LIBS-MLIF Method: Stromatolite Phosphorite Determination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Description and Preparation
2.2. Experimental Device
2.3. Spectral Data Preprocessing
2.4. Algorithm
3. Results
3.1. Qualitative Analysis
3.2. Quantitative Analysis of Total Phosphorus
4. Discussion
4.1. Geochemical and Mineralogical Profiles of SP
4.2. On-Track Biosignature Selected Associated with Artificial Neural Network Analysis
4.3. Scientific Research Value of Searching for Biominerals on Mars
4.4. Technical Advantages and Method Improvements of MLIF
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hahn, D.W.; Nicoló, O. Laser-induced breakdown spectroscopy (LIBS), part II: Review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 2012, 66, 347–419. [Google Scholar] [CrossRef]
- Lozano, R.; Bernal, J.P. Characterization of a new set of eight geochemical reference materials for XRF major and trace element analysis. Rev. Mex. Cienc. Geol. 2005, 22, 329–344. [Google Scholar]
- Filho, H.J.; Salazar, R.F.; Capri, M.D.; Neto, Â.C.; Alcântara, M.A.; Peixoto, A.L. State-of-the-Art and Trends in Atomic Absorption Spectrometry; IntechOpen: London, UK, 2012. [Google Scholar]
- Wagner, E.P.; Smith, B.W.; Winefordner, J.D. Ultratrace Determination of Lead in Whole Blood Using Electrothermal Atomization Laser-Excited Atomic Fluorescence Spectrometry. Anal. Chem. 1996, 68, 3199–3203. [Google Scholar] [CrossRef]
- Krachler, M.; Carbol, P. Validation of isotopic analysis of depleted, natural and enriched uranium using high resolution ICP-OES. J. Anal. At. Spectrom. 2011, 26, 293–299. [Google Scholar] [CrossRef]
- Heitland, P.; Köster, H.D. Biomonitoring of 37 trace elements in blood samples from inhabitants of northern Germany by ICP–MS. J. Trace Elem. Med. Biol. 2006, 20, 253–262. [Google Scholar] [CrossRef]
- Wiens, R.C.; Maurice, S.; Barraclough, B.; Saccoccio, M.; Barkley, W.C.; Bell, J.F., III; Bender, S.; Bernardin, J.; Blaney, D.; Blank, J.; et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests. Space Sci. Rev. 2012, 170, 167–227. [Google Scholar] [CrossRef]
- Maurice, S.; Wiens, R.C.; Bernardi, P.; Caïs, P.; Robinson, S.; Nelson, T.; Gasnault, O.; Reess, J.-M.; Deleuze, M.; Rull, F.; et al. The SuperCam Instrument Suite on the Mars 2020 Rover: Science Objectives and Mast-Unit Description. Space Sci. Rev. 2021, 217, 47. [Google Scholar] [CrossRef]
- Xu, W.; Liu, X.; Yan, Z.; Li, L.; Zhang, Z.; Kuang, Y.; Jiang, H.; Yu, H.; Yang, F.; Liu, C.; et al. The MarSCoDe Instrument Suite on the Mars Rover of China’s Tianwen-1 Mission. Space Sci. Rev. 2021, 217, 64. [Google Scholar] [CrossRef]
- Nancy, J.M.; Carlos, M.; Warren, H.C. Correlation of limestone beds using laser-induced breakdown spectroscopy and chemometric analysis. Appl. Opt. 2012, 51, B213–B222. [Google Scholar]
- Maurice, S.; Clegg, S.M.; Wiens, R.C.; Gasnault, O.; Rapin, W.; Forni, O.; Cousin, A.; Sautter, V.; Mangold, N.; Le Deit, L.; et al. ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. J. Anal. At. Spectrom. 2016, 31, 863–889. [Google Scholar] [CrossRef]
