Development of Polydopamine–Chitosan-Modified Electrochemical Immunosensor for Sensitive Detection of 7,12-Dimethylbenzo[a]anthracene in Seawater
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instruments
2.3. Procedures
2.3.1. Solution Preparation
2.3.2. Sensor Construction
2.3.3. Immunoassay
2.3.4. Seawater Samples Preparation
3. Optimization and Results
3.1. Sensor Characterization
3.1.1. Morphological Characterization
3.1.2. Performance Characterization
3.2. Experimental Conditions Optimization
3.2.1. Buffer pH Optimization
3.2.2. Probe Concentration Optimization
3.2.3. Antibody Concentration Optimization
3.3. Sensor Performance Analysis
3.3.1. Performance Detection
3.3.2. Stability and Anti-Interference Performance
3.3.3. Practical Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Glithero, D.; Bridge, N.; Paul, K.; Mcruer, J. Ocean Decade Challenge 10 underscores social dynamics in marine sciences as critical to transforming human-ocean relationships. ICES J. Mar. Sci. 2025, 82, fsaf030. [Google Scholar] [CrossRef]
- Hao, H.; Qiu, C.; Qu, W.; Zhuang, Y.; Han, X.; Tao, W.; Gu, Y.; Zhao, Z.; Liu, H.; Wang, W. Research on the Detection of Hg(II) in Seawater Using GR-MWCNTs/CeO2-Modified Electrodes. Chemosensors 2024, 12, 128. [Google Scholar] [CrossRef]
- Yan, Y.; Qiu, C.; Qu, W.; Zhuang, Y.; Chen, K.; Wang, C.; Zhang, R.; Wang, P.; Wu, Y.; Gao, J. Detection of BaP in seawater based on multi-walled carbon nanotubes composites immunosenor. Front. Chem. 2022, 10, 950854. [Google Scholar] [CrossRef] [PubMed]
- Thiagarajan, C.; Devarajan, Y. The urgent challenge of ocean pollution: Impacts on marine biodiversity and human health. Reg. Stud. Mar. Sci. 2025, 81, 103995. [Google Scholar] [CrossRef]
- Wu, Y.; Qu, W.; Qiu, C.; Chen, K.; Zhuang, Y.; Zeng, Z.; Yan, Y.; Gu, Y.; Tao, W.; Gao, J.; et al. The Method and Study of Detecting Phenanthrene in Seawater Based on a Carbon Nanotube-Chitosan Oligosaccharide Modified Electrode Immunosensor. Molecules 2023, 28, 5701. [Google Scholar] [CrossRef] [PubMed]
- Souza, T.; Jennen, D.; van Delft, J.; van Herwijnen, M.; Kyrtoupolos, S.; Kleinjans, J. New insights into BaP-induced toxicity: Role of major metabolites in transcriptomics and contribution to hepatocarcinogenesis. Arch. Toxicol. 2016, 90, 1449–1458. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Li, Z.; Li, W. Polycyclic Aromatic Hydrocarbons (PAHs): Environmental Persistence and Human Health Risks. Nat. Prod. Commun. 2025, 20. [Google Scholar] [CrossRef]
- Ismail, N.A.; Kasmuri, N.; Hamzah, N. Microbial Bioremediation Techniques for Polycyclic Aromatic Hydrocarbon (PAHs)—a Review. Water Air Soil Pollut. 2022, 233, 124. [Google Scholar] [CrossRef]
- Wang, Z.; Ng, K.; Warner, R.D.; Stockmann, R.; Fang, Z. Reduction strategies for polycyclic aromatic hydrocarbons in processed foods. Compr. Rev. Food Sci. Food Saf. 2022, 21, 1598–1626. [Google Scholar] [CrossRef] [PubMed]
