



Abdel Moneim Y. Lashin ^{1,2}, Abeer O. Badghaish ¹ and Amani Z. Bajamal ^{1,*}

- ¹ Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; aylashin@mans.edu.eg (A.M.Y.L.); abadghaish@kau.edu.sa (A.O.B.)
- ² Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
- * Correspondence: azbajamal@kau.edu.sa

Abstract: In this article, two new subclasses of the bi-univalent function class σ related with Legendre polynomials are presented. Additionally, the first two Taylor–Maclaurin coefficients $|a_2|$ and $|a_3|$ for the functions belonging to these new subclasses are estimated.

Keywords: Legendre polynomials; coefficient estimations; starlike and convex functions; bi-univalent functions; subordination

PACS: 30C45; 30C50; 30C55; 30C80

1. Introduction

In 1782, Adrien-Marie Legendre discovered Legendre polynomials, which have numerous physical applications. The Legendre polynomials $P_n(x)$, sometimes called Legendre functions of the first kind, are the particular solutions to the Legendre differential equation

$$(1-x^2)y''-2xy'+n(n+1)y=0, n \in \mathbb{N}_0, |x|<1.$$

Here and in the following, let \mathbb{C} and \mathbb{N} denote the sets of complex numbers and positive integers, respectively, and let $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$. The Legendre polynomials are defined by Rodrigues' formula

$$P_n(x) = \frac{1}{2^n n!} \frac{d^n}{dx^n} (x^2 - 1)^n \quad (n \in \mathbb{N}_0),$$

for arbitrary real or complex values of the variable *x*. The Legendre polynomials $P_n(x)$ are generated by the following function

$$\frac{1}{\sqrt{1-2xt+t^2}} = \sum_{n=0}^{\infty} P_n(x)t^n,$$
(1)

where the particular branch of $(1 - 2xt + t^2)^{-\frac{1}{2}}$ is taken to be 1 as $t \to 0$. The first few Legendre polynomials are

$$P_0(x) = 1, P_1(x) = x, P_2(x) = \frac{1}{2}(3x^2 - 1), P_3(x) = \frac{1}{2}(5x^3 - 3x)$$

A general case of the Legendre polynomials and their applications can be found in [1,2]. Let \mathcal{A} be the class of analytic functions in the open unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$ with the following Taylor–Maclaurin series expansion

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n , \qquad (2)$$

Citation: Lashin, A.M.Y.; Badghaish, A.O.; Bajamal, A.Z. Bounds for Two New Subclasses of Bi-Univalent Functions Associated with Legendre Polynomials. *Mathematics* **2021**, *9*, 3188. https://doi.org/10.3390/ math9243188

Academic Editors: Valer-Daniel Breaz and Ioan-Lucian Popa

Received: 15 November 2021 Accepted: 8 December 2021 Published: 10 December 2021

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

and let S be the subclass of A consisting of univalent functions in U. An important member of the class S is the Koebe function

$$K(z) = z(1-z)^{-2} = \frac{1}{4} \left[\left(\frac{1+z}{1-z} \right)^2 - 1 \right] = \sum_{n=1}^{\infty} n z^n ,$$

for every $z \in U$. This function maps U in a one-to-one manner onto the domain D that consists of the entire complex plane except for a slit along the negative real axis from $w = -\infty$ to $w = -\frac{1}{4}$. The function

$$\phi(z) = \frac{1-z}{\sqrt{1-2z\cos\alpha + z^2}},$$

is in \mathcal{P} for every real α (see [[3] Page 102]), where \mathcal{P} is the Caratheodory class defined by

$$\mathcal{P} = \{ p(z) : \Re(p(z)) > 0, z \in U \}$$

 $p(z) = 1 + c_1 z + c_2 z^2 + \cdots$ By using (1), it is easy to check that

$$\phi(z) = 1 + \sum_{n=1}^{\infty} [P_n(\cos \alpha) - P_{n-1}(\cos \alpha)] z^n,$$

$$= 1 + \sum_{n=1}^{\infty} B_n z^n, z \in U.$$
(3)

