Fuzzy Inner Product Space: Literature Review and a New Approach
Abstract
:1. Introduction
2. Preliminaries
- (N1)
- ;
- (N2)
- iff ;
- (N3)
- ;
- (N4)
- ;
- (N5)
- is left continuous and .
- (FIP1)
- For ;
- (FIP2)
- For ;
- (FIP3)
- For ;
- (FIP4)
- ;
- (FIP5)
- ;
- (FIP6)
- iff ;
- (FIP7)
- is a monotonic non-decreasing function of and .
- (FIP1)
- ;
- (FIP2)
- ;
- (FIP3)
- iff , where ;
- (FIP4)
- For any real number ;
- (FIP5)
- ;
- (FIP6)
- is continuous on ;
- (FIP7)
- .
- (FI-1)
- and ;
- (FI-2)
- for same iff ;
- (FI-3)
- ;
- (FI-4)
- For any real number ;
- (FI-5)
- ;
- (FI-6)
- is continuous on ;
- (FI-7)
- .
- (FI-1)
- ;
- (FI-2)
- ;
- (FI-3)
- ;
- (FI-4)
- ;
- (FI-5)
- ;
- (FI-6)
- .
- (1)
- x is convex, that is, for ;
- (2)
- x is normal, that is, ;
- (3)
- x is upper semicontinuous, that is, s.t.
- ;
- ;
- ;
- .
- (IP1)
- ;
- (IP2)
- , where ;
- (IP3)
- ;
- (IP4)
- ;
- (IP5)
- ;
- (IP6)
- .
- (FI1)
- ;
- (FI2)
- ;
- (FI3)
- ;
- (FI4)
- ;
- (FI5)
- ;
- (FI6)
- .
- (FIP1)
- ;
- (FIP2)
- ;
- (FIP3)
- ;
- (FIP4)
- ;
- (FIP5)
- .
3. A New Approach for Fuzzy Inner Product Space
- (FIP1)
- ;
- (FIP2)
- if and only if ;
- (FIP3)
- ;
- (FIP4)
- ;
- (FIP5)
- ;
- (FIP6)
- is left continuous and ;
- (FIP7)
- .
- (FIP1)
- is is obvious from definition of P.
- (FIP2)
- .
- (FIP3)
- is obvious for .If than
- (FIP4)
- is obvious for .If , then and
- (FIP5)
- .If at least one of v and w is from , then the result is obvious.If let us assume without loss of generality that . Then
- (FIP6)
- is left continuous function and .is left continuous in follows from definition.
- (FIP7)
- . If at least one of s and t is from , then the result is obvious.If let us assume without loss of generality that ThenThus by Cauchy–Schwartz inequality we obtain
- (N1)
- from (FIP1);
- (N2)
- from (FIP2);
- (N3)
- , ;
- (N4)
- .If or the previous inequality is obvious. We asume that .
- (N5)
- From (FIP6) it result that is left continuous and .
4. Conclusions and Future Works
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Katsaras, A.K. Fuzzy topological vector spaces I. Fuzzy Sets Syst. 1981, 6, 85–95. [Google Scholar] [CrossRef]
- Katsaras, A.K. Fuzzy topological vector spaces II. Fuzzy Sets Syst. 1984, 12, 143–154. [Google Scholar] [CrossRef]
- Felbin, C. Finite dimensional fuzzy normed linear space. Fuzzy Sets Syst. 1992, 48, 239–248. [Google Scholar] [CrossRef]
- Bag, T.; Samanta, S.K. Finite dimensional fuzzy normed linear spaces. J. Fuzzy Math. 2003, 11, 687–705. [Google Scholar]
- Saadati, R.; Vaezpour, S.M. Some results on fuzzy Banach spaces. J. Appl. Math. Comput. 2005, 17, 475–484. [Google Scholar] [CrossRef]
- Alegre, C.; Romaguera, S.T. Characterizations of fuzzy metrizable topological vector spaces and their asymmetric generalization in terms of fuzzy (quasi-) norms. Fuzzy Sets Syst. 2010, 161, 2181–2192. [Google Scholar] [CrossRef]
- Ameri, R. Fuzzy inner product and fuzzy norm of hyperspaces. Iran. J. Fuzzy Syst. 2014, 11, 125–135. [Google Scholar]
- Goleţ, I. On generalized fuzzy normed spaces and coincidence point theorems. Fuzzy Sets Syst. 2010, 161, 1138–1144. [Google Scholar] [CrossRef]
- Mirmostafaee, A.K. Perturbation of generalized derivations in fuzzy Menger normed algebras. Fuzzy Sets Syst. 2012, 195, 109–117. [Google Scholar] [CrossRef]
- Nădăban, S.; Dzitac, I. Atomic decompositions of fuzzy normed linear spaces for wavelet applications. Inform. Vilnius 2014, 25, 643–662. [Google Scholar] [CrossRef] [Green Version]
- Biswas, R. Fuzzy inner product spaces and fuzzy norm functions. Inf. Sci. 1991, 53, 185–190. [Google Scholar] [CrossRef]
- Kohli, J.K.; Kumar, R. On fuzzy inner product spaces and fuzzy co-inner product spaces. Fuzzy Sets Syst. 1993, 53, 227–232. [Google Scholar] [CrossRef]
- Cho, E.-I.; Kim, Y.-K.; Shin, C.-S. Fuzzy semi-inner product space. J. Korea Soc. Math. Educ. Ser. B Pure Appl. Math. 1995, 2, 163–171. [Google Scholar]
