Highly Selective Arsenite Sensor Based on Gold Nanoparticles and Ionic Liquids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Colorimetric Assays
2.2. Optimization of ILs’ Concentrations
2.3. Determination of the Detection Limit for As(III)
2.4. Selectivity towards As(III) and Other Ions
2.5. Interference Study in the Presence of BMP (One of the ILs)
3. Results and Discussion
3.1. Synthesis and Characterization of AuNPs
3.2. Sensing Principle
3.3. Optimizing Concentrations of ILs
3.4. Interactions between AuNPs, As(III), and ILs
3.5. Selectivity
3.6. Repeatability
3.7. Calibration and Sensitivity
3.8. Interference
3.9. Measuring Real Water Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zong, C.H.; Zhang, Z.J.; Liu, B.W.; Liu, J.W. Adsorption of Arsenite on Gold Nanoparticles Studied with DNA Oligonu-cleotide Probes. Langmuir 2019, 35, 7304–7311. [Google Scholar] [CrossRef] [PubMed]
- Al-Rekabi, S.H.; Kamil, Y.M.; Abu Bakar, M.H.; Fen, Y.W.; Lim, H.N.; Kanagesan, S.; Mahdi, M.A. Hydrous ferric oxide-magnetite-reduced graphene oxide nanocomposite for optical detection of arsenic using surface plasmon resonance. Opt. Laser Technol. 2019, 111, 417–423. [Google Scholar] [CrossRef]
- Muppidathi, M.; Perumal, P.; Ayyanu, R.; Subramanian, S. Immobilization of ssDNA on a metal-organic framework derived magnetic porous carbon (MPC) composite as a fluorescent sensing platform for the detection of arsenate ions. Analyst 2019, 144, 3111–3118. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Wildgoose, G.G.; Compton, R.G. Sensitive electrochemical detection of arsenic (III) using gold nanoparticle modified carbon nanotubes via anodic stripping voltammetry. Anal. Chim. Acta 2008, 620, 44–49. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hussain, M.M.; Arshad, M.N.; Awual, M.R.; Asiri, A.M. Arsenic sensor development based on modification with (E)-N-(2-nitrobenzylidine)-benzenesulfonohydrazide: A real sample analysis. New J. Chem. 2019, 43, 9066–9075. [Google Scholar] [CrossRef]
- Forzani, E.S.; Foley, K.; Westerhoff, P.; Tao, N.J. Detection of arsenic in groundwater using a surface plasmon resonance sensor. Sens. Actuators B-Chem. 2007, 123, 82–88. [Google Scholar] [CrossRef]
- Dominguez-Gonzalez, R.; Varela, L.G.; Bermejo-Barrera, P. Functionalized gold nanoparticles for the detection of arsenic in water. Talanta 2014, 118, 262–269. [Google Scholar] [CrossRef]
- Wu, Y.G.; Zhan, S.S.; Wang, F.Z.; He, L.; Zhi, W.T.; Zhou, P. Cationic polymers and aptamers mediated aggregation of gold nanoparticles for the colorimetric detection of arsenic (III) in aqueous solution. Chem. Commun. 2012, 48, 4459–4461. [Google Scholar] [CrossRef]
- Wu, Y.G.; Liu, L.; Zhan, S.S.; Wang, F.Z.; Zhou, P. Ultrasensitive aptamer biosensor for arsenic (III) detection in aqueous solution based on surfactant-induced aggregation of gold nanoparticles. Analyst 2012, 137, 4171–4178. [Google Scholar] [CrossRef]
- Matsunaga, K.; Okuyama, Y.; Hirano, R.; Okabe, S.; Takahashi, M.; Satoh, H. Development of a simple analytical method to determine arsenite using a DNA aptamer and gold nanoparticles. Chemosphere 2019, 224, 538–543. [Google Scholar] [CrossRef]
