Comparison of Hydrodistillation and Headspace Solid-Phase Microextraction to Analyze Volatiles from Brazilian Propolis by GC-MS
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Essential Oil Extraction
2.3. Headspace Solid-Phase Microextraction (HS-SPME)
2.4. Gas Cromatography–Mass Spectrometry Analyses (GC-MS)
2.5. Statistics
3. Results
3.1. Comparison of the Composition of Essential Oils Obtained by Hydrodistillation
3.2. Comparison of SPME Fibers with Essential Oil
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HS-SPME | Headspace solid-phase microextraction |
PDMS/DVB | Polydimethylsiloxane/divinylbenzene |
SPME | Solid-phase microextraction |
GC | Gas chromatography |
MS | Mass spectrometry |
PDMS | Polydimethylsiloxane |
DVB/CAR/PDMS | Divinylbenzene, carboxene and polydimethylsiloxane |
MQ | Melipona quadrifasciata |
MQA | Melipona quadrifasciata Azul |
MB | Melipona bicolor |
MS | Melipona seminigra |
SP | Scaptotrigona postica |
AM | Apis mellifera |
GC-MS | Gas chromatography–mass spectrometry |
PCA | Principal component analysis |
OE | Essential oil |
HD | Hydrodistillation |
References
- Chen, Y.W.; Wu, S.W.; Ho, K.K.; Lin, S.B.; Huang, C.Y.; Chen, C.N. Characterisation of Taiwanese propolis collected from different locations and seasons. J. Sci. Food Agric. 2008, 88, 412–419. [Google Scholar] [CrossRef]
- Park, Y.K.; Alencar, S.M.; Scamparine, A.R.P.; Aguiar, C.L. Própolis produzida no sul do Brasil, Argentina e Uruguai: Evidências fitoquímicas de sua origem vegetal. Ciênc. Rural 2002, 2, 997–1003. [Google Scholar] [CrossRef]
- Cardozo, D.V.; Mokochinski, J.B.; Machado, C.S.; Sawaya, A.C.H.F.; Caetano, I.K.; Felsner, M.L.; Torres, Y.R. Variabilidade química de geoprópolis produzida pelas abelhas sem ferrão Jataí, Mandaçaia e Mandurí. Rev. Virtual Quím. 2015, 7, 2456–2474. [Google Scholar]
- Santos, H.F.D.; Campos, J.F.; Santos, C.M.D.; Balestieri, J.B.P.; Silva, D.B.; Carollo, C.A.; de Picoli Souza, K.; Estevinho, L.M.; Dos Santos, E.L. Chemical profile and antioxidant, anti-inflammatory, antimutagenic and antimicrobial activities of geopropolis from the stingless bee Melipona orbignyi. Int. J. Mol. Sci. 2017, 18, 953. [Google Scholar] [CrossRef]
- Bonamigo, T.; Campos, J.F.; Alfredo, T.M.; Balestieri, J.B.P.; Cardoso, C.A.L.; Paredes-Gamero, E.J.; de Picoli Souza, K.; Dos Santos, E.L. Antioxidant, cytotoxic, and toxic activities of propolis from two native bees in Brazil: Scaptotrigona depilis and Melipona quadrifasciata anthidioides. Oxidative Med. Cell. Longev. 2017, 2017, 1038153. [Google Scholar] [CrossRef]
- Marcucci, M.C. Propriedades biológicas e terapêuticas dos constituintes químicos da própolis. Quím. Nova 1996, 19, 529–536. [Google Scholar]