- Lei, D.; Chen, T.; Fan, C.; Xie, Q. Exposure to BaA inhibits trophoblast cell invasion and induces miscarriage by regulating the DEC1/ARHGAP5 axis and promoting ubiquitination-mediated degradation of MMP2. J. Hazard. Mater. 2024, 479, 135594. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Kundu-Roy, T.; Matsuura, I.; Wang, G.; Lin, Y.; Lou, Y.-R.; Barnard, N.J.; Wang, X.-F.; Huang, M.-T.; Suh, N.; et al. Carcinogen 7,12-dimethylbenz[a]anthracene-induced mammary tumorigenesis is accelerated in Smad3 heterozygous mice compared to Smad3 wild type mice. Oncotarget 2016, 7, 64878–64885. [Google Scholar] [CrossRef] [PubMed]
- Gergely, P.A.; Murnyak, B.; Bencze, J.; Kurucz, A.; Varjas, T.; Gombos, K.; Hortobagyi, T. Tyrosine Kinase Inhibitor Imatinib Mesylate Alters DMBA-Induced Early Onco/Suppressor Gene Expression with Tissue-Specificity in Mice. BioMed Res. Int. 2019, 2019, 8670398. [Google Scholar] [CrossRef] [PubMed]
- Skrajnowska, D.; Bobrowska-Korczak, B.; Wereszczynska, M.; Tokarz, A. Effects of Dietary Zinc and Polyphenol Intake on Hair Mineral Content in Rats with DMBA-Induced Mammary Cancer. Pol. J. Environ. Stud. 2014, 23, 203–209. [Google Scholar]
- Aslan, A.; Beyaz, S.; Gok, O.; Ozercan, I.H.; Agca, C.A. Fullerene C60 Decreases Inflammation, Oxidative Stress and Apoptosis Induced by 7,12-Dimethylbenz[a]Anthracene (DMBA) in Muscle Tissue Via Caspase-3 and NRF-2 Protein Signaling Pathway. Pharm. Chem. J. 2024, 58, 784–792. [Google Scholar] [CrossRef]
- Wang, X.; Nie, X.; Xu, G.; Gao, J.; Wang, B.; Yang, J.; Song, G. miR-450b promotes cell migration and invasion by inhibiting SERPINB2 in oral squamous cell carcinoma. ORAL Dis. 2024, 30, 376–389. [Google Scholar] [CrossRef] [PubMed]
- Sopalun, K.; Laosripaiboon, W.; Wachirachaikarn, A.; Iamtham, S. Biological potential and chemical composition of bioactive compounds from endophytic fungi associated with thai mangrove plants. S. Afr. J. Bot. 2021, 141, 66–76. [Google Scholar] [CrossRef]
- Isaac, I.O.; Enengedi, I.S.; Abdulazeez, I.A. Quality assessment of Vitellaria paradoxa seed oil obtained under different extraction conditions and solvents. Sustain. Chem. Pharm. 2023, 35, 101176. [Google Scholar] [CrossRef]
- Nirmaier, H.-P.; Fischer, E.; Meyer, A.; Henze, G. Determination of polycyclic aromatic hydrocarbons in water samples using high-performance liquid chromatography with amperometric detection. J. Chromatogr. A 1996, 730, 169–175. [Google Scholar] [CrossRef]
- Pino, V.; Ayala, J.H.; Afonso, A.M.; González, V. Determination of polycyclic aromatic hydrocarbons in seawater by high-performance liquid chromatography with fluorescence detection following micelle-mediated preconcentration. J. Chromatogr. A 2002, 949, 291–299. [Google Scholar] [CrossRef] [PubMed]