- Wu, Y.G.; Zhan, S.S.; Xing, H.B.; He, L.; Xu, L.R.; Zhou, P. Nanoparticles assembled by aptamers and crystal violet for arsenic (III) detection in aqueous solution based on a resonance Rayleigh scattering spectral assay. Nanoscale 2012, 4, 6841–6849. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Wu, J.; Ju, H.X. Label-free signal-on aptasensor for sensitive electrochemical detection of arsenite. Biosens. Bioelectron. 2016, 79, 861–865. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.Q.; Liu, J.F.; Yin, Y.G.; Shi, Q.T.; Jing, C.Y.; Jiang, G.B. Colorimetric Au Nanoparticle Probe for Speciation Test of Arsenite and Arsenate Inspired by Selective Interaction between Phosphonium Ionic Liquid and Arsenite. ACS Appl. Mater. Interfaces 2014, 6, 19833–19839. [Google Scholar] [CrossRef] [PubMed]
- Krishna, T.G.A.; Tekuri, V.; Mohan, M.; Trivedi, D.R. Selective colorimetric chemosensor for the detection of Hg2+ and arsenite ions using Isatin based Schiff’s bases; DFT Studies and Applications in test strips. Sens. Actuators B-Chem. 2019, 284, 271–280. [Google Scholar] [CrossRef]
- Treto-Suarez, M.A.; Tapia, J.; Hidalgo-Rosa, Y.; Paez-Hernandez, D.; Molins, E.; Zarate, X.; Schott, E. New Sensitive and Selective Chemical Sensors for Ni2+ and Cu2+ Ions: Insights into the Sensing Mechanism through DFT Methods. J. Phys. Chem. A 2020, 124, 6493–6503. [Google Scholar] [CrossRef]
- Zehra, S.; Khan, R.A.; Alsalme, A.; Tabassum, S. Coumarin Derived “Turn on” Fluorescent Sensor for Selective Detection of Cadmium (II) Ion: Spectroscopic Studies and Validation of Sensing Mechanism by DFT Calculations. J. Fluoresc. 2019, 29, 1029–1037. [Google Scholar] [CrossRef]
- Sánchez, J. Cationic polyelectrolytes. Synthesis, characterization and application in analysis and removal of arsenic. Ph.D. Thesis, Université de Grenoble, Grenoble, France, 2010. [Google Scholar]
- Bac, L.H.; Kim, J.S.; Kim, J.C. Size, Optical and Stability Properties of Gold Nanoparticles Synthesized by Electrical Explosion of Wire in Different Aqueous Media. Rev. Adv. Mater. Sci. 2011, 28, 117–121. [Google Scholar]
- Szunerits, S.; Spadavecchia, J.; Boukherroub, R. Surface plasmon resonance: Signal amplification using colloidal gold nanoparticles for enhanced sensitivity. Rev. Anal. Chem. 2014, 33, 153–164. [Google Scholar] [CrossRef]
- Wang, W.J.; Ding, X.F.; Xu, Q.; Wang, J.; Wang, L.; Lou, X.H. Zeta-potential data reliability of gold nanoparticle bio-molecular conjugates and its application in sensitive quantification of surface absorbed protein. Colloids Surf. B-Biointerfaces 2016, 148, 541–548. [Google Scholar] [CrossRef]
- Tseng, K.H.; Hsieh, C.L.; Huang, J.C.; Tien, D.C. The Effect of NaCl/pH on Colloidal Nanogold Produced by Pulsed Spark Discharge. J. Nanomater. 2015, 2015, 5. [Google Scholar] [CrossRef]
- Kalluri, J.R.; Arbneshi, T.; Khan, S.A.; Neely, A.; Candice, P.; Varisli, B.; Washington, M.; McAfee, S.; Robinson, B.; Banerjee, S.; et al. Use of Gold Nanoparticles in a Simple Colorimetric and Ultrasensitive Dynamic Light Scattering Assay: Selective Detection of Arsenic in Groundwater. Angew. Chem.-Int. Edit. 2009, 48, 9668–9671. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.W.; Liu, J.W. DNA adsorption by magnetic iron oxide nanoparticles and its application for arsenate detection. Chem. Commun. 2014, 50, 8568–8570. [Google Scholar] [CrossRef] [PubMed]