If we consider

$$\frac{1}{(\phi(z))^2} = \frac{1 - 2z\cos\alpha + z^2}{(1 - z)^2},$$
$$= 1 + 2(1 - \cos\alpha)\frac{z}{(1 - z)^2}.$$

From the geometric properties of the Koebe function, the function ϕ maps the unit disc onto the right plane $\Re(w) > 0$ minus the slit along the positive real axis from $\frac{1}{|\cos \frac{\alpha}{2}|}$ to ∞ . $\phi(U)$ is univalent, symmetric with respect to the real axis and starlike with respect to $\phi(0) = 1$. It is well known, by using the Koebe one-quarter theorem [4], that every univalent function $f \in S$ has an inverse function f^{-1} , which is defined by

$$f^{-1}(f(z)) = z \quad (z \in U),$$

and

$$f(f^{-1}(w)) = w \ (w \in U^* = \{w \in \mathbb{C} : |w| < \frac{1}{4}\})$$

where

$$g(w) = f^{-1}(w) = w - a_2w^2 + (2a_2^2 - a_3)w^3 - (5a_2^3 - 5a_2a_3 + a_4)w^4 + \dots$$

The function $f \in S$ is said to be a bi-univalent function if its inverse f^{-1} is also univalent in U. Let σ be the class of all bi-univalent functions in U. Lewin [5] is the first author who introduced the class of analytic bi-univalent functions and estimated the second coefficient $|a_2|$. Many authors created several subclasses of analytic bi-univalent functions and found the bounds for the first two coefficients $|a_2|$ and $|a_3|$, see for example [6–23]. Let Ω be the class of all analytic functions ω in U which satisfy these conditions $\omega(0) = 0$ and $|\omega(z)| < 1$ for all $z \in U$. A function f is said to be subordinate to g, written as $f(z) \prec g(z)$ if there exists a Schwarz function $\omega \in \Omega$ such that $f(z) = g(\omega(z))$. Furthermore, if the function g is univalent in U, then f is subordinate to g is equivalent to f(0) = g(0) and $f(U) \subset g(U)$. **Definition 1.** A function $f \in \sigma$ belongs to the class $L_{\sigma}(\lambda, \phi)$ with $0 \le \lambda \le 1$ if the following subordination conditions are satisfied

$$\lambda \left(1 + \frac{zf''(z)}{f'(z)} \right) + (1 - \lambda) \left(\frac{zf'(z)}{f(z)} \right) \prec \phi(z) \quad (z \in U),$$

and

$$\lambda\left(1+\frac{wg''(w)}{g'(w)}\right)+(1-\lambda)\left(\frac{wg'(w)}{g(w)}\right)\prec\phi(w)\quad(w\in U),$$

where $g(w) = f^{-1}(w)$ *.*

Definition 2. A function $f \in \sigma$ belongs to the class $L_{\sigma}(\gamma, \rho, \phi)$ with $0 \leq \gamma, \rho \leq 1$ if the following subordination conditions are satisfied

$$(1-\gamma+2\rho)\frac{f(z)}{z}+(\gamma-2\rho)f'(z)+\rho z f''(z)\prec\phi(z) \quad (z\in U),$$

and

$$(1 - \gamma + 2\rho)\frac{g(w)}{w} + (\gamma - 2\rho)g'(w) + \rho wg''(w) \prec \phi(w) \quad (w \in U),$$

where $g(w) = f^{-1}(w)$ *.*

Remark 1. In Definition 1, if $\lambda = 1$ and $\alpha = \pi$, then the subclass in [15] will be obtained. If $\lambda = 0$ and $\alpha = \pi$, then the subclass in [24] will be obtained. In addition, putting $\alpha = \pi$, this yields to the subclass in [25].

Remark 2. In Definition 2, taking $\rho = 0$ and $\alpha = \pi$, the subclass in [26] will be obtained. In addition, putting $\gamma = 1, \rho = 0$ and $\alpha = \pi$, this yields to the subclass in [27].

