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Abstract: In this paper, approximation properties in Felbin fuzzy normed spaces are considered.
These approximation properties are new concepts in Felbin fuzzy normed spaces. Definitions and
examples of such properties are given and we make a comparative study among approximation
properties in Bag and Samanta fuzzy normed spaces and Felbin fuzzy normed spaces. We develop
the representation of finite rank bounded operators in our context. By using this representation,
characterizations of approximation properties are established in Felbin fuzzy normed spaces.

Keywords: felbin-fuzzy normed space; bag and samanta fuzzy normed space; approximation
property; bound approximation property; finite rank operator

1. Introduction

The concept of a fuzzy norm on a vector space was first introduced by Katsaras [1]. After his
works, Felbin [2] introduced an alternative definition of a fuzzy norm (namely, the Felbin fuzzy norm)
related to a fuzzy metric of Kaleva–Seikkala’s type [3]. Another fuzzy norm (namely, the B-S fuzzy
norm) was defined by Bag and Samanta [4]. Bag and Samanta also conducted a comparative study
of the relationship between their fuzzy norms and the fuzzy norms defined by Felbin [5]. Recently,
topological properties including an inner product, fuzzy sets, and a boundedness have been studied
according to Felbin type fuzzy norms and B-S type fuzzy norms [6–8]. Cho et al. systemically provided
classical and recent results of fuzzy normed spaces and fuzzy operators in their book [9].

The approximation property (AP) is a key notion for the research of functional analysis. The AP
indicates that the identity operator on an Banach space can be approximated in the compact open
topology by finite rank operators [10–13]. The AP has been applied to study Shauder basis and operator
theory. In 2010, Yilmaz introduced the approximation property in B-S fuzzy normed spaces [14].
The second author [15] modified Yilmaz’s definitions and introduced the approximation property and
the bounded approximation property in B-S fuzzy normed spaces. Related works have emerged from
fuzzy theory. We would refer to intuitionistic fuzzy Banach space theory [16].

In this paper we establish approximation properties in Felbin fuzzy normed spaces. Moreover,
we will conduct a comparative study among approximation properties in B-S fuzzy normed spaces
and Felbin fuzzy normed spaces. We characterize approximation properties in Felbin fuzzy normed
spaces. The advantage of our context is to make tools for operators in fuzzy analysis since we develop
the representation of finite rank operators.

Our paper is organized as follows. Section 2 comprises some preliminary results. In Section 3,
we define approximation properties and bounded approximation properties in Felbin fuzzy normed
spaces. Furthermore, we provide several examples related to these properties. In Section 4, we give
relations by making a comparative study of the approximation properties in fuzzy normed spaces
defined by Bag and Samanta and Felbin. Section 5 is devoted to developing the representation

Mathematics 2019, 7, 1003; doi:10.3390/math7101003 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://dx.doi.org/10.3390/math7101003
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/7/10/1003?type=check_update&version=2


Mathematics 2019, 7, 1003 2 of 14

of a finite rank operator as tools for analyzing approximation properties. In Section 6, we
apply this representation to establish characterizations of approximation properties in Felbin fuzzy
normed spaces.

2. Preliminaries

Definition 1. (See [5].) A mapping η : R→ [0, 1] is called a fuzzy real number with α-level set [η]α = {t :
η(t) > α}, if it satisfies the following conditions:

(i) there exists a t0 ∈ R such that η(t0) = 1
(ii) for each α ∈ (0, 1], there exist real numbers η−α 6 η+

α such that the α-level set [η]α is equal to the closed
interval [η−α , η+

α ].

The set of all fuzzy real numbers is denoted by F(R). If η ∈ F(R) and η(t) = 0 whenever t < 0,
then η is called a non-negative fuzzy real number and F∗(R) denotes the set of all non-negative fuzzy
real numbers. Since each r ∈ R can be considered as the fuzzy real number r̃ ∈ F(R) denoted by

r̃(t) =

{
1, t = r
0, t 6= r,

hence it follows that R can be embedded in F(R) (See [5]).

Definition 2. (See [5].) Let X be a vector space over R. Assume the mappings L, R : [0, 1]× [0, 1]→ [0, 1] are
symmetric and non-decreasing in both arguments, and that L(0, 0) = 0 and R(1, 1) = 1. Let ‖ · ‖ : X → F∗(R).
The quadruple (X, ‖ · ‖, L, R) is called a Felbin fuzzy normed space with the fuzzy norm ‖ · ‖, if the following
conditions are satisfied:

(F1) if x 6= 0, then inf0<α61 ‖x‖−α > 0,
(F2) ‖x‖ = 0̃ if and only if x = 0,
(F3) ‖rx‖ = |r̃|‖x‖ for x ∈ X and r ∈ R,
(F4) for all x, y ∈ X,
(F4L) ‖x + y‖(s + t) > L(‖x‖(s), ‖y‖(t)) whenever s 6 ‖x‖−1 , t 6 ‖y‖− and s + t 6 ‖x + y‖−1 ,
(F4R) ‖x + y‖(s + t) 6 R(‖x‖(s), ‖y‖(t)) whenever s > ‖x‖−1 , t > ‖y‖− and s + t > ‖x + y‖−1 .

We assume that
(F5) for any sequence (αk) in (0, 1] such that αk ↓ α ∈ (0, 1] such that ‖x‖+αk

↑ ‖x‖+α for all x ∈ X.
In this paper we fix L(s, t) = min(s, t) and R(s, t) = max(s, t) for all s, t ∈ [0, 1] and we write (X, ‖ · ‖).

