Integrating In Situ Non-Destructive Techniques and Colourimetric Analysis to Evaluate Pigment Ageing and Environmental Effects on Tibetan Buddhist Murals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Murals in Liuli Hall and Sampling Locations
2.2. Analytical Instruments and Method
2.2.1. HSI Instrumentation Parameters and Image Processing
2.2.2. MSI Equipment Specifications and Imaging Setup
2.2.3. FORS Instrumentation and Spectral Parameters
2.2.4. XRF Instrumentation and Analytical Conditions
2.2.5. Py-GC/MS Analysis
2.2.6. Surface Flatness and Microstructure Observation
2.2.7. Colour Measurement Method and Data Processing
2.2.8. K-Means Clustering Algorithm
3. Results
3.1. Material Analysis and Historical Interventions
3.1.1. HSI Results
3.1.2. XRF Analysis
3.1.3. Binding Material
3.1.4. Surface Flatness of the Mural
3.1.5. Restoration of Traces
3.2. Colour Measurement
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Wu, X. Current progress on murals: Distribution, conservation and utilization. Herit. Sci. 2023, 11, 61. [Google Scholar] [CrossRef] [PubMed]
- Valadas, S.; Candeias, A.; Mirão, J.; Tavares, D.; Coroado, J.; Simon, R.; Silva, A.; Gil, M.; Guilherme, A.; Carvalho, M. Study of mural paintings using in situ XRF, confocal synchrotron-μ-XRF, μ-XRD, optical microscopy, and SEM-EDS—The case of the frescoes from Misericordia Church of Odemira. Microsc. Microanal. 2011, 17, 702–709. [Google Scholar] [CrossRef] [PubMed]
- Domenech-Carbo, M.T. Novel analytical methods for characterising binding media and protective coatings in artworks. Anal. Chim. Acta 2008, 621, 109–139. [Google Scholar] [CrossRef] [PubMed]
- Janssens, K.; Dik, J.; Cotte, M.; Susini, J. Photon-based techniques for nondestructive subsurface analysis of painted cultural heritage artifacts. Acc. Chem. Res. 2010, 43, 814–825. [Google Scholar] [CrossRef]
- Mounier, A.; Le Bourdon, G.; Aupetit, C.; Belin, C.; Servant, L.; Lazare, S.; Lefrais, Y.; Daniel, F. Hyperspectral imaging, spectrofluorimetry, FORS and XRF for the non-invasive study of medieval miniatures materials. Herit. Sci. 2014, 2, 24. [Google Scholar] [CrossRef]
- Cucci, C.; Donell, S.; Zucchini, E.; Picollo, M.; Stefani, L.; Lippi, D. Fifteenth century Florentine mural investigated in situ with VNIR Hyperspectral Imaging and NIR Photography supports interpretation as a bloodletting scene. Sci. Rep. 2024, 14, 11698. [Google Scholar] [CrossRef]
- Moretti, P.; Piqué, F.; Ocampo, A.G.; Aceto, M.; Villa, L.; Cassitti, P.; Cavallo, G. Non-invasive study of Early Medieval wall paintings in the churches of St. Stephan in Chur and St. Martin in Disentis (Switzerland). J. Cult. Herit. 2024, 67, 368–376. [Google Scholar] [CrossRef]
- Fischer, C.; Kakoulli, I. Multispectral and hyperspectral imaging technologies in conservation: Current research and potential applications. Stud. Conserv. 2006, 51, 3–16. [Google Scholar] [CrossRef]
- Cucci, C.; Picollo, M.; Chiarantini, L.; Uda, G.; Fiori, L.; De Nigris, B.; Osanna, M. Remote-sensing hyperspectral imaging for applications in archaeological areas: Non-invasive investigations on wall paintings and on mural inscriptions in the Pompeii site. Microchem. J. 2020, 158, 105082. [Google Scholar] [CrossRef]
- Pan, N.; Hou, M.; Lv, S.; Hu, Y.; Zhao, X.; Ma, Q.; Li, S.; Shaker, A. Extracting faded mural patterns based on the combination of spatial-spectral feature of hyperspectral image. J. Cult. Herit. 2017, 27, 80–87. [Google Scholar] [CrossRef]
- Li, T.; Ning, B.; Yu, Z.; Li, L.; He, Y.; Wan, W.; Liu, Z.; Yu, X. Non-Destructive Differentiation of Ancient Murals Pigments by Hyperspectral Imaging. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4954588 (accessed on 28 May 2025).