In this paper, the estimates for initial coefficients of functions in the two classes $L_{\sigma}(\lambda, \phi)$ and $L_{\sigma}(\gamma, \rho, \phi)$ are found.

2. The Estimate of the Coefficients for the Classes $L_{\sigma}(\lambda, \phi)$ and $L_{\sigma}(\gamma, \rho, \phi)$ Lemma 1 ([4]). Let $\omega \in \Omega$ with $\omega(z) = \sum_{n=1}^{\infty} \omega_n z^n$ $(z \in U)$. Then

$$|\omega_1| \le 1$$
, $|\omega_n| \le 1 - |\omega_1|^2$ $(n \in \mathbb{N} \setminus \{1\})$

Theorem 1. *Let the function* $f \in L_{\sigma}(\lambda, \phi)$ *. Then*

$$|a_2| \le \frac{\sqrt{2}(1-\cos\alpha)}{\sqrt{(1+\lambda)[3\lambda(\cos\alpha+1)+5+\cos\alpha]}}$$

and

$$|a_3| \leq \begin{cases} \frac{1-\cos\alpha}{2(1+2\lambda)} & \text{if } \cos\alpha \geq 1 - \frac{(1+\lambda)^2}{2(1+2\lambda)} \\ \\ \frac{(1-\cos\alpha)[2(1+2\lambda)(1-\cos\alpha)-(1+\lambda)^2]}{(1+2\lambda)(1+\lambda)[3\lambda(\cos\alpha+1)+5+\cos\alpha]} + \frac{1-\cos\alpha}{2(1+2\lambda)} & \text{if } \cos\alpha < 1 - \frac{(1+\lambda)^2}{2(1+2\lambda)} \end{cases}$$

Proof. Since $f \in L_{\sigma}(\lambda, \phi)$, from Definition 1, we have

$$\lambda\left(1+\frac{zf''(z)}{f'(z)}\right)+(1-\lambda)\left(\frac{zf'(z)}{f(z)}\right)=\phi(u(z)) \quad (z\in U),\tag{4}$$

and

$$\lambda\left(1+\frac{wg''(w)}{g'(w)}\right)+(1-\lambda)\left(\frac{wg'(w)}{g(w)}\right)=\phi(v(w))\quad(w\in U),$$
(5)

for some $0 \le \lambda \le 1$, where $g(w) = f^{-1}(w)$ and $u, v \in \Omega$ such that

$$u(z)=\sum_{n=1}^{\infty}b_nz^n,$$

and

$$v(w) = \sum_{n=1}^{\infty} c_n w^n$$

Then

$$\phi(u(z)) = 1 + B_1 b_1 z + \left(B_1 b_2 + B_2 b_1^2\right) z^2 + \left(B_1 b_3 + 2b_1 b_2 B_2 + B_3 b_1^3\right) z^3 + \dots,$$
(6)

and

$$\phi(v(w)) = 1 + B_1 c_1 w + \left(B_1 c_2 + B_2 c_1^2\right) w^2 + \left(B_1 c_3 + 2c_1 c_2 B_2 + B_3 c_1^3\right) w^3 + \dots,$$
(7)

where

$$B_1 = \cos \alpha - 1, B_2 = \frac{1}{2} (\cos \alpha - 1)(1 + 3\cos \alpha) \text{ and } B_3 = \frac{1}{2} (5\cos^3 \alpha - 3\cos^2 \alpha - 3\cos \alpha + 1).$$
(8)

Then, Equations (4) and (5) become

$$\lambda \left[1 + 2a_2z + (6a_3 - 4a_2^2)z^2 + \ldots \right] + (1 - \lambda) \left[1 + a_2z + (2a_3 - a_2^2)z^2 + \ldots \right] = 1 + B_1b_1z + (B_1b_2 + B_2b_1^2)z^2 + (B_1b_3 + 2b_1b_2B_2 + B_3b_1^3)z^3 + \ldots,$$
(9)

and

$$\lambda \begin{bmatrix} 1 - 2a_2w + (8a_2^2 - 6a_3)w^2 + \dots \end{bmatrix} + (1 - \lambda) \begin{bmatrix} 1 - a_2w + (3a_2^2 - 2a_3)w^2 + \dots \end{bmatrix}$$