Definition 3. (See [5].) Let (X, ‖ · ‖) be a Felbin fuzzy normed space. A sequence {xn} of X is said to converge
to x ∈ X (limn→∞ xn = x) if limn→∞ ‖xn − x‖+α = 0 for all α ∈ (0, 1]. A subset A of X is called compact in
(X, ‖ · ‖) if each sequence of elements of A has a convergent subsequence in (X, ‖ · ‖).

Definition 4. (See [17].) Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be Felbin fuzzy normed spaces. The linear operator
T : X → Y is said to be strongly fuzzy bounded if there is a real number M > 0 such that ‖Tx‖∼ � M̃⊗ ‖x‖
for all x ∈ X. We will denote the set of all strongly fuzzy bounded operators from (X, ‖ · ‖) to (Y, ‖ · ‖∼) by
F(X, Y). Then F(X, Y) is a vector space. For all M > 0 we denote F(X, Y, M) by

{T ∈ F(X, Y) : ‖Tx‖∼ � M̃⊗ ‖x‖, ∀x ∈ X, ∀t ∈ R}

where M is a positive real number.

A is called bounded in F(X, Y) if A = F(X, Y, M) for some M > 0. Moreover, we denote the
set of all finite rank strongly fuzzy bounded operators from (X, ‖ · ‖) to (Y, ‖ · ‖∼) by F (X, Y). Then
F (X, Y) is a subspace of F(X, Y). We similarly define F (X, Y, M) for some M > 0. Now, we provide
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definitions of the approximation properties in Felbin fuzzy normed spaces. For the definition and
properties of the α-level set (α ∈ (0, 1]), see [3,18].

Definitions of a B-S fuzzy norm and a B-S fuzzy antinorm are well mentioned in [3]. Thus, we only
give additional properties related to them.

Definition 5. (See [17].) Let (X, N) be a B-S fuzzy normed space and (X, N∗) be a B-S fuzzy antinormed space.
We assume that
(N6) N(x, t) > 0 for all t > 0 implies that x = 0.
(N7) For x 6= 0 N(x, ·) is continuous on R and strictly increasing on {t : 0 < N(x, t) < 1}.
Moreover, we assume that
(N∗6) N∗(x, t) < 1 for all t > 0 implies that x = 0.
(N∗7) For x 6= 0 N(x, ·) is continuous on R and strictly decreasing on {t : 0 < N∗(x, t) < 1}.

Also, we need the new definition of compactness in given a B-S fuzzy norm and a B-S fuzzy
antinorm as follows.

Definition 6. Let N be a B-S fuzzy norm and N∗ be a B-S fuzzy antinorm on a vector space X (briefly,
(X, N, N∗)). A subset A of X is called compact in (X, N, N∗) if each sequence of elements of A has a convergent
subsequence in (X, N, N∗) where A sequence {xn} of X is said to converge to x ∈ X (limn→∞ xn = x) if for
each t > 0,

lim
n→∞

N(xn − x, t) = 1, lim
n→∞

N∗(xn − x, t) = 0.

Definition 7. (See [18,19].)
(a) Let (X, N1) and (Y, N2) be B-S-fuzzy normed spaces. The linear operator T : (X, N1)→ (Y, N2) is

said to be a strongly fuzzy bounded if there exists a positive real number M such that N2(T(x), t) ≥ N1(x, t
M )

for all x ∈ X and t ∈ R.
(b) Let (X, N1, N∗1 ) and (Y, N2, N∗2 ) be given. The linear operator T : (X, N1) → (Y, N2) is said to be

a strongly fuzzy bounded if there exists a positive real number M such that N2(T(x), t) ≥ N1(x, t
M ) and

N∗(Tx, t) 6 N∗(x, t/M) for all x ∈ X and t ∈ R.

Lemma 1. (See [5]) Let (X, ‖ · ‖) be a Felbin fuzzy normed space and [‖x‖]α =
[
‖x‖1

α, ‖x‖2
α

]
, α ∈ (0, 1]. Let

N and N∗ be two functions in X×R defined by

N(x, t) =

{
sup{α ∈ (0, 1] : ‖x‖1

α 6 t}, (x, t) 6= (0, 0)
0, (x, t) = (0, 0).

and

N∗(x, t) =

{
inf{α ∈ (0, 1] : ‖x‖2

α 6 t}, (x, t) 6= (0, 0)
1, (x, t) = (0, 0).

Then N is a B-S fuzzy norm satisfying (N6) and N∗ is a B-S fuzzy antinorm satisfying (N∗6),
(i) N satisfies (N6),
(ii) N∗ satisfies (N∗6),
(iii) for each x 6= 0, ∃r > 0s.t.N(x, t) = 1, ∀t > r,
(iv) for each x 6= 0, ∃t1 > 0s.t.N(x, t1) = 0,
(v) N∗(x, t) < 1⇒ N(x, t+) = 1, where N(x, t+) = lims→t+ N(x, s).

Lemma 2. (See [5]) Let N be a B-S fuzzy norm and N∗ be a B-S fuzzy antinorm on a linear vector space X
satisfying the conditions (i)–(v) of Lemma 1. Define

‖x‖∗α = inf{t > 0 : N∗(x, t) < α},
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and
‖x‖α = inf{t > 0 : N(x, t) > α}.