- Usia, T.; Banskota, A.H.; Tezuka, Y.; Midorikawa, K.; Matsushige, K.; Kadota, S. Constituents of Chinese propolis and their antiproliferative activities. J. Nat. Prod. 2002, 65, 673–676. [Google Scholar] [CrossRef]
- Pedro, S.R. The stingless bee fauna in Brazil (Hymenoptera: Apidae). Sociobiology 2014, 61, 348–354. [Google Scholar] [CrossRef]
- Valcanaia, C.P.; Masote, J.B.B.; Sommer, H.F.; Schiquet, S.; Padilha, B.; Krepsky, L.; Paganelli, C.J.; Borges, P.P.; Danielli, L.J.; Apel, M.A.; et al. Antimicrobial activity of volatile oils from Brazilian stingless bees Melipona quadrifasciata quadrifasciata and Tetragonisca angustula Propolis. Chem. Biodivers. 2022, 19, e202200369. [Google Scholar] [CrossRef] [PubMed]
- Storch Portal, A.; Schiquet, S.; Padilha Amaral, B.; Mascarenhas Krepsky, L.; Curbani, L.; Andrade Rebelo, R.; Rau, M.; Althoff, S.L.; Guedes, A.; Mendes de Cordova, C.M. Composition, antibiofilm, and antibacterial potential of volatile oils from geopropolis of different stingless bees’ species. Chem. Biodivers. 2023, 20, e202300592. [Google Scholar] [CrossRef] [PubMed]
- Pawliszyn, J. Solid Phase Microextraction: Theory and Practice; John Wiley & Sons: New York, NY, USA, 1997. [Google Scholar]
- Shirey, R.E. Optimization of extraction conditions and fiber selection for semivolatile analytes using solid-phase microextraction. J. Chromatogr. Sci. 2000, 38, 270–288. [Google Scholar] [CrossRef] [PubMed]
- Queiroz, M.E.C. Microextração em sase sólida no capilar (in-tube SPME) para automação das análises de fármacos em fluidos biológicos. Sci. Chromatogr. 2009, 1, 13. [Google Scholar]
- Pellati, F.; Prencipe, F.P.; Benvenuti, S. Headspace solid-phase microextraction-gas chromatography–mass spectrometry characterization of propolis volatile compounds. J. Pharm. Biomed. Anal. 2013, 84, 103–111. [Google Scholar] [CrossRef]
- González, M.; García, M.E.; Slanis, A.; Bonini, A.; Fiedler, S.; Fariña, L.; Dellacassa, E.; Condurso, C.; Lorenzo, D.; Russo, M.; et al. Phytochemical Findings Evidencing Botanical Origin of New Propolis Type from North-West Argentina. Chem. Biodivers. 2019, 16, e1800442. [Google Scholar] [CrossRef]
- Jerković, I.; Marijanović, Z.; Kuś, P.M.; Tuberoso, C.I.G. Comprehensive Study of Mediterranean (Croatian) Propolis Peculiarity: Headspace, Volatiles, Anti-Varroa-Treatment Residue, Phenolics, and Antioxidant Properties. Chem. Biodivers. 2016, 13, 210–218. [Google Scholar] [CrossRef]
- Kurek-Górecka, A.; Kara, Y.; Pokajewicz, K.; Ben Hammouda, I.; Wieczorek, P.P.; Marciniak, D.; Balwierz, R.; Kłósek, M.; Czuba, Z.P.; Kolaylı, S. Phenolic content, volatile compounds and antioxidant activity in pooled propolis samples from Turkey and Poland. Eur. Food Res. Technol. 2025, 251, 2199–2210. [Google Scholar] [CrossRef]