- Harmon, R.S.; Hark, R.R.; Throckmorton, C.S.; Rankey, E.C.; Wise, M.A.; Somers, A.M.; Collins, L.M. Geochemical Fingerprinting by Handheld Laser-Induced Breakdown Spectroscopy. Geostand. Geoanalytical Res. 2017, 41, 563–584. [Google Scholar] [CrossRef]
- Chen, T.; Sun, L.X.; Yu, H.B.; Wang, W.; Qi, L.; Zhang, P.; Zeng, P. Deep learning with laser-induced breakdown spectroscopy (LIBS) for the classification of rocks based on elemental imaging. Appl. Geochem. 2022, 136, 105135. [Google Scholar] [CrossRef]
- Gaft, M.; Nagli, L.; Gornushkin, I.; Raichlin, Y. Review on recent advances in analytical applications of molecular emission and modelling. Spectrochim. Acta Part B At. Spectrosc. 2020, 173, 105989. [Google Scholar] [CrossRef]
- Nagli, L.; Gaft, M.; Raichlin, Y. Halogen detection with molecular laser induced fluorescence. Spectrochim. Acta Part B At. Spectrosc. 2020, 166, 105813. [Google Scholar] [CrossRef]
- Nagli, L.; Gaft, M.; Raichlin, Y. LIBS-MLIBS-MLIF methods: Beryllium determination. Spectrochim. Acta Part B At. Spectrosc. 2023, 202, 106631. [Google Scholar] [CrossRef]
- Nagli, L.; Gaft, M. Combining Laser-Induced Breakdown Spectroscopy with Molecular Laser-Induced Fluorescence. Appl. Spectrosc. 2016, 70, 585–592. [Google Scholar] [CrossRef]
- Ning, X.R.; Selesnick, I.W.; Duval, L. Chromatogram baseline estimation and denoising using sparsity (BEADS). Chemom. Intell. Lab. Syst. 2014, 139, 156–167. [Google Scholar] [CrossRef]
- Wang, H.P.; Fang, P.P.; Yan, X.R.; Zhou, Y.; Cheng, Y.; Yao, L.; Jia, J.; He, J.; Wan, X. Study on the Raman spectral characteristics of dynamic and static blood and its application in species identification. J. Photochem. Photobiol. B Biol. 2022, 232, 112478. [Google Scholar] [CrossRef]
- Dzemyda, G.; Sabaliauskas, M. Geometric multidimensional scaling: A new approach for data dimensionality reduction. Appl. Math. Comput. 2021, 409, 125561. [Google Scholar] [CrossRef]
- Specht, D.F. A general regression neural network. IEEE Trans. Neural Netw. 1991, 2, 568–576. [Google Scholar] [CrossRef] [PubMed]
- Rosipal, R.; Krämer, N. Overview and Recent Advances in Partial Least Squares. In Subspace, Latent Structure and Feature Selection; Saunders, C., Grobelnik, M., Gunn, S., Shawe-Taylor, J., Eds.; SLSFS 2005. Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3940. [Google Scholar] [CrossRef]
- Llamas, C.A.; Pisonero, J.; Bordel, N. Quantification of fluorine traces in solid samples using CaF molecular emission bands in atmospheric air Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2016, 123, 157–162. [Google Scholar] [CrossRef]
- Lei, W.Q.; Ma, Q.L.; Ros, V.M.; Bai, X.; Zheng, L.; Zeng, H.; Yu, J. Effect of ablation photon energy on the distribution of molecular species in laser-induced plasma from polymer in air. Spectrochim. Acta Part B At. Spectrosc. 2012, 73, 7–12. [Google Scholar] [CrossRef]
- Forni, O.; Gaft, M.; Toplis, M.J.; Clegg, S.M.; Maurice, S.; Wiens, R.C.; Mangold, N.; Gasnault, O.; Sautter, V.; Le Mouélic, S.; et al. First detection of fluorine on Mars: Implications for Gale Crater’s geochemistry. Geophys. Res. Lett. 2015, 42, 1020–1028. [Google Scholar] [CrossRef]