Then there is a Felbin fuzzy norm ‖ · ‖ on X such that [‖x‖]α = [‖x‖α, ‖x‖∗α], α ∈ (0, 1] and x ∈ X.

Lemma 3. (See [5]) Let (X, ‖ · ‖) be a Felbin fuzzy normed space such that ‖ · ‖ satisfies the condition (F5), N
and N∗ be two functions on X×R defined in Lemma 1 and ‖ · ‖′ be the fuzzy norm defined in Lemma 2. Then
we have ‖ · ‖ = ‖ · ‖′.

Note that, if Y = R, the linear space of all real numbers , we define a function ‖r‖∼ : R→ [0, 1] by

‖r‖∼(t) =
{

1, t = |r|
0, otherwise.

Then ‖ · ‖∼ is a fuzzy norm on R and α-level sets of ‖r‖∼ are given by [‖r‖∼]α = [|r|, |r|] for all
0 < α 6 1.

Definition 8. (See [19].) A strongly fuzzy bounded linear operator defined from a Felbin fuzzy normed space
(X, ‖ · ‖) to (R, ‖ · ‖∼) is called a strongly fuzzy bounded linear functional. Denote by (X, ‖ · ‖)∗ the set of all
strongly fuzzy bounded linear functionals over (X, ‖ · ‖). Define

‖ f ‖∗−α = sup
x∈X,x 6=0

| f (x)|
‖x‖+α

, ‖ f ‖∗+α = sup
x∈X,x 6=0

| f (x)|
‖x‖−α

for all f ∈ (X, ‖ · ‖)∗.

Remark 1. Definition 4.1 came from Bag and Samanta [18]. Although they defined a strongly fuzzy bounded
linear operator differently from this paper, the two definitions are the same in the case of functionals.

The following lemma is the Hahn–Banach theorem on fuzzy normed spaces ([19], Theorem 7.1).

Lemma 4. Let (X, ‖ · ‖) be a Felbin fuzzy normed space and Z be a subspace of X. Let f be a strongly fuzzy
bounded linear functional defined on (Z, ‖ · ‖). Then there exists a strongly fuzzy bounded linear functional f̂
on X such that f̂ |Z = f and supα∈(0,1] ‖ f ‖∗+α = supα∈(0,1] ‖ f̂ ‖∗+α .

Now we provide the definitions of approximation property in B-S fuzzy normed spaces [15].

Definition 9. Let (X, N) be a B-S fuzzy normed space. A fuzzy normed space (X, N) is said to have the
approximation property, if for every compact set K in (X, N) and for each α ∈ (0, 1) and ε > 0, there exists a
strongly fuzzy bounded T : X → X such that

N(T(x)− x, ε) ≥ 1− α, ∀x ∈ K.

3. Approximation Properties

In this section, we introduce definitions of approximation properties in Felbin fuzzy normed
spaces and several examples.

Definition 10. A Felbin fuzzy normed space (X, ‖ · ‖) is said to have the approximation property (AP), if for
every compact set K in (X, ‖ · ‖) and for each α ∈ (0, 1] and ε > 0, there exists an operator T ∈ F (X, X)

such that
‖T(x)− x‖+α 6 ε

for every x ∈ K.
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Definition 11. Let λ be a positive real number. A Felbin fuzzy normed space (X, ‖ · ‖) is said to have the
λ-bounded approximation property (λ-BAP), if for every compact set K in (X, ‖ · ‖) and for each α ∈ (0, 1] and
ε > 0, there exists an operator T ∈ F (X, X, λ) such that

‖T(x)− x‖+α 6 ε

for every x ∈ K. Also we say that (X, ‖ · ‖) has the BAP if (X, ‖ · ‖) has the λ-BAP for some λ > 0.

By definition, we can have the following proposition.

Proposition 1. The following are equivalent for a Felbin fuzzy normed space (X, ‖ · ‖).
(a) (X, ‖ · ‖) has the AP.
(b) If (Y, ‖ · ‖∼) is a Felbin fuzzy normed space, then for every T ∈ F(X, Y), every compact set K in

(X, N) and for each α ∈ (0, 1) and ε > 0, there exists an operator S ∈ F (X, Y) such that

‖S(x)− T(x)‖∼+α 6 ε

for every x ∈ K.
(c) If (Y, ‖ · ‖∼) is a Felbin fuzzy normed space, then for every T ∈ F(Y, X), every compact set K in

(Y, ‖‖∼) and for each α ∈ (0, 1) and ε > 0, there exists an operator S ∈ F (Y, X) such that

‖S(y)− T(y)‖+α 6 ε

for every x ∈ K.

Proposition 2. Let (X, ‖ · ‖) be a Felbin fuzzy normed space and M > 1. Suppose that there exists a sequence
(Tn) ⊂ F (X, X, M) such that Tn(x) −→ x for every x ∈ X. Then (X, ‖ · ‖) has the AP.

Given a Felbin fuzzy normed space (X, ‖ · ‖), we recall

B(x, α, ε) = {y ∈ X : ‖x− y‖+α < ε}.

By the proof of ([15], Lemma 4.2), we have the following.

Lemma 5. Let (X, ‖ · ‖) be a Felbin fuzzy normed space and K be a compact subset in (X, ‖ · ‖). Then there
exists a finite set {x1, x2, . . . , xn} in K such that for x ∈ K, we have x ∈ B(xi, α, ε) for some xi.

