Multi-Element Prediction of Soil Nutrients Using Laser-Induced Breakdown Spectroscopy and Interpretable Multi-Output Weight Network
Abstract
1. Introduction
2. Materials and Methods
2.1. Soil Sample Preparation
2.2. LIBS Setup
2.3. Qualitative and Quantitative Models
2.3.1. PCA Analysis
2.3.2. Machine Learning
2.3.3. MW-Net Design
2.4. Model Evaluation Indexes
3. Results and Discussion
3.1. LIBS Parameter Optimization
3.2. Average Spectra Analysis
3.3. Spectra Noise Elimination
3.4. Qualitative Analysis
3.5. Quantitative Analysis
3.5.1. Data Splitting and Preprocessing
3.5.2. Single-Element Prediction
3.5.3. Multi-Element Prediction
3.6. Comparison and Discussion
3.6.1. Comparison of MW-Net and PLSR
3.6.2. Multi-Output Model Exploration
3.6.3. Limitations and Future Perspectives
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Albuquerque, J.R.D.P.; Makara, C.N.; Ferreira, V.G.; Brazaca, L.C.; Carrilho, E. Low-cost precision agriculture for sustainable farming using paper-based analytical devices. RSC Adv. 2024, 14, 23392–23403. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Xu, X.; Zhang, F.; Si, H.; Li, L.; Mao, G. The Preliminary Research on Shifts in Maize Rhizosphere Soil Microbial Communities and Symbiotic Networks under Different Fertilizer Sources. Agronomy 2023, 13, 2111. [Google Scholar] [CrossRef]
- Potdar, R.P.; Shirolkar, M.M.; Verma, A.J.; More, P.S.; Kulkarni, A. Determination of soil nutrients (NPK) using optical methods: A mini review. J. Plant Nutr. 2021, 44, 1826–1839. [Google Scholar] [CrossRef]
- Cakmak, I.; Rengel, Z. Humboldt Review: Potassium may mitigate drought stress by increasing stem carbohydrates and their mobilization into grains. J. Plant Physiol. 2024, 303, 154325. [Google Scholar] [CrossRef]
- Ameer, S.; Ibrahim, H.; Kulsoom, F.N.U.; Ameer, G.; Sher, M. Real-time detection and measurements of nitrogen, phosphorous & potassium from soil samples: A comprehensive review. J. Soils Sediments 2024, 24, 2565–2583. [Google Scholar] [CrossRef]
- Lv, H.; Pang, Z.; Chen, F.; Ji, H.; Wang, W.; Zhou, W.; Dong, J.; Li, J.; Liang, B. Effects of Cultivation Years on the Distribution of Nitrogen and Base Cations in 0–7 m Soil Profiles of Plastic-Greenhouse Pepper. Agronomy 2024, 14, 1060. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, R.; Jin, Z.; Guo, H.; Liu, Y.; Chang, Y.; Chen, J.; Li, M.; Chen, X. Development of On-Site Rapid Detection Device for Soil Macronutrients Based on Capillary Electrophoresis and Capacitively Coupled Contactless Conductivity Detection (C4D) Method. Chemosensors 2022, 10, 84. [Google Scholar] [CrossRef]
- Andersen, J.H.; Carstensen, J.; Conley, D.J.; Dromph, K.; Fleming-Lehtinen, V.; Gustafsson, B.G.; Josefson, A.B.; Norkko, A.; Villnäs, A.; Murray, C. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol. Rev. 2017, 92, 135–149. [Google Scholar] [CrossRef]
- Moor, C.; Lymberopoulou, T.; Dietrich, V.J. Determination of Heavy Metals in Soils, Sediments and Geological Materials by ICP-AES and ICP-MS. Microchim. Acta 2001, 136, 123–128. [Google Scholar] [CrossRef]
- Basiri, S.; Moinfar, S.; Hosseini, M.R.M. Determination of As(III) using developed dispersive liquid–liquid microextraction and flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 2011, 91, 1453–1465. [Google Scholar] [CrossRef]