- Santanatoglia, A.; Acquaticci, L.; Marcucci, M.C.; Maggi, F.; Oliveira, C.R.; Caprioli, G. Valorizing Brazilian Propolis Residue: Comprehensive Characterization for Sustainable Reutilization Strategies. Plants 2025, 14, 1989. [Google Scholar] [CrossRef] [PubMed]
- Calta, E.; de Groot, A.; van Oers, E.M.; Ipenburg, N.A.; Rustemeyer, T. Composition of Brazilian and Chinese Propolis for Patch Testing. Contact Dermat. 2025, 93, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Svečnjak, L.; Marijanović, Z.; Okińczyc, P.; Marek Kuś, P.; Jerković, I. Mediterranean Propolis from the Adriatic Sea Islands as a Source of Natural Antioxidants: Comprehensive Chemical Biodiversity Determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP Assay. Antioxidants 2020, 9, 337. [Google Scholar] [CrossRef]
- Bankova, V. Chemical diversity of propolis and the problem of standardization. J. Ethnopharmacol. 2005, 100, 114–117. [Google Scholar] [CrossRef]
- Sousa, J.P.; Furtado, N.A.; Jorge, R.; Soares, A.E.; Bastos, J.K. Perfis físico-químico e cromatográfico de amostras de própolis produzidas nas microrregiões de Franca (SP) e Passos (MG), Brasil. Rev. Bras. Farmacogn. 2007, 17, 85–93. [Google Scholar] [CrossRef]
- Sousa, S.A.A.; Citó, A.M.G.L.; Lopes, J.A.D. Constituintes do óleo essencial da própolis produzida na cidade de Pio IX-Piauí. Rev. Bras. Plantas Med. 2006, 8, 1–3. [Google Scholar]
- Torres, R.N.S.; Lopes, J.A.D.; Moita Neto, J.M.; Citó, A.M.D.G.L. The volatile constituents of propolis from Piaui. Quím. Nova 2008, 31, 479–485. [Google Scholar] [CrossRef]
- Pino, J.A.; Marbot, R.; Delgado, A.; Zumárraga, C.; Sauri, E. Volatile constituents of propolis from honeybees and stingless bees from Yucatan. J. Essent. Oil Res. 2006, 18, 53–56. [Google Scholar] [CrossRef]
- Fernandes-Silva, C.C.; Lima, C.A.; Negri, G.; Salatino, M.L.; Salatino, A.; Mayworm, M.A. Composition of the volatile fraction of a sample of Brazilian green propolic and its phytotoxic activity. J. Sci. Food Agric. 2015, 95, 3091–3095. [Google Scholar] [CrossRef]
- Oliveira, A.P.; França, H.S.; Kuster, R.M.; Teixeira, L.A.; Rocha, L.M. Chemical composition and antibacterial activity of Brazilian propolis essential oil. J. Venom. Anim. Toxins Incl. Trop. Dis. 2010, 16, 121–130. [Google Scholar] [CrossRef]
- Olegário, L.S.; Andrade, J.K.S.; Andrade, G.R.S.; Denadai, M.; Cavalcanti, R.L.; da Silva, M.A.A.P.; Narain, N. Chemical characterization of four Brazilian brown propolis: An insight in tracking of its geographical location of production and quality control. Food Res. Int. 2019, 123, 481–502. [Google Scholar] [CrossRef] [PubMed]
Compounds | MQA 1 | MQ 1 | MB 1 | MS 1 | SP 1 | AM 1 |
---|---|---|---|---|---|---|