- Dyer, J.; Sotiropoulou, S. A technical step forward in the integration of visible induced luminescence imaging methods for the study of ancient polychromy. Herit. Sci. 2017, 5, 24. [Google Scholar] [CrossRef]
- Tragni, C.B. The use of ultraviolet-induced visible fluorescence for examination of photographs. In Advanced Residency Program in Photograph Conservation, George Eastman House International Museum of Photography and Film & Image Permanence Institute; Rochester Institute of Technology: Rochester, NY, USA, 2005. [Google Scholar]
- Comelli, D.; Valentini, G.; Nevin, A.; Farina, A.; Toniolo, L.; Cubeddu, R. A portable UV-fluorescence multispectral imaging system for the analysis of painted surfaces. Rev. Sci. Instrum. 2008, 79, 086112. [Google Scholar] [CrossRef] [PubMed]
- Verri, G.; Comelli, D.; Cather, S.; Saunders, D.; Piqué, F. Post-capture data analysis as an aid to the interpretation of ultraviolet-induced fluorescence images. In Proceedings of the Computer Image Analysis in the Study of Art, San Jose, CA, USA, 28–29 January 2008; pp. 11–22. [Google Scholar]
- Bläuer, C.; Keller, A.T. Mainly red and a hidden blue–Laboratory and MSI investigations on the Carolingian wall paintings in the Chapel of the Holy Cross of Müstair (Switzerland). J. Cult. Herit. 2020, 42, 72–80. [Google Scholar] [CrossRef]
- Bolong, C.; Zongren, Y.; Manli, S.; Zhongwei, S.; Jinli, Z.; Biwen, S.; Zhuo, W.; Yaopeng, Y.; Bomin, S. Virtual reconstruction of the painting process and original colors of a color-changed Northern Wei Dynasty mural in Cave 254 of the Mogao Grottoes. Herit. Sci. 2022, 10, 164. [Google Scholar] [CrossRef]
- Cheilakou, E.; Troullinos, M.; Koui, M. Identification of pigments on Byzantine wall paintings from Crete (14th century AD) using non-invasive Fiber Optics Diffuse Reflectance Spectroscopy (FORS). J. Archaeol. Sci. 2014, 41, 541–555. [Google Scholar] [CrossRef]
- Schreiner, M.; Frühmann, B.; Jembrih-Simbürger, D.; Linke, R. X-rays in art and archaeology: An overview. Powder Diffr. 2004, 19, 3–11. [Google Scholar] [CrossRef]
- Alberghina, M.F.; Zicarelli, M.A.; Randazzo, L.; Schiavone, S.; La Russa, M.F.; Labriola, M.; Rigaglia, D.; Ricca, M. Byzantine wall paintings from San Marco d’Alunzio, Sicily: Non-invasive diagnostics and microanalytical investigation of pigments and plasters. Herit. Sci. 2024, 12, 184. [Google Scholar] [CrossRef]
- Ricca, M.; Alberghina, M.F.; Houreh, N.D.; Koca, A.S.; Schiavone, S.; La Russa, M.F.; Randazzo, L.; Ruffolo, S.A. Preliminary study of the mural paintings of Sotterra Church in Paola (Cosenza, Italy). Materials 2022, 15, 3411. [Google Scholar] [CrossRef]
- Bonizzoni, L.; Caglio, S.; Galli, A.; Germinario, C.; Izzo, F.; Magrini, D. Identifying Original and Restoration Materials through Spectroscopic Analyses on Saturnino Gatti Mural Paintings: How Far a Noninvasive Approach Can Go. Appl. Sci. 2023, 13, 6638. [Google Scholar] [CrossRef]
- Cosentino, A.; Stout, S.; Di Mauro, R.; Perondi, C. The Crucifix Chapel of Aci Sant’Antonio: Newly discovered frescoes. Archeomatica 2014, 5, 36–42. [Google Scholar]
- Delaney, J.K.; Thoury, M.; Zeibel, J.G.; Ricciardi, P.; Morales, K.M.; Dooley, K.A. Visible and infrared imaging spectroscopy of paintings and improved reflectography. Herit. Sci. 2016, 4, 1–10. [Google Scholar] [CrossRef]
- Brocchieri, J.; Scialla, E.; D’Onofrio, A.; Sabbarese, C. Combining XRF, Multispectral Imaging and SEM/EDS to Characterize a Contemporary Painting. Quantum Beam Sci. 2023, 7, 13. [Google Scholar] [CrossRef]