Proof of Proposition 2. Let (Tn) be a sequence in F (X, X, M) such that Tn −→ x for ever x ∈ X.
Let K be a compact in (X, ‖ · ‖) and α ∈ (0, 1) and ε > 0. By Lemma 5, there exists a finite set
{x1, x2, · · · , xn} ⊂ K such that for x ∈ K, we have x ∈ B(xi, α, ε/3M) for some xi. Then there exists
N ∈ N such that if n > N, then

‖Tn(xi)− xi‖+α < ε/3,

for each i. Let x ∈ K and take i such that x ∈ B(xi, α, ε/3M). Then for n > N, we have,

‖Tn(x)− x‖+α 6 ‖Tn(x)− Tn(xi)‖+α + ‖Tn(xi)− xi‖+α + ‖xi − x‖+α
6 M‖x− xi‖+α + ‖Tn(xi)− xi‖+α + ‖xi − x‖+α

6 M‖x− xi‖+α +
2ε

3
6 ε.

(1)

Hence (X, ‖ · ‖) has the AP.
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By Proposition 2, we have the following.

Corollary 1. Let M > 1 be given. Suppose a Felbin fuzzy normed space (X, ‖ · ‖) has a basis {xn} and every
natural projection Pn : (X, ‖ · ‖)→ (X, ‖ · ‖) is in F (X, X, M). Then (X, ‖ · ‖) has the AP.

The converse of the above corollary may not be true.

Example 1. There exists a Felbin fuzzy normed space (X, ‖ · ‖) which has the AP (even MAP) but does not
have a basis.

Proof. Let us consider Banach space `∞ with ‖x‖∞ = supn |xn|. Moreover, ‖x‖0 = supn |
xn
n | is another

norm on `∞. Now let us define

‖x‖(t) =


1, t = ‖x‖0

1/2, ‖x‖0 6 t < ‖x‖∞

0, otherwise.

Then it can be easily shown that (`∞, ‖‖) is a fuzzy normed space. Also, we have,

[‖x‖]α =

{
[‖x‖0, ‖x‖0], 1

2 < α 6 1
[‖x‖0, ‖x‖∞] , 0 < α ≤ 1

2 .

Then it follows that

‖x‖+α =

{
‖x‖0, 1

2 < α 6 1
‖x‖∞, 0 < α ≤ 1

2 .

Then (`∞, ‖ · ‖) cannot have a basis because the Banach space (`∞, ‖ · ‖α), for 1
2 > α > 0, is not

separable. By the argument of ([14], Example 1), (`∞, ‖ · ‖) has the AP.

Example 2. There exists a Felbin fuzzy normed space (X, ‖ · ‖) which does not have the AP.

Proof. Let us say that a Banach space (X, ‖ · ‖) does not have the approximation property [11]. Let
us define

‖x‖(t) =
{

1, t = ‖x‖
0, otherwise.

It is clear that ‖x‖+α = ‖x‖ for all α ∈ (0, 1]. Then (X, ‖ · ‖) does not have the AP.

Example 3. There exists a Felbin fuzzy normed space (X, ‖ · ‖) which has the AP but fails the BAP.

Proof. ([15], Example 4.9) indicates that the Banach space X = (∑⊕Xn)`2 has the AP but does not
have the BAP, where for each n, Xn has the AP but does not have the BAP, and its norm is notated
by ‖ · ‖n . Let us define ‖x‖2 = (∑∞

n=1 ‖xn‖2
n)

1/2 and ‖x‖∞ = supn ‖xn‖n for all x = (x1, x2, . . .) ∈ X.
Now let us define

‖x‖(t) =


1, t = ‖x‖∞

1/2, ‖x‖∞ < t 6 ‖x‖2

0, otherwise.

Then it can be easily shown that (X, ‖ · ‖) is a fuzzy normed space. Also, we have,

[‖x‖]α =

{
[‖x‖∞, ‖x‖∞], 1

2 < α 6 1
[‖x‖∞, ‖x‖2] , 0 < α ≤ 1

2 .
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Hence we obtain that

‖x‖+α =

{
‖x‖∞

1
2 < α 6 1

‖x‖2, 0 < α ≤ 1
2 .

Now we suppose that (X, ‖ · ‖) has the BAP. Let K be a compact subset in (X, ‖‖2). Then it is clear
that K is a compact in (X, ‖‖). Let us take ε > 0 and α ∈ (0, 1/2]. Then, by the assumption, there exist
λ > 0 and T ∈ F (X, X, λ) such that

‖T(x)− x‖+α 6 ε

for every x ∈ K. Then we have ‖T(x)− x‖2 < ε for all x ∈ K and ‖T(x)‖2 ≤ λ‖x‖2 hence it is a
contradiction.

To show that (X, ‖ · ‖) has the AP, let K be a compact subset in (X, ‖ · ‖) and ε > 0. By using
the argument of ([15], Example 4.9), there exists a natural number N ∈ N and a finite rank operator
T0 : (∑N

n=1⊕Xn)`2 → (∑N
n=1⊕Xn)`2 such that

‖jT0PN(x)− x‖2 < ε

for every x ∈ K where j : (∑N
n=1⊕Xn)`2 → X defined by

j(x1, x2, . . . , xN) = (x1, x2, . . . , xN , 0, . . .)

and PN : X → (∑N
n=1⊕Xn)`2 is the projection given by PN((xn)) = (x1, x2, . . . , xN). Put T = jT0PN .