Triciclene | 0.30 | - | - | - | 0.31 | - |
α-Tujene | 1.22 | - | - | - | 0.95 | - |
α-Pinene | 20.05 | 3.95 | 9.10 | 17.91 | 26.94 | 0.92 |
Canfene | 0.87 | - | 0.60 | 1.63 | 1.73 | - |
Thuja-2,4(10)-diene | 0.33 | - | - | - | - | - |
Sabinene | 0.83 | - | - | - | 0.81 | - |
β-Pinene | 10.96 | 0.35 | 3.29 | 0.39 | 5.52 | 0.82 |
δ-3-Carene | - | - | 0.85 | 6.34 | 1.85 | - |
α-Terpinene | 0.49 | - | - | - | - | - |
ο-Cimene | 1.11 | - | - | - | 0.47 | - |
Silvestrene | 2.78 | - | 1.21 | 2.76 | 2.19 | - |
γ-Terpinenol | 0.77 | - | - | 0.52 | - | |
Terpinolene | 0.34 | - | 0.52 | 1.42 | 0.74 | - |
Linalol | - | - | - | - | - | 0.37 |
trans-Pinocarveol | 1.03 | - | 0.40 | - | 0.36 | - |
trans-Verbenol | 0.54 | - | - | - | - | - |
Borneol | - | - | 0.63 | 1.16 | 0.47 | - |
Terpinen-4-ol | 1.86 | 3.62 | 0.99 | 2.97 | - | |
α-Terpineol | 0.46 | - | 1.29 | 5.10 | 2.02 | - |
neo-Diidro carveol | - | - | 0.40 | - | 0.53 | - |
Mirtenal | 1.12 | - | - | - | - | - |
Verbenone | 0.69 | - | - | - | - | - |
Carvacrol methyl ether | - | - | 0.37 | - | 0.70 | - |
Isobornil acetate | 0.33 | - | 0.86 | 1.83 | 0.66 | - |
δ-Elemene | 0.59 | - | - | - | - | - |
α-Cubebene | 1.09 | 1.51 | 4.32 | 0.65 | 3.39 | 1.41 |
α-Ylangene | - | 0.50 | 0.31 | - | - | 0.52 |
α-Copaene | 2.68 | 8.94 | 13.17 | 0.59 | 2.97 | 3.71 |
β-Bourbonene | 0.45 | - | 1.00 | 0.32 | 0.66 | 0.84 |
β-Cubebene | - | 0.37 | 0.81 | - | 0.46 | - |
7-epi-Sesquitujene | 0.45 | - | - | - | - | - |
Sibirene | - | 2.26 | - | - | - | - |
Longifolene | - | 1.14 | 2.10 | - | 1.06 | - |
α-Gurjunene | - | - | - | - | - | 0.81 |
α-Cedrene | - | - | 0.52 | - | 0.58 | - |
(E)-Cariofilene | 5.86 | 27.25 | 4.86 | 1.97 | 3.99 | 11.52 |
β-Copaene | 0.45 | 0.46 | 0.62 | - | 0.39 | 1.15 |
α-trans-Bergamotene | - | 0.49 | - | - | - | - |
α-Guaiene | 0.48 | 1.55 | - | - | - | - |
Aromadendrene | - | - | 0.37 | - | - | 4.00 |
cis-Muurola-3,5-diene | - | - | - | - | - | 0.64 |
α-Humulene | 1.03 | 6.68 | 0.93 | - | 0.78 | 2.19 |
alo-Aromadendreno | - | 0.31 | - | - | - | 2.09 |
Dauca-5,8-diene | - | - | - | - | - | 1.26 |
β-Chamigrene | - | - | 5.43 | - | - | - |
γ-Muurolene | 3.15 | 3.34 | - | 0.37 | 3.20 | 4.05 |
Curcumene | 0.74 | - | 1.07 | - | - | |
Germacrene D | 6.62 | 0.51 | 1.92 | - | 1.56 | 1.24 |
β-Selinene | - | 2.61 | 0.52 | - | 0.63 | 2.08 |
cis-β-Guaiene | 0.93 | 2.24 | 0.32 | 0.48 | 0.97 | 3.66 |
trans-Muurola-4(14),5-diene | - | - | 1.84 | - | - | - |
α-Muurolene | 0.89 | 1.61 | 2.21 | 0.31 | 1.02 | 1.84 |
trans-β-Guaiene | 0.35 | - | - | - | - | 0.51 |
β-Bisabolene | 4.77 | 1.36 | - | - | - | - |
α-Bulnesene | - | 1.24 | - | - | - | - |
γ-Cadineno | 2.08 | 2.39 | 3.28 | - | 2.14 | 2.93 |
δ-Cadineno | 4.32 | 5.38 | 8.29 | 1.37 | 5.15 | 9.14 |