- Lluveras-Tenorio, A.; Bonaduce, I.; Sabatini, F.; Degano, I.; Blaensdorf, C.; Pouyet, E.; Cotte, M.; Ma, L.; Colombini, M.P. The organic materials in the Five Northern Provinces’ Assembly Hall: Disclosing the painting technique of the Qing dynasty painters in civil buildings. Appl. Phys. A 2015, 121, 879–889. [Google Scholar] [CrossRef]
- Teri, G.; Han, K.; Huang, D.; Li, Y.; Tian, Y.; Chao, X.; Jia, Z.; Fu, P.; Li, Y. A study on the materials used in the ancient architectural paintings from the qing dynasty tibetan buddhist monastery of Puren, China. Materials 2023, 16, 6404. [Google Scholar] [CrossRef]
- Gil, M.; Valadas, S.; Cardoso, I.; Dias, L. Preliminary Diagnostic Survey of Deteriorated Paint Layers at the Maritime Station of Rocha Do Conde De Óbidos; A Multianalytical Research: Lisbon, Portugal, 2023. [Google Scholar]
- Gil, M.; Costa, M.; Dias, L.; Frade, J.C.; Vandenabeele, P. An Insight into the Green Deteriorated Paint Layers of the Maritime Station of Alcântara (Lisbon): An Archeometric Study. 2023. Available online: https://ijcs.ro/public/IJCS-23-78_Acevedo-Mejia.pdf (accessed on 28 May 2025).
- Alonso-Villar, E.M.; Rivas, T.; Pozo-Antonio, J.S.; Pellis, G.; Scalarone, D. Efficacy of colour protectors in urban art paintings under different conditions: From a real mural to the laboratory. Heritage 2023, 6, 3475–3498. [Google Scholar] [CrossRef]
- Boardman, J.W.; Kruse, F.A.; Green, R.O. Mapping target signatures via partial unmixing of AVIRIS data. In Proceedings of the Summaries of the Fifth Annual JPL Airborne Earth Science Workshop, Pasadena, CA, USA, 23–26 January 1995. Volume 1: AVIRIS Workshop. [Google Scholar]
- Veneranda, M.; Prieto-Taboada, N.; de Vallejuelo, S.F.-O.; Maguregui, M.; Morillas, H.; Marcaida, I.; Castro, K.; Garcia-Diego, F.-J.; Osanna, M.; Madariaga, J. In-situ multianalytical approach to analyze and compare the degradation pathways jeopardizing two murals exposed to different environments (Ariadne House, Pompeii, Italy). Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 203, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Cao, M.; Fu, P.; Dong, W. The color influence of dust in air pollutants on architectural painting: A case of archery tower at the West Gate in Shaanxi, China. Herit. Sci. 2024, 12, 293. [Google Scholar] [CrossRef]
- Fang, S.; Hu, W.; Li, Q.; Zhang, B.; Chen, X.; Xie, L. The relationship between the microclimate and efflorescence of revealed mural paintings and th–e later protection strategy. Sci. Total Environ. 2024, 922, 171337. [Google Scholar] [CrossRef]
- Wang, S.Q. San Yun Chou Zu Kao: Feng Gong Kao*[三云筹俎考·封贡考]; Ming Dynasty Woodblock Edition; 1610. [Google Scholar]
- Yao, Y.-X.; Huang, Y.-Z.; Ma, Y.; Qi, Y.-M.; Wei, S.-Y. The Identification and Analysis of the Materials and Workmanship for the Water-and-Land-Murals of Daxiong Dian (Hall) of Princess Temple, Fanshi. Spectrosc. Spectr. Anal. 2023, 43, 1155–1161. [Google Scholar]
- Cinko, O.U.; Becerir, B. Dependence of colour difference formulae on regular changes of colour coordinates in CIELAB colour space. Ind. Textila 2019, 70, 248–254. [Google Scholar] [CrossRef]
- Nakayama, M.; Ikeda, K. Comparison of Perceived Colour Differences with Colorimetric Colour Differences in Uniform Colour Spaces and Colour Appearance Model. J. Light Vis. Environ. 2004, 28, 81–92. [Google Scholar] [CrossRef]