So we have
‖T(x)− x‖+α 6 ε,

for every α ∈ (0, 1]. Finally, we shall show that T is a strongly fuzzy bounded. Since (∑N
n=1⊕Xn)`2

and (∑N
n=1⊕Xn)`∞ are equivalent, there exists M0 > 1 such that

(
N

∑
n=1
‖xn‖2

n)
1/2 ≤ M0 sup

1≤n≤N
‖xn‖n.

Now we put M = max{‖T‖, ‖jT0‖M0}. Then, for every α ∈ (0, 1], we obtain

‖T(x)‖−α = ‖T(x)‖∞

≤ ‖T(x)‖2 = ‖jT0PN(x)‖2

≤ ‖jT0‖(
N

∑
n=1
‖xn‖2

n)
1/2

≤ ‖jT0‖M0 sup
1≤n≤N

‖xn‖n

≤ ‖jT0‖M0‖x‖−α 6 M‖x‖−α .

(2)

Also, for every α ∈ (0, 1/2], we obtain

‖T(x)‖+α = ‖T(x)‖2 6 M‖x‖2 = M‖x‖+α .

For α ∈ (1/2, 1], by (2), we have

‖T(x)‖+α = ‖T(x)‖∞ 6 M‖x‖−α 6 M‖x‖+α .
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4. Relations Between APs in Fellbin Fuzzy Normed Spaces and APs in B-S Fuzzy Normed Spaces

In this section, we establish relationships between approximation properties in Felbin fuzzy
normed spaces and approximation properties in B-S fuzzy normed spaces.

Proposition 3. Let X be a linear space. If X has the AP (BAP) with respect to any Felbin fuzzy norm, then it
has the AP (BAP) with respect to any B-S fuzzy norm satisfying condition (N6) and (N7).

Proof. Let N be a B-S fuzzy norm on X satisfying (N6) and (N7). Put N∗ = 1− N. Clearly, N∗ is a
fuzzy antinorm on X satisfying (N∗6) and (N∗7). For 0 < α 6 1, we define

‖x‖∗α = inf{t > 0 : N∗(x, t) < α}.

Then, by ([5], Theorem 3.2), for each α ∈ (0, 1], ‖x‖∗α is a norm on X. Now we define

N′(x, t) =

{
1, t > ‖x‖∗1
0, t 6 ‖x‖∗1 .

It is clear that N′ is a B-S-fuzzy norm satisfying (N6). Moreover it can be easily shown that N′ and N∗

satisfy (i)–(v) of Lemma 1. Let ‖x‖′α = inf{t > 0 : N′(x, t) > α} for every α ∈ (0, 1]. Indeed, we have
‖x‖′α = ‖x‖∗1 for every α ∈ (0, 1]. Then, by Lemma 2, there is a Felbin fuzzy norm ‖ · ‖ on X such that
[‖x‖]α =

[
‖x‖∗1 , ‖x‖∗α

]
, α ∈ (0, 1] and x ∈ X. By ([17], Theorem 15), we have

N∗(x, t) = inf{α ∈ (0, 1] : ‖x‖∗α 6 t}.

Take a compact subset K of (X, N). Then we claim that K is a compact subset of (X, ‖ · ‖). Indeed, take
any sequence (xn) in K. Then there exist a subsequence (xnj) and x in K such that xnj → x in (X, N).
Then N(xnj − x, t)→ 1 as j→ ∞, ∀t > 0. i.e. N∗(xnj − x, t)→ 0 as j→ ∞, ∀t > 0. So we have

‖xnj − x‖∗α → 0

as j→ ∞, ∀α ∈ (0, 1]. Then (xnj) is a convergent sequence in (X, ‖ · ‖), hence K is a compact subset of
(X, ‖ · ‖). Let α ∈ (0, 1] and ε > 0. By definition of the AP in B-S fuzzy normed spaces, we shall show
that there exists a strongly fuzzy bounded T : X → X such that

N(T(x)− x, ε) ≥ 1− α

for every x ∈ K. By the assumption, there exists an operator T ∈ F (X, X) such that

‖T(x)− x‖∗α < ε

for every x ∈ K. By definition of ‖ · ‖∗α, there exists 0 < t0 < ε such that

N∗(Tx− x, t0) < α.

Since N∗ is non-increasing, we have

N∗(Tx− x, ε) 6 N∗(Tx− x, t0) < α,

so we have N(Tx − x, ε) > 1− α. Finally, we shall show that T is sf -bounded operator on (X, N).
By definition, we show that there exists a positive real number M such that N(T(x), t) ≥ N(x, t

M ) for
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all x ∈ X and t ∈ R. Indeed, since T ∈ F (X, X), there exists a M > 0 such that ‖Tx‖∗1 6 M‖x‖∗1 and
‖Tx‖∗α 6 M‖x‖∗α for all α ∈ (0, 1]. Then, for all t > 0, we have

N∗(Tx, t) = inf{α ∈ (0, 1] : ‖Tx‖∗α 6 t}

≤ inf{α ∈ (0, 1] : ‖x‖∗α 6
t

M
}

= N∗(x,
t

M
),

(3)

so we have N(Tx, t) > N(x, t
M ), hence T is sf-bounded.

We do not know whether the converse of Proposition 3 is true. However, we obtain the following.