trans-Cadina-1,4-dieno | - | - | - | - | - | 0.55 |
α-Cadineno | - | - | - | - | - | 0.64 |
α-Calacorene | 0.44 | 0.56 | 0.81 | - | 0.51 | 0.68 |
Selina-3,7(11)-diene | - | - | - | 0.68 | - | - |
Germacrene B | 0.75 | - | 1.41 | 0.99 | - | - |
(E)-Nerolidol | - | - | - | 0.34 | 2.38 | 11.01 |
Caryophylleneyl alcohol | - | 0.85 | - | - | - | - |
Espatulenol | 0.45 | - | 1.29 | - | 0.93 | 6.80 |
Caryophyllene oxide | 3.07 | 1.99 | 2.08 | - | 1.18 | 3.43 |
Salvial-4(14)-en-1-one | 0.34 | - | 0.31 | - | 0.34 | - |
Cedrol | - | 0.74 | 2.15 | - | 2.16 | - |
β-Oplopenone | - | - | 1.11 | - | - | - |
β-Atlantol | 0.33 | - | - | - | - | - |
Humulene II epoxide | 0.30 | - | - | - | - | 0.65 |
Junenol | 1.20 | - | 0.48 | - | - | - |
1-epi-Cubenol | 0.81 | - | 0.71 | - | 0.48 | 0.62 |
Cubenol | 0.32 | 0.36 | 0.86 | 0.34 | 0.71 | 1.10 |
α-Cadinol | 0.41 | 0.37 | 0.78 | 0.56 | 0.48 | 0.95 |
Himachalol | 0.46 | - | - | - | - | - |
Mustakone | - | - | 0.40 | - | - | - |
epi-α-Bisabolol | - | 0.33 | - | - | - | - |
Eudesm-7(11)-en-4-ol | - | - | - | 0.51 | - | - |
Benzyl benzoate | - | 2.14 | - | - | - | - |
Pimaradiene | - | - | - | 1.02 | - | - |
Mannool oxide | - | - | 0.75 | - | 0.72 | - |
Evaluated Results | MS | MB | SP | MQ | MQA | AM |
---|---|---|---|---|---|---|
Similar composition to the OE | A | C | A | A | A | A |
Proportion of classes compared to the OE | C | C | A | A | A | A |
Principal component analysis (PCA) | A | C | C | A | A | A |
Tukey Test | A | A | A | A | A | A |
Best result | A | C | A | A | A | A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gabriel, M.B.; Pinheiro, G.P.; Hantao, L.W.; Sawaya, A.C.H.F. Comparison of Hydrodistillation and Headspace Solid-Phase Microextraction to Analyze Volatiles from Brazilian Propolis by GC-MS. Chemosensors 2025, 13, 322. https://doi.org/10.3390/chemosensors13090322
Gabriel MB, Pinheiro GP, Hantao LW, Sawaya ACHF. Comparison of Hydrodistillation and Headspace Solid-Phase Microextraction to Analyze Volatiles from Brazilian Propolis by GC-MS. Chemosensors. 2025; 13(9):322. https://doi.org/10.3390/chemosensors13090322
Chicago/Turabian StyleGabriel, Mariana Budóia, Guilherme Perez Pinheiro, Leandro Wang Hantao, and Alexandra Christine Helena Frankland Sawaya. 2025. "Comparison of Hydrodistillation and Headspace Solid-Phase Microextraction to Analyze Volatiles from Brazilian Propolis by GC-MS" Chemosensors 13, no. 9: 322. https://doi.org/10.3390/chemosensors13090322
APA StyleGabriel, M. B., Pinheiro, G. P., Hantao, L. W., & Sawaya, A. C. H. F. (2025). Comparison of Hydrodistillation and Headspace Solid-Phase Microextraction to Analyze Volatiles from Brazilian Propolis by GC-MS. Chemosensors, 13(9), 322. https://doi.org/10.3390/chemosensors13090322