- Lopez, A.; Zhang, Y.F.; Liu, J.W. Tuning DNA adsorption affinity and density on metal oxide and phosphate for improved arsenate detection. J. Colloid Interface Sci. 2017, 493, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Mulvihill, M.; Tao, A.; Benjauthrit, K.; Arnold, J.; Yang, P. Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water. Angew. Chem.-Int. Edit. 2008, 47, 6456–6460. [Google Scholar] [CrossRef]
- Liu, Z.P.; Li, G.D.; Xia, T.T.; Su, X.G. Ultrasensitive fluorescent nanosensor for arsenate assay and removal using oligonucleotide-functionalized CuInS2 quantum dot@magnetic Fe3O4 nanoparticles composite. Sens. Actuators B-Chem. 2015, 220, 1205–1211. [Google Scholar] [CrossRef]
- Liu, F.; De Cristofaro, A.; Violante, A. Effect of pH, phosphate and oxalate on the adsorption/desorption of arsenate on/from goethite. Soil Sci. 2001, 166, 197–208. [Google Scholar] [CrossRef]
- Zhang, C.; Kong, C.; Liu, Q.; Chen, Z. Ultrasensitive colorimetric detection of Hg2+ ions based on enhanced catalytic performance of gold amalgam dispersed in channels of rose petals. Analyst 2019, 144, 1205–1209. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A Study of the Nucleation and Growth Processes in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Andalibi, M.R.; Wokaun, A.; Bowen, P.; Testino, A. Kinetics and Mechanism of Metal Nanoparticle Growth via Optical Extinction Spectroscopy and Computational Modeling: The Curious Case of Colloidal Gold. ACS Nano 2019, 13, 11510–11521. [Google Scholar] [CrossRef]
- Ji, X.H.; Song, X.N.; Li, J.; Bai, Y.B.; Yang, W.S.; Peng, X.G. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc. 2007, 129, 13939–13948. [Google Scholar] [CrossRef]
- Zhao, L.L.; Jiang, D.; Cai, Y.; Ji, X.H.; Xie, R.U.; Yang, W.S. Tuning the size of gold nanoparticles in the citrate reduction by chloride ions. Nanoscale 2012, 4, 5071–5076. [Google Scholar] [CrossRef]
- Haiss, W.; Thanh, N.T.K.; Aveyard, J.; Fernig, D.G. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef]
Sensor No. | Description | Composition, Sequence, and Reaction Time |
---|---|---|
1 | sCPMI | AuNPs+MOPS+As(III) *, 10 min, + CPMI, 10 min |
2 | sCPP | AuNPs+MOPS+As(III) *, 10 min, + CPP, 10 min |
3 | sTDDBA | AuNPs+MOPS+As(III) *, 10 min, + TDDBA, 10 min |
4 | sCP | AuNPs+MOPS+As(III) *, 10 min, + CP, 10 min |
5 | sBMP | AuNPs+MOPS+As(III) *, 10 min, + BMP, 10 min |
6 | sTBMP | AuNPs+MOPS+As(III) *, 10 min, + TBMP, 10 min |
[IL] (mM) | ||||||
---|---|---|---|---|---|---|
BMP | CP | CPMI | CPP | TBMP | TDDBA | |
Min. threshold conc. required for AuNP aggregation | 8 | 0.75 × 10−3 | 0.4 | 6 | 1.5 | 1.5 × 10−3 |
Working conc. | 10 | 1.25 × 10−3 | 0.5 | 10 | 2.5 | 2.25 × 10−3 |
VAuNP (μL) | VMOPS (μL) | V200 ppb As (μL) | V50 ppm As (μL) | [As] (ppb) | V0.02 M BMP (μL) | [BMP] (mM) | Extinction | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Replicate 1 | Replicate 2 | Replicate 3 | RSD (%) | |||||||||||||||
E517 nm | E650 nm | E650/E517 | E517 nm | E650 nm | E650/E517 | E517 nm | E650 nm | E650/E517 | E517 nm | E650 nm | E650/E517 | |||||||