= 1 + B_1c_1w + (B_1c_2 + B_2c_1^2)w^2 + (B_1c_3 + 2c_1c_2B_2 + B_3c_1^3)w^3 + \dots (10)

Now, equating the corresponding coefficients in (9) and (10), we get

$$(1+\lambda)a_2 = B_1b_1,\tag{11}$$

$$2(1+2\lambda)a_3 - (1+3\lambda)a_2^2 = B_1b_2 + B_2b_1^2,$$
(12)

$$-(1+\lambda)a_2 = B_1c_1,$$
 (13)

$$(3+5\lambda)a_2^2 - 2(1+2\lambda)a_3 = B_1c_2 + B_2c_1^2.$$
(14)

_

(11) and (13) yield

$$b_1 = -c_1,$$
 (15)

and

$$b_1^2 + c_1^2 = \frac{2(1+\lambda)^2}{B_1^2} a_2^2.$$
 (16)

From (12), (14) and (16), we have

$$a_2^2 = \frac{B_1^3}{2(1+\lambda)[B_1^2 - (1+\lambda)B_2]}(b_2 + c_2).$$

By using Lemma 1, (11) and (15), we obtain

$$\begin{split} |a_2|^2 &\leq \frac{|B_1|^3 \left(1 - |b_1|^2\right)}{(1 + \lambda) |B_1^2 - (1 + \lambda)B_2|}, \\ &= \frac{|B_1|^3}{(1 + \lambda) \left[|B_1^2 - (1 + \lambda)B_2| + (1 + \lambda)|B_1|\right]} \end{split}$$

,

Therefore,

$$|a_2| \le \frac{|B_1|\sqrt{|B_1|}}{\sqrt{(1+\lambda)\left[|B_1^2 - (1+\lambda)B_2| + (1+\lambda)|B_1|\right]}}.$$
(17)

By noting that,

$$B_1^2 - (1+\lambda)B_2 = \frac{1}{2}(1-\cos\alpha)\{(1+3\lambda)\cos\alpha + 3+\lambda\},$$

$$\geq (1-\cos\alpha)(1-\lambda) \geq 0,$$

now substituting the values of B_1 and B_2 from (8) in (17), we obtain

$$|a_2| \leq \frac{\sqrt{2}(1-\cos\alpha)}{\sqrt{(1+\lambda)[3\lambda(\cos\alpha+1)+5+\cos\alpha]}},$$

which is the required estimation for $|a_2|$.

Next, in order to estimate $|a_3|$, subtracting (14) from (12), we obtain

$$a_3 = a_2^2 + \frac{B_1}{4(1+2\lambda)}(b_2 - c_2).$$

By using Lemma 1 and (11), we find

$$|a_3| \leq \left[1 - \frac{(1+\lambda)^2}{2(1+2\lambda)|B_1|}\right] |a_2|^2 + \frac{|B_1|}{2(1+2\lambda)}.$$

Case 1. If $1 - \frac{(1+\lambda)^2}{2(1+2\lambda)|B_1|} \leq 0$, then

$$|a_3|\leq \frac{|B_1|}{2(1+2\lambda)}.$$

Case 2. If $1 - \frac{(1+\lambda)^2}{2(1+2\lambda)|B_1|} > 0$, then

$$|a_3| \leq \left[1 - \frac{(1+\lambda)^2}{2(1+2\lambda)|B_1|}\right] |a_2|^2 + \frac{|B_1|}{2(1+2\lambda)}.$$