- Dong, L.; Kang, M. Quantitative Comparison of Geographical Color of Traditional Village Architectural Heritage Based on K-Means Color Clustering—A Case Study of Southeastern Hubei Province, China. Buildings 2025, 15, 748. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Z.; Liu, X. Spectroscopic Techniques for Identifying Pigments in Polychrome Cultural Relics. Coatings 2025, 15, 20. [Google Scholar] [CrossRef]
- Shi, X.; Lin, X.; Lei, Y.; Wu, J.; Lv, X.; Zhou, Y. A Study on Pigment Composition of Buddhist Cave Paintings Based on Hyperspectral Technology. Materials 2024, 17, 5147. [Google Scholar] [CrossRef] [PubMed]
- Delaney, J.K.; Ricciardi, P.; Glinsman, L.D.; Facini, M.; Thoury, M.; Palmer, M.; Rie, E.R.d. Use of imaging spectroscopy, fiber optic reflectance spectroscopy, and X-ray fluorescence to map and identify pigments in illuminated manuscripts. Stud. Conserv. 2014, 59, 91–101. [Google Scholar] [CrossRef]
- Donate, I.; García, A.R.; Vega, C.; Mayans, B.; Martín, M.; Bueso, M. An application of near-infrared reflectance imaging spectroscopy on historical studies: Differentiation of painting ground layers from the 15th and 16th centuries. In Proceedings of the Optics for Arts, Architecture, and Archaeology VIII, Online, 21–25 June 2021; pp. 185–197. [Google Scholar]
- Zhang, Y.; Wang, J.; Liu, H.; Wang, X.; Zhang, S. Integrated analysis of pigments on murals and sculptures in Mogao Grottoes. Anal. Lett. 2015, 48, 2400–2413. [Google Scholar] [CrossRef]
- Yao, Z.; Hong, G.; Jian-du, Y.; Bo, L.; Jin-feng, T.; Rong-bo, Y. The Application of Nondestructive In-Situ Analysis on the Murals of the Xianrenya Grottoes in Tianshui. Spectrosc. Spectr. Anal. 2022, 42, 3526–3532. [Google Scholar]
- Trojek, T.; Musílek, L.; Prokeš, R. Depth of layers in historical materials measurable by X-ray fluorescence analysis. Radiat. Phys. Chem. 2019, 155, 239–243. [Google Scholar] [CrossRef]
- Park, J. Analysis of animal glue by pyrolysis/GC/MS. Anal. Sci. Technol. 2015, 28, 221–227. [Google Scholar] [CrossRef]
- Tousi, E.T.; Hashim, R.; Bauk, S.; Jaafar, M.S.; Al-Jarrah, A.M.; Kardani, H.; Abu Arra, A.M.H.; Aldroobi, K.S.A. A study of the properties of animal-based wood glue. Adv. Mater. Res. 2014, 935, 133–137. [Google Scholar] [CrossRef]
- Cappitelli, F.; Learner, T.; Chiantore, O. An initial assessment of thermally assisted hydrolysis and methylation-gas chromatography/mass spectrometry for the identification of oils from dried paint films. J. Anal. Appl. Pyrolysis 2002, 63, 339–348. [Google Scholar] [CrossRef]
- Chen, X.-h.; Chen, K.-h.; Liang, X. Materials Science and Engineering of Powder Metallurgy. Mater. Sci. Eng. Powder Metall. 2011, 16, 225–230. [Google Scholar]
- Chiriu, D.; Pala, M.; Pisu, F.; Cappellini, G.; Ricci, P.; Carbonaro, C. Time through colors: A kinetic model of red vermilion darkening from Raman spectra. Dye. Pigment. 2021, 184, 108866. [Google Scholar] [CrossRef]
- Neiman, M.K.; Balonis, M.; Kakoulli, I. Cinnabar alteration in archaeological wall paintings: An experimental and theoretical approach. Appl. Phys. A 2015, 121, 915–938. [Google Scholar] [CrossRef]
- Radepont, M.; Coquinot, Y.; Janssens, K.; Ezrati, J.-J.; de Nolf, W.; Cotte, M. Thermodynamic and experimental study of the degradation of the red pigment mercury sulfide. J. Anal. Spectrom. 2015, 30, 599–612. [Google Scholar] [CrossRef]
- Pagnin, L.; Calvini, R.; Wiesinger, R.; Weber, J.; Schreiner, M. Photodegradation kinetics of alkyd paints: The influence of varying amounts of inorganic pigments on the stability of the synthetic binder. Front. Mater. 2020, 7, 600887. [Google Scholar] [CrossRef]