No. | Sample Name | Reference ID | SiO2 | Al2O3 | TFe2O3 | TiO2 | CaO | MgO | K2O | Na2O |
---|---|---|---|---|---|---|---|---|---|---|
1 | Granite | GBW07103 | 72.83 | 13.4 | 2.14 | 0 | 1.55 | 0.42 | 5.01 | 3.13 |
2 | Andesite | GBW07104 | 60.62 | 16.17 | 4.9 | 0 | 5.2 | 1.72 | 1.89 | 3.86 |
3 | Basalt | GBW07105 | 44.64 | 13.83 | 13.4 | 2.37 | 8.81 | 7.77 | 2.32 | 3.38 |
4 | Quartz Sandstone | GBW07106 | 90.36 | 3.52 | 3.22 | 0.264 | 0.3 | 0.082 | 0.65 | 0.061 |
5 | Argillaceous Limestone | GBW07108 | 15.6 | 5.03 | 2.52 | 0.327 | 35.67 | 5.19 | 0.78 | −0.081 |
6 | Granitic Gneiss | GBW07121 | 66.3 | 16.3 | 3.12 | 0.297 | 2.66 | 1.63 | 2.6 | 5.3 |
7 | Clay | GBW03101a | 49.98 | 26.27 | 10.55 | 0.7 | 0.13 | 0.46 | 0.79 | 0.06 |
8 | Siliceous Sandstone | GBW03112a | 98.51 | 0.84 | 0.093 | 0.02 | 0.077 | 0.066 | 0.061 | 0.021 |
9 | Shale | GBW03104a | 69.63 | 14.82 | 5.67 | 0.68 | 0.22 | 0.67 | 3.76 | 0.2 |
10 | Plastic Clay | GBW03115 | 55.9 | 28.57 | 0.86 | 1.21 | 0.7 | 0.3 | 1.54 | 1.74 |
11 | Kaolin | GBW03121a | 43.41 | 34.77 | 1.5 | 0.25 | 0.038 | 0.069 | 0.78 | 0.045 |
12 | Pegmatite | GBW07125 | 76.4 | 13.19 | 0.24 | 0.61 | 0.0 | 0.13 | 6.22 | 1.6 |
13 | Dolomite | GBW07217a | 0.021 | 0.017 | 0.224 | 0.0 | 32.11 | 20.37 | 0.0011 | 0.023 |
14 | Wollastonite | GBW03123 | 50.5 | 0.39 | 0.1 | 0.022 | 40.39 | 0.95 | 0.14 | 0.052 |
15 | Limestone | GBW03107a | 4.05 | 0.94 | 0.58 | 0.052 | 50.09 | 1.79 | 0.42 | 0.027 |
16 | Iron Ore | GSBD31004a | 9.79 | 2.46 | 71.23 | 0.15 | 4.28 | 2.3 | 0.32 | 0.144 |
17 | Amphibole Two Pyroxene Plagioclase Granulite | GBW07726 | 58.47 | 17.14 | 6.85 | 0.668 | 5.9 | 3.26 | 1.51 | 4.77 |
18 | Carbonate Rock | GBW07127 | 0.55 | 0.17 | 0.193 | 0.011 | 47.89 | 6.76 | 0.043 | 0.022 |
No. | CaCO3 | MgCO3 | Fe2(CO3)3 | P2O5 | B2O3 | SiO2 |
---|---|---|---|---|---|---|
1 | 0.45 | 0.34 | 0.15 | 0.03 | 0.02 | 0.01 |
2 | 0.46 | 0.30 | 0.14 | 0.04 | 0.03 | 0.03 |
3 | 0.47 | 0.28 | 0.11 | 0.05 | 0.04 | 0.05 |
4 | 0.48 | 0.26 | 0.08 | 0.06 | 0.05 | 0.07 |
5 | 0.49 | 0.24 | 0.05 | 0.07 | 0.06 | 0.09 |
6 | 0.50 | 0.22 | 0.03 | 0.08 | 0.07 | 0.10 |
7 | 0.51 | 0.20 | 0.01 | 0.09 | 0.07 | 0.12 |
8 | 0.50 | 0.18 | 0.00 | 0.10 | 0.08 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Xin, Y.; Fang, P.; Jia, J.; Zhang, L.; Liu, S.; Wan, X. LIBS-MLIF Method: Stromatolite Phosphorite Determination. Chemosensors 2023, 11, 301. https://doi.org/10.3390/chemosensors11050301
Wang H, Xin Y, Fang P, Jia J, Zhang L, Liu S, Wan X. LIBS-MLIF Method: Stromatolite Phosphorite Determination. Chemosensors. 2023; 11(5):301. https://doi.org/10.3390/chemosensors11050301
Chicago/Turabian StyleWang, Hongpeng, Yingjian Xin, Peipei Fang, Jianjun Jia, Liang Zhang, Sicong Liu, and Xiong Wan. 2023. "LIBS-MLIF Method: Stromatolite Phosphorite Determination" Chemosensors 11, no. 5: 301. https://doi.org/10.3390/chemosensors11050301
APA StyleWang, H., Xin, Y., Fang, P., Jia, J., Zhang, L., Liu, S., & Wan, X. (2023). LIBS-MLIF Method: Stromatolite Phosphorite Determination. Chemosensors, 11(5), 301. https://doi.org/10.3390/chemosensors11050301