Therefore,

$$|a_3| \leq \begin{cases} \frac{1-\cos\alpha}{2(1+2\lambda)} & \text{if } \cos\alpha \geq 1 - \frac{(1+\lambda)^2}{2(1+2\lambda)} \\ \frac{(1-\cos\alpha)[2(1+2\lambda)(1-\cos\alpha)-(1+\lambda)^2]}{(1+2\lambda)(1+\lambda)[3\lambda(\cos\alpha+1)+5+\cos\alpha]} + \frac{1-\cos\alpha}{2(1+2\lambda)} & \text{if } \cos\alpha < 1 - \frac{(1+\lambda)^2}{2(1+2\lambda)} \end{cases}$$

which completes the proof. \Box

Theorem 2. Let the function $f \in L_{\sigma}(\gamma, \rho, \phi)$. Then

$$|a_2| \leq \frac{\sqrt{2}(1-\cos\alpha)}{\sqrt{2}(1+2\gamma+2\rho)(1-\cos\alpha)+3(1+\gamma)^2(1+\cos\alpha)}}$$

and

$$|a_{3}| \leq \begin{cases} \frac{1-\cos\alpha}{(1+2\gamma+2\rho)} & if \ \cos\alpha \geq 1 - \frac{(1+\gamma)^{2}}{(1+2\gamma+2\rho)} \\ \frac{2[(1+2\gamma+2\rho)(1-\cos\alpha)-(1+\gamma)^{2}](1-\cos\alpha)}{(1+2\gamma+2\rho)[2(1+2\gamma+2\rho)(1-\cos\alpha)+3(1+\gamma)^{2}(1+\cos\alpha)]} + \frac{1-\cos\alpha}{1+2\gamma+2\rho} & if \ \cos\alpha < 1 - \frac{(1+\gamma)^{2}}{(1+2\gamma+2\rho)(2(1+2\gamma+2\rho)(1-\cos\alpha)+3(1+\gamma)^{2}(1+\cos\alpha))} \end{cases}$$

Proof. Since $f \in L_{\sigma}(\gamma, \rho, \phi)$, from Definition 2, we have

$$(1 - \gamma + 2\rho)\frac{f(z)}{z} + (\gamma - 2\rho)f'(z) + \rho z f''(z) = \phi(u(z)) \quad (z \in U),$$
(18)

and

$$(1 - \gamma + 2\rho)\frac{g(w)}{w} + (\gamma - 2\rho)g'(w) + \rho w g''(w) = \phi(v(w)) \quad (w \in U),$$
(19)

for $0 \le \gamma, \rho \le 1$, where $g(w) = f^{-1}(w)$ and $u, v \in \Omega$ are defined as in Theorem 1. Then, rewriting (18) and (19) as

$$(1 - \gamma + 2\rho) [1 + a_2 z + a_3 z^2 + ...] + (\gamma - 2\rho) [1 + 2a_2 z + 3a_3 z^2 + ...] + \rho z [2a_2 + 6a_3 z + ...] = 1 + B_1 b_1 z + (B_1 b_2 + B_2 b_1^2) z^2 + (B_1 b_3 + 2b_1 b_2 B_2 + B_3 b_1^3) z^3 + ...,$$
(20)

and

$$(1 - \gamma + 2\rho) [1 - 2a_2w + (2a_2^2 - a_3)w^2 + ...] + (\gamma - 2\rho) [1 - 2a_2w + (6a_2^2 - 3a_3)w^2 + ...] + \rho w [-2a_2 + (12a_2^2 - 6a_3)w + ...] = 1 + B_1c_1w + (B_1c_2 + B_2c_1^2)w^2 + (B_1c_3 + 2c_1c_2B_2 + B_3c_1^3)w^3 + ...,$$

$$(21)$$

where B_1 , B_2 and B_3 are defined as in (8). Now, equating the coefficients in (20) and (21) yields

$$(1+\gamma)a_2 = B_1 b_1, (22)$$

$$(1+2\gamma+2\rho)a_3 = B_1b_2 + B_2b_1^2,$$
(23)

$$-(1+\gamma)a_2 = B_1c_1,$$
 (24)

$$1 + 2\gamma + 2\rho)\left(2a_2^2 - a_3\right) = B_1c_2 + B_2c_1^2.$$
(25)