- Wang, W.; Man, Z.; Li, X.; Zhao, Y.; Chen, R.; Pan, T.; Wang, L.; Dai, X.; Xiao, H.; Liu, F. Multi-phenotype response and cadmium detection of rice stem under toxic cadmium exposure. Sci. Total Environ. 2024, 917, 170585. [Google Scholar] [CrossRef]
- Soni, S.; Viljanen, J.; Uusitalo, R.; Veis, P. Phosphorus quantification in soil using LIBS assisted by laser-induced fluorescence. Heliyon 2023, 9, e17523. [Google Scholar] [CrossRef]
- Hahn, D.W.; Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012, 66, 347–419. [Google Scholar] [CrossRef]
- Ren, J.; Zhao, Y.; Yu, K. LIBS in agriculture: A review focusing on revealing nutritional and toxic elements in soil, water, and crops. Comput. Electron. Agric. 2022, 197, 106986. [Google Scholar] [CrossRef]
- Rodriguez-Pascual, J.A.; Doña-Fernández, A.; Loarce-Tejada, Y.; De Andres-Gimeno, I.; Valtuille-Fernández, E.; Gutiérrez-Redomero, E.; Gomez-Laina, F.J. Assessment of gunshot residue detection on a large variety of surfaces by portable LIBS system for crime scene application. Forensic Sci. Int. 2023, 353, 111886. [Google Scholar] [CrossRef]
- Dib, S.R.; Nespeca, M.G.; Santos Junior, D.; Ribeiro, C.A.; Crespi, M.S.; Gomes Neto, J.A.; Ferreira, E.C. CN diatomic emission for N determination by LIBS. Microchem. J. 2020, 157, 105107. [Google Scholar] [CrossRef]
- Lu, C.; Wang, B.; Jiang, X.; Zhang, J.; Niu, K.; Yuan, Y. Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks. Plasma Sci. Technol. 2018, 21, 034014. [Google Scholar] [CrossRef]
- Erler, A.; Riebe, D.; Beitz, T.; Löhmannsröben, H.-G.; Gebbers, R. Soil Nutrient Detection for Precision Agriculture Using Handheld Laser-Induced Breakdown Spectroscopy (LIBS) and Multivariate Regression Methods (PLSR, Lasso and GPR). Sensors 2020, 20, 418. [Google Scholar] [CrossRef]
- Babos, D.V.; Tadini, A.M.; De Morais, C.P.; Barreto, B.B.; Carvalho, M.A.R.; Bernardi, A.C.C.; Oliveira, P.P.A.; Pezzopane, J.R.M.; Milori, D.M.B.P.; Martin-Neto, L. Prediction of exchangeable Ca and Mg in soils by laser-induced breakdown spectroscopy and chemometrics. Catena 2024, 239, 107914. [Google Scholar] [CrossRef]
- Pelagio, M.C.; Navarro, D.A.; Janik, L.J.; Lamorena, R.B. Potential application of laser-induced breakdown spectroscopy (LIBS) data for the determination of cation exchange capacity (CEC) of agricultural soils. ChemistrySelect 2020, 5, 3798–3804. [Google Scholar] [CrossRef]
- He, Y.; Liu, X.; Lv, Y.; Liu, F.; Peng, J.; Shen, T.; Zhao, Y.; Tang, Y.; Luo, S. Quantitative Analysis of Nutrient Elements in Soil Using Single and Double-Pulse Laser-Induced Breakdown Spectroscopy. Sensors 2018, 18, 1526. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection of the People’s Republic of China. HJ 717-2014; Soil quality—Determination of total nitrogen—Modified Kjeldahl method. Standards Press of China: Beijing, China, 2014.
- Ministry of Agriculture of the People’s Republic of China. NY/T 87-1988; Fertilizer—Determination of total nitrogen content—Kjeldahl method. Standards Press of China: Beijing, China, 1988.
- Ministry of Agriculture of the People’s Republic of China. NY/T 1121.13-2006; Soil testing—Part 13: Method for determination of soil pH. Standards Press of China: Beijing, China, 2006.