Theorem 1. Let (X, ‖ · ‖) be a Felbin fuzzy normed space such that ‖ · ‖ satisfies the condition (F5). Let N and
N∗ be two functions in X×R defined in Lemma 1. Then (X, ‖ · ‖) has the AP, if and only if, for every a compact
K in (X, N, N∗) and α ∈ (0, 1] and t > 0, there exists a strongly fuzzy bounded T : (X, N, N∗)→ (X, N, N∗)
such that

N(T(x)− x, t) > 1− α, N∗(T(x)− x, t) < α

for every x ∈ K.

Proof. Sufficiency. Put [‖x‖]α = [‖x‖−α , ‖x‖+α ] for α ∈ (0, 1]. Let N and N∗ be two functions in X×R
defined in Lemma 1. By Lemma 3, we have

‖x‖−α = inf{t > 0 : N(x, t) > α},

and
‖x‖+α = inf{t > 0 : N∗(x, t) < α}.

Take any a compact K in (X, N, N∗). By ([17], Theorem 24), K is a compact in (X, ‖ · ‖). Let α ∈ (0, 1]
and ε > 0. By the assumption, there exists an operator T ∈ F (X, X) such that

‖T(x)− x‖+α < ε

for every x ∈ K. By the argument of Proposition 3, we have

N∗(T(x)− x, t) < α

for every x ∈ K. Also, we can observe that N(T(x)− x, t) > 1− α for all x ∈ K and α ∈ (0, 1). Indeed,
fix x ∈ X. If 0 < α < 1

2 , then we have

‖x‖−1−α 6 ‖x‖+1−α 6 ‖x‖+α .

If 1 > α > 1
2 , then we have

‖x‖−1−α 6 ‖x‖−α 6 ‖x‖+α ,

hence we have ‖x‖−1−α 6 ‖x‖+α for all α ∈ (0, 1). Then we have ‖T(x)− x‖−1−α < ε. By definition of
‖ · ‖−1−α, there exists 0 < t0 < ε such that

N(Tx− x, t0) > 1− α.

Since N is non-decreasing, we have

N(Tx− x, ε) > N(Tx− x, t0) > 1− α,
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so we have N(Tx − x, ε) > 1− α. Finally, by ([17], Theorem 17), T is strongly fuzzy bounded in
(X, N, N∗).

Necessity. Let us take any compact K in (X, ‖ · ‖). By ([17], Theorem 24), K is a compact in
(X, N, N∗). Let α ∈ (0, 1] and ε > 0. By the assumption, there exists a strongly fuzzy bounded
T : (X, N, N∗)→ (X, N, N∗) such that

N(T(x)− x, ε) > 1− α, N∗(T(x)− x, ε) < α

for every x ∈ K. Then there exists 0 < α0 6 α such that ‖Tx− x‖+α0
6 ε. Then we have ‖Tx− x‖+α 6 ε.

Finally, by ([17], Theorem 18), T is strongly fuzzy bounded in (X, ‖ · ‖).

The following example shows a partial relationship between the AP in Felbin fuzzy normed
spaces and the AP in B-S fuzzy normed spaces.

Example 4. There exists a linear space X such that a Felbin fuzzy normed space (X, ‖ · ‖) does not have the
AP and a B-S fuzzy normed space (X, N) also does not have the AP.

Proof. We use Example 4. Let us define

N(x, t) =

{
1, t = ‖x‖
0, otherwise

Clearly, we obtain that (X, N) has the condition (N6) and ‖x‖α = ‖x‖ for each α ∈ (0, 1). Then, it is
obvious that (X, N) does not have the AP.

Question. Is there a linear space X such that a Felbin-fuzzy normed space (X, ‖ · ‖) has the AP
but a B-S fuzzy normed space (X, N) does not have the AP for some a felbin fuzzy norm ‖ · ‖ and a
B-S fuzzy norm N?

5. The Representation of Finite Rank Strongly Fuzzy Bounded Operators

In this section, we develop the representation of finite rank strongly fuzzy bounded operators.

Theorem 2. Let Y be a subspace of Felbin fuzzy normed space (X, ‖ · ‖) such ∀α ∈ (0, 1], Y is closed in
(X, ‖ · ‖−α ). Suppose that x ∈ X\Y. Then there is a strongly fuzzy bounded linear functional f on X such that
supα∈(0,1] ‖ f ‖∗+α = 1 and Y ⊆ ker( f ).

Proof. Denote
d(x, Y) := inf

y∈Y
inf

α∈(0,1]
‖x− y‖−α .

We claim that d(x, Y) > 0. Suppose that d(x, Y) = 0. Take any ε > 0. Then there exists y ∈ Y such that

infα∈(0,1] ‖x− y‖−α < ε. So, there exists α ∈ (0, 1] such that 0 < ‖x− y‖−α < ε. Then we have x ∈ Y‖·‖
−
α .