- Majumdar, P.; Samanta, S.K. On fuzzy inner product spaces. J. Fuzzy Math. 2008, 16, 377–392. [Google Scholar]
- Goudarzi, M.; Vaezpour, S.M.; Saadati, R. On the intuitionistic fuzzy inner product spaces. Chaos Solitons Fractals 2009, 41, 1105–1112. [Google Scholar] [CrossRef]
- Goudarzi, M.; Vaezpour, M.S. On the definition of fuzzy Hilbert spaces and its application. J. Nonlinear Sci. Appl. 2009, 2, 46–59. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Bag, T. Fuzzy real inner product spaces. Ann. Fuzzy Math. Inform. 2013, 6, 377–389. [Google Scholar]
- Hasankhani, A.; Nazari, A.; Saheli, M. Some properties of fuzzy Hilbert spaces and norm of operators. Iran. J. Fuzzy Syst. 2010, 7, 129–157. [Google Scholar]
- Al-Mayahi, N.F.; Radhi, I.H. On fuzzy co-pre-Hilbert spaces. J. Kufa Math. Comput. 2013, 1, 1–6. [Google Scholar]
- Das, S.; Samanta, S.K. Operators on soft inner product spaces. Fuzzy Inf. Eng. 2014, 6, 435–450. [Google Scholar] [CrossRef] [Green Version]
- Dey, A.; Pal, M. Properties of fuzzy inner product spaces. Int. J. Fuzzy Log. Syst. 2014, 4, 23–39. [Google Scholar] [CrossRef]
- Gebray, G.; Reddy, B.K. Fuzzy metric on fuzzy linear spaces. Int. J. Sci. Res. 2014, 3, 2286–2288. [Google Scholar]
- Mukherjee, S.; Bag, T. Some fixed point results in fuzzy inner product spaces. Int. J. Math. Sci. Comput. 2015, 5, 44–48. [Google Scholar]
- Saheli, M. A comparative study of fuzzy inner product spaces. Iran. J. Fuzzy Syst. 2015, 12, 75–93. [Google Scholar]
- Saheli, M.; Khajepour Gelousalar, S. Fuzzy inner product spaces. Fuzzy Sets Syst. 2016, 303, 149–162. [Google Scholar] [CrossRef]
- Solimani, Z.; Daraby, B. A note on fuzzy inner product spaces. In Proceedings of the Extended Abstracts of the 4th Seminar on Functional Analysis and Its Applications, Ferdowsi University of Mashhad, Mashhad, Iran, 2–3 March 2016. [Google Scholar]
- Mostofian, E.; Azhini, M.; Bodaghi, A. Fuzzy inner product spaces and fuzzy ortogonality. Tbilisi Math. J. 2017, 10, 157–171. [Google Scholar] [CrossRef]
- Dzitac, I. The fuzzification of classical structures: A general view. Int. J. Comput. Commun. Control. 2015, 10, 772–788. [Google Scholar] [CrossRef] [Green Version]
- Mizumoto, M.; Tanaka, J. Some properties of fuzzy numbers. In Advances in Fuzzy Set Theory and Applications; Gupta, M.M., Ragade, R.K., Yager, R.R., Eds.; Publishing House: New York, NY, USA; North-Holland, The Netherlands, 1979; pp. 153–164. [Google Scholar]
- Bag, T.; Samanta, S.K. Fuzzy bounded linear operators. Fuzzy Sets Syst. 2005, 151, 513–547. [Google Scholar] [CrossRef]
- Bag, T.; Samanta, S.K. Fuzzy bounded linear operators in Felbin’s type fuzzy normed linear spaces. Fuzzy Sets Syst. 2008, 159, 685–707. [Google Scholar] [CrossRef]
- Bînzar, T.; Pater, F.; Nădăban, S. A Study of Boundedness in Fuzzy Normed Linear Spaces. Symmetry 2019, 11, 923. [Google Scholar] [CrossRef] [Green Version]
- Bînzar, T.; Pater, F.; Nădăban, S. Fuzzy bounded operators with application to Radon transform. Chaos Solitons Fractals 2020, 141, 110359. [Google Scholar] [CrossRef]
- Kim, J.M.; Lee, K.Y. Approximation Properties in Felbin Fuzzy Normed Spaces. Mathematics 2019, 7, 1003. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popa, L.; Sida, L. Fuzzy Inner Product Space: Literature Review and a New Approach. Mathematics 2021, 9, 765. https://doi.org/10.3390/math9070765
Popa L, Sida L. Fuzzy Inner Product Space: Literature Review and a New Approach. Mathematics. 2021; 9(7):765. https://doi.org/10.3390/math9070765
Chicago/Turabian StylePopa, Lorena, and Lavinia Sida. 2021. "Fuzzy Inner Product Space: Literature Review and a New Approach" Mathematics 9, no. 7: 765. https://doi.org/10.3390/math9070765
APA StylePopa, L., & Sida, L. (2021). Fuzzy Inner Product Space: Literature Review and a New Approach. Mathematics, 9(7), 765. https://doi.org/10.3390/math9070765