- Qiao, M.; Qi, W.; Liu, H.; Qu, J. Simultaneous determination of typical substituted and parent polycyclic aromatic hydrocarbons in water and solid matrix by gas chromatography–mass spectrometry. J. Chromatogr. A 2013, 1291, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Fu, Y.; Xu, J.; Gao, X.; Fu, X.; Wang, L. Optimization of hydrolysis conditions of alginate based on high performance liquid chromatography. Heliyon 2024, 10, e29738. [Google Scholar] [CrossRef] [PubMed]
- Vempatapu, B.P.; Kumar, J.; Upreti, B.; Kanaujia, P.K. Application of high-performance liquid chromatography in petroleum analysis: Challenges and opportunities. TrAC Trends Anal. Chem. 2024, 177, 117810. [Google Scholar] [CrossRef]
- Zhang, C.; Mamattursun, A.; Ma, X.; Pang, T.; Wu, Y.; Ma, X. High-performance thin-layer chromatography and high-performance liquid chromatography determination of two anthocyanins in medicine mulberry. JPC-J. Planar Chromatogr.-Mod. TLC 2024, 37, 345–355. [Google Scholar] [CrossRef]
- Sharma, S.; Modi, K.; Shah, M. Development and validation of high-performance thin-layer chromatography (HPTLC) and high-performance liquid chromatography (HPLC) methods for the simultaneous determination of myricetin and quercetin in Manilkara hexandra. JPC-J. Planar Chromatogr.-Mod. TLC 2024, 37, 511–519. [Google Scholar] [CrossRef]
- Halko, R.; Pavelek, D.; Kaykhaii, M. High Performance Liquid chromatography—Fourier Transform Infrared Spectroscopy Coupling: A Comprehensive Review. Crit. Rev. Anal. Chem. 2024, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Ai, Q.-Y.; Wang, A.-J.; Mei, L.-P.; Song, P.; Liu, W.; Feng, J.-J.; Cheang, T.Y. Pronounced signal enhancement with gourd-shaped hollow PtCoNi bunched nanochains for electrochemical immunosensing of alpha-fetoprotein. Sens. Actuators B Chem. 2025, 422, 136608. [Google Scholar] [CrossRef]
- Kim, E.; Park, J.-H.; Ryu, B.-K.; Lee, G.-Y. Electrochemical Immunoassay Using Diffusion Layer Dispersion Effect of Electrodes. BioChip J. 2024, 18, 410–418. [Google Scholar] [CrossRef]
- Liu, J.; Tang, D. Dopamine-loaded Liposomes-amplified Electrochemical Immunoassay based on MXene (Ti3C2)-AuNPs. Electroanalysis 2022, 34, 1329–1337. [Google Scholar] [CrossRef]
- Park, J.-H.; Song, Z.; Bong, J.-H.; Kim, H.-R.; Kim, M.-J.; Choi, K.-H.; Shin, S.-S.; Kang, M.-J.; Lee, D.Y.; Pyun, J.-C. Electrochemical One-Step Immunoassay Based on Switching Peptides and Pyrolyzed Carbon Electrodes. ACS Sens. 2022, 7, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Shi, F.; Xia, Y.; Zhu, H.; Cao, J.; Peng, K.; Ren, C.; Li, J.; Yang, Z. Universal MOF nanozyme-induced catalytic amplification strategy for label-free electrochemical immunoassay. Chin. Chem. Lett. 2024, 35, 109664. [Google Scholar] [CrossRef]
- Hu, Y.; Lin, J.; Peng, L.; Ji, X.; Lv, H.; Wu, J.; Zhang, Y.; Wang, S.; Wang, Y.; Wu, S. Nanobody-Based Electrochemical Immunoassay for Sensitive Detection of Peanut Allergen Ara h 1. J. Agric. Food Chem. 2023, 71, 7535–7545. [Google Scholar] [CrossRef] [PubMed]