Since Y is a closed subspace of (X, ‖ · ‖−α ), hence we have x ∈ Y, it is a contradiction.
Let f0(y + βx) = β · d(x, Y) for each y ∈ Y and each scalar β. Then f0 is a linear functional on

Y + 〈{x}〉 such that f0(x) = d(x, Y) and f0(y) = 0 for each y ∈ Y. For each y ∈ Y, α ∈ (0, 1] and β 6= 0,
we have

| f0(y + βx)| = |β| · d(x, Y) 6 |β|‖x− (−β−1y)‖−α = ‖y + βx‖−α ,

so f0 is a strongly fuzzy bounded linear functional on Y + 〈{x}〉 and supα∈(0,1] ‖ f0‖∗+α 6 1. Moreover,
for each α ∈ (0, 1], we have

‖ f0‖∗+α ‖x− y‖−α > | f0(x− y)| = d(x, Y)
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for all y ∈ Y, so we have

sup
α∈(0,1]

‖ f0‖∗+α · d(x, Y) = sup
α∈(0,1]

‖ f0‖∗+α inf
α∈(0,1]

inf
y∈Y
‖x− y‖−α > d(x, Y).

Since d(x, Y) > 0, we obtain that supα∈(0,1] ‖ f0‖∗+α > 1, so supα∈(0,1] ‖ f0‖∗+α = 1. By Lemma 4, we can
finish our proof.

The following corollary gives the representation of finite rank strongly fuzzy bounded operators.

Corollary 2. Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be Felbin fuzzy normed spaces. If T : X → Y is a finite rank
strongly fuzzy bounded linear operator, then there exist (yn)k

n=1 ⊂ Y and ( fn)k
n=1 ⊂ (X, ‖ · ‖)∗ such that

T(x) =
k

∑
n=1

fn(x)yn

for all x ∈ X.

Proof. Since T(X) is a finite dimensional subspace of Y, there exists a basis (yn)k
n=1 ⊂ Y of T(X). Now

fix n ∈ {1, 2, · · · , k}. Consider Z = 〈yj 6=n〉. Then Z is a finite dimensional subspace of Y and yn ∈ Y\Z.
Since, ∀α ∈ (0, 1], Z is closed in (Y, ‖ · ‖∼−α ), by Theorem 2, there is a strongly fuzzy bounded linear
functional gn on Y such that gn(yn) 6= 0 and Z ⊆ ker(gn). We may assume that gn(yn) = 1. Put
fn := gn ◦ T. Then fn is also a strongly fuzzy bounded linear functional on X. Finally, we take any
x ∈ X and write T(x) = ∑k

n=1 an(x)yn where for each n an(x) is a scalar depending on x. By properties
of gn, it is clear that fn(x) = an(x) for each n.

6. Characterizations of Approximation Properties in Felbin Fuzzy Normed Spaces

In this section, we establish characterizations of approximation properties in Felbin fuzzy normed
spaces. To do this, we develop topological methods in spaces of strongly fuzzy bounded linear
operators.

Definition 12. Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be Felbin fuzzy normed spaces. For a compact K ⊂ (X, ‖ · ‖),
ε > 0, α ∈ (0, 1], and T ∈ F(X, Y) we put

Ne(T, K, α, ε) = {R ∈ F(X, Y) : sup
x∈K
‖Tx− Rx‖∼+α < ε}.

Let S be the collection of all such Ne(T, K, α, ε)′s. Then the τ-topology on F(X, Y) is the topology generated
by S .

For a net (Tβ) ⊂ F(X, Y) and T ∈ F(X, Y) we have Tβ → T in (F(X, Y), τ) if and only if for every
compact K ⊂ (X, ‖ · ‖) and α ∈ (0, 1],

sup
x∈K
‖Tβ(x)− T(x)‖+α → 0.

Definition 13. Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be Felbin-fuzzy normed spaces. For x ∈ X, ε > 0, α ∈ (0, 1],
and T ∈ F(X, Y) we put

Ne(T, x, α, ε) = {R ∈ F(X, Y) : ‖Tx− Rx‖∼2
α < ε}.
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Let S be the collection of all such Ne(T, x, α, ε)′s. Then the τsto-topology on F(X, Y) is the topology generated
by S .

For a net (Tβ) ⊂ F(X, Y) and T ∈ F(X, Y) we have Tβ → T in (F(X, Y), τsto) if and only if for
every x ∈ X and α ∈ (0, 1],

‖Tβ(x)− T(x)‖α → 0.

From ([20], Notation 3.6), we denote by (X∗1α , ‖ · ‖∗1α ) and (X∗2α , ‖ · ‖∗2α ) the dual space of (X, ‖ · ‖1
α)

and (X, ‖ · ‖2
α) respectively.

Definition 14. Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be Felbin fuzzy normed spaces. Let Z be the linear span of all
linear functionals f on F(X, Y) of the form f (T) = y∗Tx for x ∈ X and y∗ ∈ Y∗2α where α ∈ (0, 1]. Then
τwo-topology on F(X, Y) is the topology generated by Z .

For a net (Tβ) ⊂ F(X, Y) and T ∈ F(X, Y) we have Tβ → T in (F(X, Y), τwo) if and only if for
every x ∈ X, α ∈ (0, 1] and y∗ ∈ Y∗2α

y∗Tβx → y∗Tx.

Then we provide the following simple proposition. The proof is clear.

Proposition 4. Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be Felbin fuzzy normed spaces.
(a) τ, τsto and τwo are locally convex topologies.
(b) τ is stronger than τsto and τsto is stronger than τwo.

By the argument of ([15], Proposition 5.6) and Lemma 5, we have the following.

Proposition 5. Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be Felbin fuzzy normed spaces. If A is a bounded in F(X, Y),
then we have τ = τsto on A.

To show a relation between τsto and τwo on F(X, Y), we need the following two lemmas. We recall
that (F(X, Y), τsto)∗((F(X, Y), τwo)∗) is the vector space of all τsto-continuous (τwo-continuous) linear
functionals on F(X, Y).