- Carvalho, A.A.C.; Alves, V.C.; Silvestre, D.M.; Leme, F.O.; Oliveira, P.V.; Nomura, C.S. Comparison of Fused Glass Beads and Pressed Powder Pellets for the Quantitative Measurement of Al, Fe, Si and Ti in Bauxite by Laser-Induced Breakdown Spectroscopy. Geostand. GeoAnal. Res. 2017, 41, 585–592. [Google Scholar] [CrossRef]
- Pořízka, P.; Klus, J.; Képeš, E.; Prochazka, D.; Hahn, D.W.; Kaiser, J. On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review. Spectrochim. Acta B At. Spectrosc. 2018, 148, 65–82. [Google Scholar] [CrossRef]
- Li, X.; He, Z.; Liu, F.; Chen, R. Fast Identification of Soybean Seed Varieties Using Laser-Induced Breakdown Spectroscopy Combined With Convolutional Neural Network. Front. Plant Sci. 2021, 12, 714557. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, C.; Xiao, Q.; He, Y.; Bao, Y. Application of near-infrared hyperspectral imaging to identify a variety of silage maize seeds and common maize seeds. RSC Adv. 2020, 10, 11707–11715. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Harilal, S.S.; Bais, A.; Hussein, A.E. Progress Toward Machine Learning Methodologies for Laser-Induced Breakdown Spectroscopy With an Emphasis on Soil Analysis. IEEE Trans. Plasma Sci. 2023, 51, 1729–1749. [Google Scholar] [CrossRef]
- Nørgaard, L.; Saudland, A.; Wagner, J.; Nielsen, J.P.; Munck, L.; Engelsen, S.B. Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy. Appl. Spectrosc. 2000, 54, 413–419. [Google Scholar] [CrossRef]
- Peng, J.; He, Y.; Ye, L.; Shen, T.; Liu, F.; Kong, W.; Liu, X.; Zhao, Y. Moisture Influence Reducing Method for Heavy Metals Detection in Plant Materials Using Laser-Induced Breakdown Spectroscopy: A Case Study for Chromium Content Detection in Rice Leaves. Anal. Chem. 2017, 89, 7593–7600. [Google Scholar] [CrossRef]
- Vapnik, V.; Chapelle, O. Bounds on Error Expectation for Support Vector Machines. Neural Comput. 2000, 12, 2013–2036. [Google Scholar] [CrossRef]
- Feng, L.; Zhu, S.; Chen, S.; Bao, Y.; He, Y. Combining Fourier Transform Mid-Infrared Spectroscopy with Chemometric Methods to Detect Adulterations in Milk Powder. Sensors 2019, 19, 2934. [Google Scholar] [CrossRef]
- Viscarra Rossel, R.A.; McGlynn, R.N.; McBratney, A.B. Determining the composition of mineral-organic mixes using UV–vis–NIR diffuse reflectance spectroscopy. Geoderma 2006, 137, 70–82. [Google Scholar] [CrossRef]
- Lu, Y.; Du, C.; Yu, C.; Zhou, J. Fast and nondestructive determination of protein content in rapeseeds (Brassica napusL.) using Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS): Determination of protein content in rapeseeds using FTIR-PAS. J. Sci. Food Agric. 2014, 94, 2239–2245. [Google Scholar] [CrossRef]
- Jia, L.; Liu, X.; Xu, W.; Xu, X.; Li, L.; Cui, Z.; Liu, Z.; Shu, R. Initial Drift Correction and Spectral Calibration of MarSCoDe Laser-Induced Breakdown Spectroscopy on the Zhurong Rover. Remote Sens. 2022, 14, 5964. [Google Scholar] [CrossRef]
- Xu, X.; Ma, F.; Zhou, J.; Du, C. Applying convolutional neural networks (CNN) for end-to-end soil analysis based on laser-induced breakdown spectroscopy (LIBS) with less spectral preprocessing. Comput. Electron. Agr. 2022, 199, 107171. [Google Scholar] [CrossRef]
- Irvine, S.; Andrews, H.; Myhre, K.; Goldstein, K.; Coble, J. Radiative transition probabilities of neutral and singly ionized Europium estimated by laser-induced breakdown spectroscopy (LIBS). J. Quant. Spectrosc. Radiat. Transf. 2022, 286, 108184. [Google Scholar] [CrossRef]
- Shaaban, K.; Hamdi, A.; Ghanim, M.; Shaban, K.B. Machine learning-based multi-target regression to effectively predict turning movements at signalized intersections. Int. J. Transp. Sci. Technol. 2023, 12, 245–257. [Google Scholar] [CrossRef]
