Bounds for Two New Subclasses of Bi-Univalent Functions Associated with Legendre Polynomials
Abstract
:1. Introduction
2. The Estimate of the Coefficients for the Classes and
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kukushkin, M.V. On Solvability of the Sonin–Abel Equation in the Weighted Lebesgue Space. Fractal Fract. 2021, 5, 77. [Google Scholar] [CrossRef]
- Muckenhoupt, B. Mean Convergence of Jacobi Series. Proc. Am. Math. Soc. 1969, 23, 306–310. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent Functions; Mariner Publishing Company Inc.: Tampa, FL, USA, 1983; Volumes I and II. [Google Scholar]
- Duren, P.L. Univalent Functions, Grundlehren Math. Wissenschaften, Band 259; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63–68. [Google Scholar] [CrossRef]
- Altınkaya, S. Bounds for a new subclass of bi-univalent functions subordinate to the Fibonacci numbers. Turk. J. Math. 2020, 44, 553–560. [Google Scholar]
- Altınkaya, S.; Yalcın, S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. C. R. Math. 2015, 353, 1075–1080. [Google Scholar] [CrossRef]
- Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer polynomials and Bi-univalent functions. Palest. J. Math. 2021, 10, 625–632. [Google Scholar]
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szego inequality for analytic and Biunivalent functions subordinate to Gegenbauer polynomials. J. Funct. Space 2021, 2021, 5574673. [Google Scholar] [CrossRef]
- Caglar, M.; Orhan, H.; Yagmur, N. Coefficient bounds for new subclasses of bi-univalent functions. Filomat 2013, 27, 1165–1171. [Google Scholar] [CrossRef] [Green Version]
- Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [Google Scholar] [CrossRef]
- Goyal, S.P.; Kumar, R. Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions. Math. Slov. 2015, 65, 533–544. [Google Scholar] [CrossRef]
- Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Panam. Am. Math. J. 2012, 22, 15–26. [Google Scholar]
- Lashin, A.Y. On certain subclasses of analytic and bi-univalent functions. J. Egypt. Math. Soc. 2016, 24, 220–225. [Google Scholar] [CrossRef] [Green Version]
- Lashin, A.Y. Coefficient estimates for two subclasses of analytic and bi-univalent functions. Ukr. Math. J. 2019, 70, 1484–1492. [Google Scholar] [CrossRef]
- Lashin, A.Y.; El-Emam, F.Z. Faber polynomial coefficients for certain subclasses of analytic and bi-univalent functions. Turk. J. Math. 2020, 44, 1345–1361. [Google Scholar] [CrossRef]
- Magesh, N.; Rosy, T.; Varma, S. Coefficient estimate problem for a new subclass of bi-univalent functions. J. Complex Anal. 2013, 2013, 474231. [Google Scholar]
- Magesh, N.; Yamini, J. Coefficient bounds for certain subclasses of bi-univalent functions. Internat. Math. Forum 2013, 8, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent function. Abstr. Appl. Anal. 2013, 2013, 573017. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.-G.; Han, Q.-Q. On the coefficients of several classes of bi-univalent functions. Acta Math. Sci. Ser. B Engl. Ed. 2014, 34, 228–240. [Google Scholar] [CrossRef]
- Porwal, S.; Darus, M. On a new subclass of bi-univalent functions. J. Egypt. Math. Soc. 2013, 21, 190–193. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Bulut, S.; Caglar, M.; Yagmur, N. Coefficient estimates for a general subclass of analytic and bi-univalent functions. Filomat 2013, 27, 831–842. [Google Scholar] [CrossRef]
- Zireh, A.; Adegani, E.A.; Bidkham, M. Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate. Math. Slov. 2018, 68, 369–378. [Google Scholar] [CrossRef]
- Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. Appl. Math. Lett. 2012, 25, 344–351. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficients of bi-subordinate functions. C. R. Math. 2016, 354, 365–370. [Google Scholar] [CrossRef]
- Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. Appl. Math. Lett. 2010, 23, 1188–1192. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lashin, A.M.Y.; Badghaish, A.O.; Bajamal, A.Z. Bounds for Two New Subclasses of Bi-Univalent Functions Associated with Legendre Polynomials. Mathematics 2021, 9, 3188. https://doi.org/10.3390/math9243188
Lashin AMY, Badghaish AO, Bajamal AZ. Bounds for Two New Subclasses of Bi-Univalent Functions Associated with Legendre Polynomials. Mathematics. 2021; 9(24):3188. https://doi.org/10.3390/math9243188
Chicago/Turabian StyleLashin, Abdel Moneim Y., Abeer O. Badghaish, and Amani Z. Bajamal. 2021. "Bounds for Two New Subclasses of Bi-Univalent Functions Associated with Legendre Polynomials" Mathematics 9, no. 24: 3188. https://doi.org/10.3390/math9243188
APA StyleLashin, A. M. Y., Badghaish, A. O., & Bajamal, A. Z. (2021). Bounds for Two New Subclasses of Bi-Univalent Functions Associated with Legendre Polynomials. Mathematics, 9(24), 3188. https://doi.org/10.3390/math9243188