- Kunpatee, K.; Khantasup, K.; Komolpis, K.; Yakoh, A.; Nuanualsuwan, S.; Sain, M.M.; Chaiyo, S. Ratiometric electrochemical lateral flow immunoassay for the detection of Streptococcus suis serotype 2. Biosens. Bioelectron. 2023, 242, 115742. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.; Yen, C.-W.; Hayden, S.C. Fabrication of Biosensing Surfaces Using Adhesive Polydopamine. Biotechnol. Prog. 2015, 31, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Wang, T.; Liu, J. Recent Development of Polydopamine Anti-Bacterial Nanomaterials. Int. J. Mol. Sci. 2022, 23, 7278. [Google Scholar] [CrossRef] [PubMed]
- Sotoma, S. Polyglycerol/Polydopamine-Coated Nanoparticles for Biomedical Applications. Front. Mater. 2022, 9, 878455. [Google Scholar] [CrossRef]
- Sivanesan, I.; Gopal, J.; Muthu, M.; Shin, J.; Mari, S.; Oh, J. Green Synthesized Chitosan/Chitosan Nanoforms/Nanocomposites for Drug Delivery Applications. Polymers 2021, 13, 2256. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Niu, L.; Zhang, Z.; Zhao, J.; Chou, L. Electrochemical Behavior of a Polydopamine Nanofilm. Anal. Lett. 2015, 48, 2031–2039. [Google Scholar] [CrossRef]
- Lin, K.; Gan, Y.; Zhu, P.; Li, S.; Lin, C.; Yu, S.; Zhao, S.; Shi, J.; Li, R.; Yuan, J. Hollow mesoporous polydopamine nanospheres: Synthesis, biocompatibility and drug delivery. Nanotechnology 2021, 32, 285602. [Google Scholar] [CrossRef] [PubMed]
- Szewczyk, J.; Aguilar-Ferrer, D.; Coy, E. Polydopamine films: Electrochemical growth and sensing applications. Eur. Polym. J. 2022, 174, 111346. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Aisyah, H.A.; Nordin, A.H.; Ngadi, N.; Zuhri, M.Y.M.; Asyraf, M.R.M.; Sapuan, S.M.; Zainudin, E.S.; Sharma, S.; Abral, H.; et al. Natural-Fiber-Reinforced Chitosan, Chitosan Blends and Their Nanocomposites for Various Advanced Applications. Polymers 2022, 14, 874. [Google Scholar] [CrossRef] [PubMed]
- Malinowska-Panczyk, E.; Staroszczyk, H.; Gottfried, K.; Kolodziejska, I.; Wojtasz-Pajak, A. Antimicrobial properties of chitosan solutions, chitosan films and gelatin-chitosan films. Polimery 2015, 60, 735–741. [Google Scholar] [CrossRef]
- Mrowczynski, R.; Bunge, A.; Liebscher, J. Polydopamine-An Organocatalyst Rather than an Innocent Polymer. Chem. Eur. J. 2014, 20, 8647–8653. [Google Scholar] [CrossRef] [PubMed]
- Varlamov, V.P.; Mysyakina, I.S. Chitosan in Biology, Microbiology, Medicine, and Agriculture. Microbiology 2018, 87, 712–715. [Google Scholar] [CrossRef]
- Ameer, S.; Ibrahim, H.; Yaseen, M.U.; Kulsoom, F.; Cinti, S.; Sher, M. Electrochemical Impedance Spectroscopy-Based Sensing of Biofilms: A Comprehensive Review. Biosensors 2023, 13, 777. [Google Scholar] [CrossRef] [PubMed]
- Brett, C.M.A. Electrochemical Impedance Spectroscopy in the Characterisation and Application of Modified Electrodes for Electrochemical Sensors and Biosensors. Molecules 2022, 27, 1497. [Google Scholar] [CrossRef] [PubMed]
