Comparing Surface Plasmon-Optical and Electronic Immuno-Sensing of Affinity Interactions—A Case Study
Abstract
:1. Introduction
2. Surface Plasmon Optical Detection
2.1. The Basics of Surface Plasmon Fluorescence Spectroscopy
2.2. Sandwich Fluorescence Assays for Human Chorionic Gonadotropin Monitoring
2.3. Extending the Sensitivity by A Polymer Brush Architecture as Binding Matrix
2.4. Immuno-Detection of Lipopolysaccharides in A Tethered Bimolecular Lipid Membrane
3. Electronic Bio-Sensing
3.1. rGO Based Field Effect Transistors
3.2. Immuno-Sensing of Antigens by rGO FETs
3.3. Debye Length Dependence
3.4. Limit of Detection in Electronic Bio-Sensing
3.5. Small Analyte Detection by Antibodies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Glossary, National Agricultural Library. Available online: https://agclass.nal.usda.gov/mtwdk.exe?k=glossary&l=60&w=7776&s=5&t=2 (accessed on 1 November 2020).
- Knoll, W. Interfaces and Thin Films as Seen by Bound Electromagnetic Waves. Ann. Rev. Phys. Chem. 1998, 49, 569–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liebermann, T.; Knoll, W. Surface-Plasmon Field-Enhanced Fluorescence Spectroscopy. Colloids Surf. A 2000, 171, 115–130. [Google Scholar] [CrossRef]
- Zong, Y.; Xu, F.; Su, X.D.; Knoll, W. Quartz crystal microbalance with integrated surface plasmon grating coupler. Anal. Chem. 2008, 80, 5246–5250. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.K.; Huang, W.; El-sayed, M.A. On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation. Nano Lett. 2007, 7, 2080–2088. [Google Scholar] [CrossRef]
- Kuhn, H. Classical Aspects of Energy Transfer in Molecular Systems. J. Chem. Phys. 1970, 53, 101–108. [Google Scholar] [CrossRef]
- Berger, P.; Sturgeon, C.; Bidart, J.M.; Paus, E.; Gerth, R.; Niang, M.; Bristow, A.; Birken, S.; Stenman, U.H. The ISOBM TD-7 workshop on hCG and related molecules—Towards user-oriented standardization of pregnancy and tumor diagnosis: Assignment of epitopes to the three-dimensional structure of diagnostically and commercially relevant monoclonal antibodies directed against human chorionic gonadotropin and derivatives. Tumor Biol. 2002, 23, 1–38. [Google Scholar]
- Fotinou, C.; Beauchamp, J.; Emsley, P.; de Haan, A.; Schielen, W.J.; Bos, E.; Isaacs, N.W. Structure of an Fab fragment against a C-terminal peptide of hCG at 2.0 Angstrom resolution. J. Biol. Chem. 1998, 273, 22515–22518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, J.K.Y.; Cheung, V.Y.T. Time to Revisit the Human Chorionic Gonadotropin Discriminatory Level in the Management of Pregnancy of Unknown Location. J. Ultrasound Med. 2014, 33, 465–471. [Google Scholar] [CrossRef]
- Jena, S.C.; Shrivastava, S.; Saxena, S.; Kumar, N.; Maiti, S.K.; Mishra, B.P.; Singh, R.K. Surface plasmon resonance immunosensor for label-free detection of BIRC5 biomarker in spontaneously occurring canine mammary tumours. Sci. Rep. 2019, 9, 13485. [Google Scholar] [CrossRef] [Green Version]
- Spinke, J.; Liley, M.; Guder, H.J.; Angermaier, L.; Knoll, W. Molecular Recognition at Self—Assembled Monolayers—The Construction of Multicomponent Multilayers. Langmuir 1993, 9, 1821–1825. [Google Scholar] [CrossRef]
- Yu, F.; Persson, B.; Lofas, S.; Knoll, W. Attomolar sensitivity in bioassays based on surface plasmon fluorescence spectroscopy. J. Am. Chem. Soc. 2004, 126, 8902–8903. [Google Scholar] [CrossRef] [PubMed]
- Wilchek, M.; Bayer, E.A. Foreword and introduction to the book (strept)avidin-biotin system. Biomol. Eng. 1999, 16, 1–4. [Google Scholar] [PubMed]
- Spinke, J.; Liley, M.; Schmitt, F.-J.; Guder, H.-J.; Angermaier, L.; Knoll, W. Molecular Recognition at Self-Assembled Monolayers—Optimization of Surface Functionalization. J. Chem. Phys. 1993, 99, 7012–7019. [Google Scholar] [CrossRef]
- Grabbe, E.S. Total Internal-Reflection Fluorescence with Energy-Transfer—A Method for Analyzing IgG Adsorption on Nylon Thin-Films. Langmuir 1993, 9, 1574–1581. [Google Scholar] [CrossRef]
- Liu, J. Systematic Studies of Protein Immobilization by Surface Plasmon Field-Enhanced Fluorescence Spectroscopy. Ph.D. Thesis, University of Mainz, Mainz, Germany, 2005. [Google Scholar]
- Available online: https://www.biacore.com/lifesciences/index.html (accessed on 1 November 2020).