Lemma 6. Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be Felbin fuzzy normed spaces. If f ∈ (F(X, Y), τsto)∗, then there
exists a finite subset {x1, x2, . . . , xn} of X and α ∈ (0, 1] and ε > 0 such that T ∈ ⋂n

i=1{T ∈ F(X, Y) :
‖Txi‖∼2

α < ε} implies | f (T)| < 1.

Proof. By Definition 13, there exists a finite set {x1, x2, . . . , xn} of X and a set {α1, α2, . . . , αn} and a set
{ε1, ε2, . . . , εn} such that | f (T)| < 1 for all T ∈ ⋂n

i=1{R ∈ F(X, Y) : ‖Rxi‖∼2
αi

< εi} where αi ∈ (0, 1]
and εi > 0 for all i = 1, 2, . . . , n. Now we put α = min{α1, α2, . . . , αn} and ε = min{ε1, ε2, . . . , εn}. We
consider a set

⋂n
i=1{T ∈ F(X, Y) : ‖Txi‖α < ε}. Since {‖ · ‖∼2

β : β ∈ (0, 1]} is a descending family of
norms on Y, we obtain

n⋂
i=1

{T ∈ F(X, Y) : ‖Txi‖∼2
α < ε} ⊆

n⋂
i=1

{T ∈ F(X, Y) : ‖Txi‖∼2
αi

< εi}.

Hence if T ∈ ⋂n
i=1{T ∈ F(X, Y) : ‖Txi‖∼2

α < ε}, then | f (T)| < 1.

By the proof of ([15], Lemma 5.8) and Lemma 6, we derive the following lemma.
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Lemma 7. Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be Felbin fuzzy normed spaces. Then

(F(X, Y), τsto)
∗ = (F(X, Y), τwo)

∗

and the form of the continuous linear functionals f on F(X, Y) is f (T) = ∑n
i=1 y∗i (Txi), (xi)

n
i=1 ⊂ X and

(y∗i )
n
i=1 ⊂ Y∗2α for some α ∈ (0, 1].

Proposition 6. Let (X, ‖ · ‖) and (Y, ‖ · ‖∼) be Felbin fuzzy normed spaces.
(a) If C is a convex set in F(X, Y), then Cτsto = Cτwo .
(b) If C is a bounded convex set in F(X, Y), then Cτ

= Cτwo .

Proof.
(a) By Lemma 6 and ([21], Corollary 2.2.29), we derive (a).
(b) By Proposition 5 and (a), we prove (b).

Now, using the results so far, we provide characterizations of a Felbin fuzzy normed space to
have the BAP. To prove these characterizations, we need the following lemma. For the proof, we refer
to [22].

Lemma 8. Let (X, ‖ · ‖) be a Felbin fuzzy normed space. Suppose that C is a balanced convex subset of F(X, X).
Let T ∈ F(X, X). Then the following are equivalent.

(a) T belongs to Cτwo .
(b) For every f ∈ (F(X, Y), τwo)∗ such that | f (S)| ≤ 1 for all S ∈ C, we have | f (T)| ≤ 1.

Theorem 3. Let (X, ‖ · ‖) be a Felbin fuzzy normed space. Then the following are equivalent.
(a) (X, ‖ · ‖) has λ-BAP.
(b) There exists a net (Tβ) in F (X, X, λ) such that x∗Tβx → x∗x for each x ∈ X, α ∈ (0, 1] and

x∗ ∈ X∗2α .
(c) For every α ∈ (0, 1], (xi)

n
i=1 ⊂ X and (x∗i )

n
i=1 ⊂ X∗2α , if |∑n

i=1 x∗i (Sxi)| ≤ 1 for all S ∈ F (X, X, λ),
then |∑n

i=1 x∗i (xi)| ≤ 1.
(d) For every α ∈ (0, 1], (xi)

n
i=1 ⊂ X and (x∗i )

n
i=1 ⊂ X∗2α , if

|
n

∑
i=1

`

∑
k=1

x∗i (zk) fk(xi)| ≤ 1

for all ( fk)
`
k=1 ∈ (X, ‖ · ‖)∗ and (zk)

`
k=1 ∈ X with ∑`

k=1 fk(·)zk ∈ F (X, X, λ), then |∑n
i=1 x∗i (xi)| ≤ 1.

Proof. (a)⇔(b)⇔(c) By Lemma 7, Proposition 6, Lemma 8, and the argument of ([15], Theorem 6.3),
it can be deduced,

(c)⇔(d). By Corollary 2, it is clear.

Remark 2. Theorem 3 (d) implies that the BAP in Felbin fuzzy normed spaces has better characterizations
compared with the BAP in B-S fuzzy normed spaces (cf. [15], Theorem 6.3).

7. Conclusions and Further Works

In this paper we have introduced approximation properties in Felbin fuzzy normed spaces and
investigated several examples. We have established a comparative study among approximation
properties in B-S fuzzy normed spaces and Felbin fuzzy normed spaces. The representation of finite
rank operators has been developed and, by using this, we provided characterizations of approximation
properties in Felbin fuzzy normed spaces. We hope that our approach may provide a key role in fuzzy
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analysis by application to fuzzy function spaces, for example, spaces of fuzzy continuous functions.
Moreover, many kinds of approximation properties can be introduced.
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