (obtained from the second cycle) localized
closely to the training classes (obtained from the first cycle) in the 2D LDA plot. For Cat
Mint, the prediction was located just between Cat Mint (NCL, purple symbols) and Horse
Mint (MLF, green symbols). This caused a 63.3% misclassification for the Cat Mint data
sets in the corresponding prediction-confusion matrix derived from the unknown data sets
collected during the second cycle of the e-nose measurements (Figure 6b). However, the
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overall prediction accuracy for the unknown data sets was very high with 90.6%, meaning
that only 9.4% of the data remained misclassified.

Figure 5. Linear Discriminant Analysis (LDA) of six species of Mints. (a) Two-dimensional plot of the LDA with 95%
confidence ellipse; (b) confusion matrix obtained from 10-fold LDA calculations using the data obtained from the first cycle
of the e-nose measurements.

Figure 6. Linear Discriminant Analysis (LDA) of six Mint species. (a) Two-dimensional plot of the 10-fold LDA obtained
from the training data sets shown with the colored symbols (first cycle e-nose measurements), and from the prediction data
sets shown with the black symbols (second cycle of the e-nose measurements); (b) prediction confusion matrix with the
unknown data sets from the second cycle of the e-nose measurements.

3.4. Nearest Neighbor Analysis (k-NN)

As last algorithm for prediction, we used k-NN analysis with a 10-fold (k = 10)
calculation of the unknown data sets from the second cycle as compared to the true
assignment from the training data set collected during the first cycle. The data sets from the
second cycle of the e-nose measurement was used for the k-NN calculation to determine
prediction accuracy for the unknown observations. Again, Cat Mint (NCL) and Horse Mint
(MLF) remained ambiguous with 94.7% misclassification. The overall prediction accuracy
for the unknown data sets was poorer than in the case of LDA with 85.6%, corresponding
to 14.4% misclassification as shown in Figure 7.
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Figure 7. The prediction confusion matrix obtained from the k-Nearest Neighbor Analysis (k-NN)
analysis with10-fold (k = 10) calculation with the unknown data sets from the second cycle to compare
with the training data set (true labels) obtained from the first cycle.

In the next step, we tested to what extent the accuracy of the k-NN algorithm was
dependent on the number of neighbors (Figure 8). However, while increasing k from
10 up to 300, we did not see any further increase in accuracy. In contrast, the accuracy
dropped slowly. Thus, the distances between the classes sufficiently separate when using
10 neighbors.

Figure 8. k-NN accuracy (%) with increasing number of nearest neighbors.

4. Conclusions

Twelve different sensing materials, including four different metal oxide nanoparticle
dispersions, one SURMOF, and seven different polymer films, were used for the modifica-
tion of silver coated QCM sensors to discriminate six different Mint species. The adsorption
and desorption datasets obtained from each modified QCM sensor were used for three
different classification models (PCA, LDA, k-NN). Classification accuracies for the training
sets reached 97.2% for PCA, 100% for LDA, and 99.9% for the k-NN method (using k = 10
nearest neighboring points). Prediction accuracies for a repeating test measurement with
unknown samples were obtained as 90.6% for LDA and as 85.6% for the k-NN method. The
results reveal that a QCM type e-nose represents a user-friendly and reliable alternative
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to GC-MS to monitor and discriminate the emitted scents from different Mint species and
even, beyond the species level, for different chemotypes of individual species. This paves
the way for numerous applications from pharmaceutical quality control to monitoring
Mint oils as environmentally-friendly bioherbicides.

Supplementary Materials: The following are available online at https://www.mdpi.com/2227-904
0/9/2/31/s1, Figure S1: The optical micrographs showing the topographical surface profiles of the
sensing films: (a) Ag, (b) Cu(BPDC), (c) ZnO, (d) AZO, (e) SnO2, (f) ITO, (g) PEDOT PSS, (h) PVA,
(k) PB, (l) SB, (m) SG, (n) SW.

Author Contributions: Conceptualization, S.O., M.S., A.K., P.N. and U.L.; methodology, S.O., M.S.,
A.K., P.N., Z.Z. and U.L.; software, S.O., R.H.; validation, S.O., M.S., R.H., A.K., P.N., Z.Z. and
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