200 | 400 | 0 | 0 | 0 | 0 | 10 | 0.222 | 0.296 | 1.33 | 0.23 | 0.31 | 1.35 | 0.217 | 0.287 | 1.32 | 2.75 | 3.61 | 0.95 |
200 | 400 | 15 | 0 | 5 | 150 | 10 | 0.214 | 0.294 | 1.37 | 0.221 | 0.304 | 1.38 | 0.217 | 0.29 | 1.34 | 1.32 | 2.22 | 1.62 |
200 | 400 | 30 | 0 | 10 | 300 | 10 | 0.22 | 0.293 | 1.33 | 0.219 | 0.308 | 1.41 | 0.217 | 0.29 | 1.34 | 0.69 | 2.87 | 3.08 |
200 | 400 | 60 | 0 | 20 | 600 | 10 | 0.226 | 0.298 | 1.32 | 0.226 | 0.296 | 1.31 | 0.219 | 0.289 | 1.32 | 1.81 | 1.59 | 0.41 |
200 | 400 | 90 | 0 | 30 | 900 | 10 | 0.225 | 0.287 | 1.28 | 0.23 | 0.284 | 1.23 | 0.22 | 0.282 | 1.28 | 2.13 | 0.83 | 2.02 |
200 | 400 | 0 | 0.48 | 40 | 1200 | 10 | 0.238 | 0.187 | 0.79 | 0.237 | 0.186 | 0.78 | 0.225 | 0.182 | 0.81 | 3.1 | 1.42 | 1.72 |
200 | 400 | 0 | 0.6 | 50 | 1500 | 10 | 0.251 | 0.14 | 0.56 | 0.248 | 0.137 | 0.55 | 0.242 | 0.141 | 0.58 | 1.82 | 1.36 | 2.86 |
200 | 400 | 0 | 0.72 | 60 | 1800 | 10 | 0.252 | 0.127 | 0.5 | 0.257 | 0.125 | 0.49 | 0.262 | 0.126 | 0.48 | 1.86 | 0.65 | 2.46 |
200 | 400 | 0 | 0.84 | 70 | 2100 | 10 | 0.263 | 0.123 | 0.47 | 0.258 | 0.124 | 0.48 | 0.266 | 0.119 | 0.45 | 1.44 | 2.15 | 3.6 |
200 | 400 | 0 | 0.96 | 80 | 2400 | 10 | 0.27 | 0.092 | 0.34 | 0.263 | 0.09 | 0.34 | 0.273 | 0.088 | 0.32 | 1.76 | 2.13 | 3.3 |
200 | 400 | 0 | 1.08 | 90 | 2700 | 10 | 0.274 | 0.064 | 0.23 | 0.266 | 0.065 | 0.24 | 0.286 | 0.067 | 0.23 | 3.56 | 2.3 | 2.54 |
200 | 400 | 0 | 1.2 | 100 | 3000 | 10 | 0.286 | 0.057 | 0.2 | 0.282 | 0.053 | 0.19 | 0.278 | 0.054 | 0.19 | 1.36 | 3.19 | 2.94 |
Sensor Material | Approach | LOD (ppb) | Ref. |
---|---|---|---|
AgNPs | Surface-enhanced Raman scattering (SERS) | 1 | [22] |
DNA-functionalized Fe3O4 NPs | Fluorescence | 22.5 | [23] |
CeO2 | Fluorescence | 2.2 | [24] |
Functional polymer | Fluorescence | 74.9 | [25] |
Magnetic porous carbon composite | Fluorescence | 0.05 | [3] |
Ruthenium bipyridine-graphene oxide | Electrochemical | 3.2 | [26] |
Functionalized AuNPs | Colorimetric | 2.5 | [27] |
AuNPs | Colorimetric | 1 | [7] |
IL-assisted AuNPs | Colorimetric | 0.18 | This work |
Samples | [Arsenic] (ppb) | |
---|---|---|
ICP-OES # | Colorimetric (This Work) * | |
Tap water | 0 | 0 |
Tap + 100 ppb As(III) | 99.7 | 107.9 |
Rainwater | 1.3 | 0 |
Rain + 100 ppb As(III) | 84.6 | 105.2 |
Lake water | 27.3 | 10.8 |
Lake + 100 ppb As(III) | 98.5 | 112.5 |
MetalProg Factory Effluent | 28.5 | 14.5 |
Effluent + 100 ppb As(III) | 90.2 | 108.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.H.; Wong, M.J.; Li, S.F.Y. Highly Selective Arsenite Sensor Based on Gold Nanoparticles and Ionic Liquids. Chemosensors 2023, 11, 302. https://doi.org/10.3390/chemosensors11050302
Lin XH, Wong MJ, Li SFY. Highly Selective Arsenite Sensor Based on Gold Nanoparticles and Ionic Liquids. Chemosensors. 2023; 11(5):302. https://doi.org/10.3390/chemosensors11050302
Chicago/Turabian StyleLin, Xuan Hao, Mann Joe Wong, and Sam Fong Yau Li. 2023. "Highly Selective Arsenite Sensor Based on Gold Nanoparticles and Ionic Liquids" Chemosensors 11, no. 5: 302. https://doi.org/10.3390/chemosensors11050302
APA StyleLin, X. H., Wong, M. J., & Li, S. F. Y. (2023). Highly Selective Arsenite Sensor Based on Gold Nanoparticles and Ionic Liquids. Chemosensors, 11(5), 302. https://doi.org/10.3390/chemosensors11050302