- Robertson, J.L. The lipid bilayer membrane and its protein constituents. J. Gen. Physiol. 2018, 150, 1472–1483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, J.; Knoll, W. Tethered Lipid Membranes as Platforms for Biophysical Studies and Advanced Biosensors. In Biomimetic Lipid Membranes: Fundamentals, Applications, and Commercialization; Springer: Cham, Germany, 2019; pp. 183–191. [Google Scholar]
- Jackman, J.A.; Knoll, W.; Cho, N.J. Biotechnology applications of tethered lipid bilayer membranes. Materials 2012, 5, 2637–2657. [Google Scholar] [CrossRef] [Green Version]
- Niu, L.; Wohland, T.; Knoll, W.; Köper, I. Interaction of a synthetic antimicrobial peptide with a model bilayer platform mimicking bacterial membranes. Biointerphases 2017, 12, 04E404. [Google Scholar] [CrossRef]
- Felix, F.S.; Angnes, L. Electrochemical immunosensors—A powerful tool for analytical applications. Biosens. Bioelectron. 2018, 102, 470–478. [Google Scholar] [CrossRef]
- Wei, S.; Xiao, H.; Cao, L.; Chen, Z. A Label-Free Immunosensor Based on Graphene Oxide/Fe3O4/Prussian Blue Nanocomposites for the Electrochemical Determination of HBsAg. Biosensors 2020, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- De Moraes, A.C.M.; Kubota, L.T. Recent Trends in Field-Effect Transistors-Based Immunosensors. Chemosensors 2016, 4, 20. [Google Scholar] [CrossRef] [Green Version]
- MAgliolo, M.; De Tullio, D.; Vikholm-Lundin, I.; Albers, W.M.; Munter, T.; Manoli, K.; Palazzo, G.; Torsi, L. Label-free C-reactive protein electronic detection with an electrolyte-gated organic field-effect transistor-based immunosensor. Anal. Bioanal. Chem. 2016, 408, 3943–3952. [Google Scholar] [CrossRef]
- Khan, H.U.; Jang, J.; Kim, J.-J.; Knoll, W. In Situ Antibody Detection and Charge Discrimination Using Aqueous Stable Pentacene Transistor Biosensors. J. Am. Chem. Soc. 2011, 133, 2170–2176. [Google Scholar] [CrossRef]
- Roberts, M.E.; Mannsfeld, S.C.B.; Queralto, N.; Reese, C.; Locklin, C.; Knoll, W.; Bao, Z.N. Water-stable organic transistors and their application in chemical and biological sensors. Proc. Natl. Acad. Sci. USA 2008, 105, 12134–12139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, X.; Huang, Y.; Chen, Y. Focussing on Energy and Optoelectronic Applications: A Journey for Graphene and Graphene Oxide at Large Scale. Acc. Chem. Res. 2012, 45, 598–607. [Google Scholar] [CrossRef] [PubMed]
- Zhan, B.; Li, C.; Yang, J.; Jenkins, G.; Huang, W.; Dong, X. Graphene Field-Effect Transistor and its Application for Electronic Sensing. Small 2014, 10, 4042–40065. [Google Scholar] [CrossRef] [PubMed]
- Larisika, M.; Huang, J.F.; Tok, A.; Knoll, W.; Nowak, C. An improved synthesis route to graphene for molecular sensor applications. Mater. Chem. Phys. 2012, 136, 304–308. [Google Scholar] [CrossRef]
- Rozman, C.; Larisika, M.; Nowak, C.; Knoll, W. Graphene-Based Liquid-Gated Field Effect Transistor for Biosensing: Theory and Experiments. Biosens. Bioelectron. 2015, 70, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Kodali, V.K.; Scrimgeour, J.; Kim, S.; Hankinson, J.H.; Carroll, K.M.; de Heer, W.A.; Berger, C.; Curtis, J.E. Nonperturbative chemical modification of graphene for protein micropatterning. Langmuir 2011, 27, 863–865. [Google Scholar] [CrossRef] [Green Version]
- Larisika, M.; Kotlowski, C.; Steininger, C.; Mastrogiacomo, R.; Pelosi, P.; Schütz, S.; Peteu, S.F.; Kleber, C.; Reiner-Rozman, C.; Nowak, C.; et al. Electronic olfactory sensor based on A. mellifera odorant-binding protein 14 on a reduced graphene oxide field-effect transistor. Angew. Chem. Int. Ed. 2015, 54, 13245–13248. [Google Scholar] [CrossRef]
- Reiner-Rozman, C.; Kotlowski, C.; Knoll, W. Electronic Biosensing with Functionalized rGO FETs. Biosensors 2016, 6, 17. [Google Scholar] [CrossRef] [Green Version]
- Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. II. Liq. J. Am. Chem. Soc. 1917, 39, 1848–1906. [Google Scholar] [CrossRef] [Green Version]
- Shreeve, B.J.; Patterson, D.S.P.; Roberts, B.A. Mycotoxins and Their Metabolites in Humans and Animals. Food Cosmet. Toxicol. 1979, 17, 151–152. [Google Scholar] [CrossRef]
- Paniel, N.; Radoi, A.; Marty, J.L. Development of an electrochemical biosensor for the detection of aflatoxin M1 in milk. Sensors 2010, 10, 9439–9448. [Google Scholar] [CrossRef] [Green Version]
- Commission Regulation (EC) No. 466/2001. Available online: http://ec.europa.eu/food/fs/sfp/fcr/fcr02_en.pdf (accessed on 12 April 2016).