- Kordos, M.; Arnaiz-González, Á.; García-Osorio, C. Evolutionary prototype selection for multi-output regression. Neurocomputing 2019, 358, 309–320. [Google Scholar] [CrossRef]
- Wang, N.; Er, M.J.; Han, M. Parsimonious Extreme Learning Machine Using Recursive Orthogonal Least Squares. IEEE Trans. Neural Netw. Learn. Syst. 2014, 25, 1828–1841. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Zhang, H.; Zhao, Y.; Chen, Y.; Ke, C.; Xu, T.; He, Y. A brief review of new data analysis methods of laser-induced breakdown spectroscopy: Machine learning. Appl. Spectrosc. Rev. 2020, 57, 89–111. [Google Scholar] [CrossRef]
- Do, N.-T.; Hoang, V.-P.; Doan, V.S. A novel non-profiled side channel attack based on multi-output regression neural network. J. Cryptogr. Eng. 2023, 14, 427–439. [Google Scholar] [CrossRef]
- Xue, B.; Chang, B.; Du, D. Multi-Output Monitoring of High-Speed Laser Welding State Based on Deep Learning. Sensors 2021, 21, 1626. [Google Scholar] [CrossRef] [PubMed]
- Kamilaris, A.; Prenafeta-Boldú, F.X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 2018, 147, 70–90. [Google Scholar] [CrossRef]
- Saharia, C.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D.J.; Norouzi, M. Image Super-Resolution Via Iterative Refinement. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 45, 4713–4726. [Google Scholar] [CrossRef] [PubMed]
Nutrient | Min | Max | Mean | S.D. |
---|---|---|---|---|
N (%) | 0.01 | 0.24 | 0.10 | 0.05 |
K (g/kg) | 13.70 | 49.94 | 25.45 | 6.31 |
Ca (mg/kg) | 98.12 | 12,064.97 | 3880.04 | 3607.35 |
Nutrient | PLSR | ELM | LS-SVM | |
---|---|---|---|---|
LVs | H | γ | C | |
N | 14 | 643 | 59,856.97 | 1,270,255.64 |
K | 15 | 931 | 50,949.45 | 274,524.95 |
Ca | 10 | 857 | 44,081.72 | 56.98 |
Model | Single Nutrient | R2V | RMSEV | R2P | RMSEP | RPD |
---|---|---|---|---|---|---|
PLSR | N | 0.41 | 0.03 | 0.68 | 0.02 | 2.05 |
K | 0.75 | 2.91 | 0.87 | 1.99 | 2.85 | |
Ca | 0.93 | 951.40 | 0.92 | 951.53 | 3.59 | |
ELM | N | 0.34 | 0.03 | 0.65 | 0.02 | 2.05 |
K | 0.81 | 2.56 | 0.85 | 2.17 | 2.61 | |
Ca | 0.95 | 815.67 | 0.92 | 950.99 | 3.60 | |
LS-SVM | N | 0.34 | 0.03 | 0.66 | 0.02 | 2.05 |
K | 0.76 | 2.86 | 0.78 | 2.63 | 2.15 | |
Ca | 0.94 | 874.54 | 0.91 | 987.69 | 3.46 |
Model | Multi Nutrients | R2V | RMSEV | R2P | RMSEP | RPD |
---|---|---|---|---|---|---|
PLSR | N | 0.15 | 0.04 | 0.43 | 0.03 | 1.37 |
K | 0.62 | 3.59 | 0.72 | 2.97 | 1.91 | |
Ca | 0.93 | 951.38 | 0.92 | 951.55 | 3.59 | |
MW-Net | N | 0.46 | 0.03 | 0.75 | 0.02 | 2.05 |
K | 0.77 | 2.79 | 0.83 | 2.33 | 2.43 | |
Ca | 0.93 | 917.37 | 0.93 | 873.78 | 3.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Cao, L.; Lyu, C.; Tao, Z.; Tao, A.; Kong, W.; Liu, F. Multi-Element Prediction of Soil Nutrients Using Laser-Induced Breakdown Spectroscopy and Interpretable Multi-Output Weight Network. Chemosensors 2025, 13, 336. https://doi.org/10.3390/chemosensors13090336
Li X, Cao L, Lyu C, Tao Z, Tao A, Kong W, Liu F. Multi-Element Prediction of Soil Nutrients Using Laser-Induced Breakdown Spectroscopy and Interpretable Multi-Output Weight Network. Chemosensors. 2025; 13(9):336. https://doi.org/10.3390/chemosensors13090336
Chicago/Turabian StyleLi, Xiaolong, Liuye Cao, Chengxu Lyu, Zhengyu Tao, Anan Tao, Wenwen Kong, and Fei Liu. 2025. "Multi-Element Prediction of Soil Nutrients Using Laser-Induced Breakdown Spectroscopy and Interpretable Multi-Output Weight Network" Chemosensors 13, no. 9: 336. https://doi.org/10.3390/chemosensors13090336
APA StyleLi, X., Cao, L., Lyu, C., Tao, Z., Tao, A., Kong, W., & Liu, F. (2025). Multi-Element Prediction of Soil Nutrients Using Laser-Induced Breakdown Spectroscopy and Interpretable Multi-Output Weight Network. Chemosensors, 13(9), 336. https://doi.org/10.3390/chemosensors13090336