- Elumalai, P.N.N.; Thimmarayappa, C.C.; Talebi, S.; Subramaniam, R.T.; Kasi, R.; Iwamoto, M.; Kumar, G.G.; Periasamy, V. Evaluation of a same-metal PCB-based three-electrode system via impedance studies using potassium ferricyanide. RSC Adv. 2024, 14, 35035–35046. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chi, M.; Wang, M.; Liu, Y.; Kong, S.; Du, L.; Wang, J.; Wu, C. Label-Free Detection of CA19-9 Using a BSA/Graphene-Based Antifouling Electrochemical Immunosensor. Sensors 2023, 23, 9693. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Marzo, A.; Mas-Torrent, M. Bioreceptors’ immobilization by hydrogen bonding interactions and differential pulse voltammetry for completely label-free electrochemical biosensors. Microchim. Acta 2024, 191, 669. [Google Scholar] [CrossRef] [PubMed]
Electrodes | Rs (Ω) | Rct (Ω) |
---|---|---|
GCE | 21.11 ± 1.12 | 149.23 ± 1.01 |
PDA/GCE | 19.77 ± 0.95 | 71.38 ± 5.71 |
PDA/CTs/GCE | 21.35 ± 1.22 | 21.02 ± 2.52 |
PDA/CTs/Anti-DMBA-7,12/GCE | 19.86 ± 0.74 | 109.95 ± 8.12 |
PDA/CTs/Anti-DMBA-7,12/BSA/GCE | 19.37 ± 0.83 | 130.34 ± 9.33 |
Detection Method | Liner Range (ng/mL) | LOD (ng/mL) | References |
---|---|---|---|
HPLC-AD | 0.1–80 | 1.01 | [18] |
HPLC-FD | 1.0–20 | 0.15 | [19] |
GC | 0.31–29.6 | 0.74 | [20] |
PDA/CTs/Anti-DMBA-7,12/BSA/GCE | 0.5–100 | 0.42 | — |
Experiment | Added (ng/mL) | Site | Found (ng/mL) | Recovery % | RSD % |
---|---|---|---|---|---|
1 | 10 | S1 | 9.98 | 99.80 | 0.01 |
S2 | 9.75 | 97.50 | 0.02 | ||
S3 | 9.84 | 98.40 | 0.25 | ||
S4 | 9.85 | 98.50 | 0.11 | ||
2 | 50 | S1 | 47.98 | 95.96 | 1.44 |
S2 | 48.32 | 96.64 | 1.21 | ||
S3 | 48.11 | 96.22 | 1.30 | ||
S4 | 49.55 | 99.10 | 0.33 | ||
3 | 100 | S1 | 98.15 | 98.15 | 1.71 |
S2 | 99.44 | 99.44 | 0.94 | ||
S3 | 97.02 | 97.02 | 2.32 | ||
S4 | 95.53 | 95.53 | 4.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, H.; Qiu, C.; Qu, W.; Zhuang, Y.; Zhao, Z.; Liu, H.; Wang, W.; Su, J.; Tao, W. Development of Polydopamine–Chitosan-Modified Electrochemical Immunosensor for Sensitive Detection of 7,12-Dimethylbenzo[a]anthracene in Seawater. Chemosensors 2025, 13, 263. https://doi.org/10.3390/chemosensors13070263
Hao H, Qiu C, Qu W, Zhuang Y, Zhao Z, Liu H, Wang W, Su J, Tao W. Development of Polydopamine–Chitosan-Modified Electrochemical Immunosensor for Sensitive Detection of 7,12-Dimethylbenzo[a]anthracene in Seawater. Chemosensors. 2025; 13(7):263. https://doi.org/10.3390/chemosensors13070263
Chicago/Turabian StyleHao, Huili, Chengjun Qiu, Wei Qu, Yuan Zhuang, Zizi Zhao, Haozheng Liu, Wenhao Wang, Jiahua Su, and Wei Tao. 2025. "Development of Polydopamine–Chitosan-Modified Electrochemical Immunosensor for Sensitive Detection of 7,12-Dimethylbenzo[a]anthracene in Seawater" Chemosensors 13, no. 7: 263. https://doi.org/10.3390/chemosensors13070263
APA StyleHao, H., Qiu, C., Qu, W., Zhuang, Y., Zhao, Z., Liu, H., Wang, W., Su, J., & Tao, W. (2025). Development of Polydopamine–Chitosan-Modified Electrochemical Immunosensor for Sensitive Detection of 7,12-Dimethylbenzo[a]anthracene in Seawater. Chemosensors, 13(7), 263. https://doi.org/10.3390/chemosensors13070263