- Merello, P.; García-Diego, F.-J.; Zarzo, M. Microclimate monitoring of Ariadne’s house (Pompeii, Italy) for preventive conservation of fresco paintings. Chem. Cent. J. 2012, 6, 145. [Google Scholar] [CrossRef]
Camera and Lens | Photography Types | Lighting | Filters | Calibration Attachment |
---|---|---|---|---|
Canon 200D modified to remove the infrared cut-off filter on the front of the sensor. Equipped with fixed-focus 60 mm F2.8 lens | UVR | Liezong professional red ultraviolet light source. The luminous wavelength is 400~1100 nm | ZWB2+TSN575 | |
UVF | UV LED light, wavelength 365 nm | Wratten 2E | ||
VIS | ICF2139 | X-Rite ColorChecker 18 Grayscale card | ||
IR | Liezong professional red ultraviolet light source. The luminous wavelength is 400~1100 nm | Green.L infrared filter (R950) |
Red | Green | Yellow | Dusty Yellow | Blue | White | |
---|---|---|---|---|---|---|
Distribution range of luminance L values | 34.94~44.18 | 37.53~55.19 | 44.63~54.42 | 43.87~59.07 | 38.74~45.7 | 53.34~62.73 |
Distribution range of red and green a-values | 14.02~28.19 | −4.06~−12.18 | 6.16~10.77 | 2.7~6.36 | −2.99~3.49 | 2.12~7.41 |
Distribution range of yellow and blue b-values | 8.3~19.71 | 12.55~20.09 | 16.74~32.8 | 12.9~18.9 | −13.6~−2.44 | 10.47~16.74 |
Chroma distribution range | 16.29~34.13 | 13.82~20.09 | 19.91~33.37 | 13.18~19.59 | 3.86~14.04 | 10.68~18.31 |
Hue distribution range | 30.63~50.97 | 72.89~128.9 | 57.24~79.36 | 66.42~78.18 | 219.2~284.3 | 66.12~78.55 |
Month | Avg Temperature (°C) | Avg Relative Humidity (%) | Avg Wind Speed (m/s) | Avg Wind Direction (°) | Avg Solar Radiation (W/m2) |
1 | −10.51 | 51.81 | 2.41 | 152.61 | 115.81 |
2 | −7.68 | 54.32 | 2.58 | 194.29 | 152.24 |
3 | 2.31 | 46.81 | 2.89 | 205.65 | 226.24 |
4 | 12.01 | 45.9 | 3.02 | 164.07 | 260.94 |
5 | 16.35 | 38.35 | 3.67 | 211 | 293.23 |
6 | 22.17 | 53.13 | 3.06 | 176.47 | 284.75 |
7 | 22.75 | 64.42 | 2.89 | 173.94 | 277.34 |
8 | 20.74 | 63 | 2.69 | 282.16 | 278.8 |
9 | 17.11 | 66.27 | 2.63 | 261.17 | 219.83 |
10 | 8.54 | 57.52 | 2.73 | 267.94 | 171.73 |
11 | −0.06 | 64.9 | 2.77 | 266.57 | 117.86 |
12 | −11.25 | 76.32 | 2.21 | 267.52 | 103.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; She, E.; Wen, J.; Huang, Y.; Zha, J. Integrating In Situ Non-Destructive Techniques and Colourimetric Analysis to Evaluate Pigment Ageing and Environmental Effects on Tibetan Buddhist Murals. Chemosensors 2025, 13, 202. https://doi.org/10.3390/chemosensors13060202
Li X, She E, Wen J, Huang Y, Zha J. Integrating In Situ Non-Destructive Techniques and Colourimetric Analysis to Evaluate Pigment Ageing and Environmental Effects on Tibetan Buddhist Murals. Chemosensors. 2025; 13(6):202. https://doi.org/10.3390/chemosensors13060202
Chicago/Turabian StyleLi, Xiyao, Erdong She, Jingqi Wen, Yan Huang, and Jianrui Zha. 2025. "Integrating In Situ Non-Destructive Techniques and Colourimetric Analysis to Evaluate Pigment Ageing and Environmental Effects on Tibetan Buddhist Murals" Chemosensors 13, no. 6: 202. https://doi.org/10.3390/chemosensors13060202
APA StyleLi, X., She, E., Wen, J., Huang, Y., & Zha, J. (2025). Integrating In Situ Non-Destructive Techniques and Colourimetric Analysis to Evaluate Pigment Ageing and Environmental Effects on Tibetan Buddhist Murals. Chemosensors, 13(6), 202. https://doi.org/10.3390/chemosensors13060202