- Wang, Y.; Dostalek, J.; Knoll, W. Long Range Surface Plasmon-enhanced Fluorescence Spectroscopy for the Detection of Aflatoxin M-1 in milk. Biosens. Bioelectron. 2009, 24, 2264–2267. [Google Scholar] [CrossRef]
- Feng, C.L.; Zhong, X.; Steinhart, M.; Majoral, J.P.; Knoll, W. Functional Quantum-Dot/Dendrimer Nanotubes for Sensitive Detection of DNA Hybridization. Small 2008, 4, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.D.; Virasamy, S.; Knoll, W.; Liu, K.Y.; Tse, M.S.; Yen, L.W. Fabrication of Gold Nanocrescents by Angle Deposition with Nanosphere Lithography for Localized Surface Plasmon Resonance Applications. J. Nanosci. Nanotechnol. 2008, 8, 3369–3378. [Google Scholar] [CrossRef]
- Wang, Y.; Dostalek, J.; Knoll, W. Magnetic Nanoparticle-Enhanced Biosensor Based on Grating-Coupled Surface Plasmon Resonance. Anal. Chem. 2011, 83, 6202–6207. [Google Scholar] [CrossRef]
- Kotlowski, C.; Larisika, M.; Guerin, P.M.; Kleber, C.; Kröber, T.; Mastrogiacomo, R.; Nowak, C.; Pelosi, P.; Schütz, S.; Schwaighofer, A.; et al. Fine discrimination of volatile compounds by graphene-immobilized odorant-binding proteins. Sens. Act. B Chem. 2018, 256, 564–572. [Google Scholar] [CrossRef]
- Khan, H.U.; Roberts, M.E.; Johnson, O.; Förch, R.; Knoll, W.; Bao, Z. In Situ, Label-Free DNA Detection Using Organic Transistor Sensors. Adv. Mater. 2010, 22, 4452–4456. [Google Scholar] [CrossRef]
- Bruno, J.G. Predicting the Uncertain Future of Aptamer-Based Diagnostics and Therapeutics. Molecules 2015, 20, 6866–6887. [Google Scholar] [CrossRef]
- Tiede, C. Affimer proteins are versatile and renewable affinity reagents. eLife 2017, 6, e24903. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.aptabiosciences.com/ (accessed on 1 November 2020).
- Aspermair, C.; Ramach, U.; Reiner-Rozman, C.; Fossati, S.; Lechner, B.; Moya, S.E.; Azzaroni, O.; Dostalek, J.; Szunerits, S.; Knoll, W.; et al. Dual Monitoring of Surface Reactions in Real Time by Combined Surface-Plasmon Resonance and Field-Effect Transistor Interrogation. J. Am. Chem. Soc. 2020, 142, 11709–11716. [Google Scholar] [CrossRef] [PubMed]
1st week | 10–30 |
2nd week | 30–100 |
3rd week | 100–1000 |
4th week | 1000–10,000 |
2nd & 3rd month | 30,000–100,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Knoll, W.; Liu, J.; Yu, F.; Niu, L.; Reiner-Rozman, C.; Köper, I. Comparing Surface Plasmon-Optical and Electronic Immuno-Sensing of Affinity Interactions—A Case Study. Chemosensors 2021, 9, 11. https://doi.org/10.3390/chemosensors9010011
Knoll W, Liu J, Yu F, Niu L, Reiner-Rozman C, Köper I. Comparing Surface Plasmon-Optical and Electronic Immuno-Sensing of Affinity Interactions—A Case Study. Chemosensors. 2021; 9(1):11. https://doi.org/10.3390/chemosensors9010011
Chicago/Turabian StyleKnoll, Wolfgang, Jing Liu, Fang Yu, Lifang Niu, Ciril Reiner-Rozman, and Ingo Köper. 2021. "Comparing Surface Plasmon-Optical and Electronic Immuno-Sensing of Affinity Interactions—A Case Study" Chemosensors 9, no. 1: 11. https://doi.org/10.3390/chemosensors9010011
APA StyleKnoll, W., Liu, J., Yu, F., Niu, L., Reiner-Rozman, C., & Köper, I. (2021). Comparing Surface Plasmon-Optical and Electronic Immuno-Sensing of Affinity Interactions—A Case Study. Chemosensors, 9(1), 11. https://doi.org/10.3390/chemosensors9010011