From (22) and (24), it is easy to see that

(

$$b_1 = -c_1,$$
 (26)

and

$$b_1^2 + c_1^2 = \frac{2(1+\gamma)^2}{B_1^2} a_2^2.$$
 (27)

From (23), (25) and (27), we have

$$a_2^2 = \frac{B_1^3}{2\Big[(1+2\gamma+2\rho)B_1^2 - (1+\gamma)^2B_2\Big]}(b_2+c_2).$$

By using Lemma 1, (22) and (26), we obtain

$$\begin{aligned} |a_2|^2 &\leq \frac{|B_1|^3 \left(1 - |b_1|^2\right)}{\left|(1 + 2\gamma + 2\rho)B_1^2 - (1 + \gamma)^2 B_2\right|'} \\ &= \frac{|B_1|^3}{\left|(1 + 2\gamma + 2\rho)B_1^2 - (1 + \gamma)^2 B_2\right| + (1 + \gamma)^2 |B_1|}. \end{aligned}$$

Therefore,

$$|a_{2}| \leq \frac{|B_{1}|\sqrt{|B_{1}|}}{\sqrt{\left|(1+2\gamma+2\rho)B_{1}^{2}-(1+\gamma)^{2}B_{2}\right|+(1+\gamma)^{2}|B_{1}|}}.$$
(28)

By noting that,

$$\begin{aligned} &(1+2\gamma+2\rho)B_1^2 - (1+\gamma)^2 B_2 \\ &= \frac{1}{2}(1-\cos\alpha)\{2(1+2\gamma+2\rho)(1-\cos\alpha) + (1+\gamma)^2(1+3\cos\alpha)\}, \\ &= \frac{1}{2}(1-\cos\alpha)\{2(1+\gamma)^2(1+\cos\alpha) + [1+\gamma(2-\gamma)+4\rho](1-\cos\alpha)\} > 0, \end{aligned}$$

now substituting the values of B_1 and B_2 from (8) in (28), we obtain

$$|a_2| \le \frac{\sqrt{2}(1-\cos \alpha)}{\sqrt{2(1+2\gamma+2\rho)(1-\cos \alpha)+3(1+\gamma)^2(1+\cos \alpha)}},$$

which is the desired estimation for $|a_2|$.

Next, in order to estimate $|a_3|$, subtracting (25) from (23) ,we obtain

$$a_3 = a_2^2 + \frac{B_1}{2(1+2\gamma+2\rho)}(b_2 - c_2).$$

By using Lemma 1 and (22), we find

$$|a_3| \leq \left[1 - \frac{(1+\gamma)^2}{(1+2\gamma+2\rho)|B_1|}\right] |a_2|^2 + \frac{|B_1|}{(1+2\gamma+2\rho)}.$$

Case 1. If $1 - \frac{(1+\gamma)^2}{(1+2\gamma+2\rho)|B_1|} \leq 0$, then

$$|a_3| \leq \frac{|B_1|}{(1+2\gamma+2\rho)}.$$

2

Case 2. If
$$1 - \frac{(1+\gamma)^2}{(1+2\gamma+2\rho)|B_1|} > 0$$
, then
 $|a_3| \le \left[1 - \frac{(1+\gamma)^2}{(1+2\gamma+2\rho)|B_1|}\right] |a_2|^2 + \frac{|B_1|}{(1+2\gamma+2\rho)}$

Therefore,

$$|a_{3}| \leq \begin{cases} \frac{1-\cos\alpha}{(1+2\gamma+2\rho)} & if \ \cos\alpha \geq 1 - \frac{(1+\gamma)^{2}}{(1+2\gamma+2\rho)} \\ \frac{2[(1+2\gamma+2\rho)(1-\cos\alpha)-(1+\gamma)^{2}](1-\cos\alpha)}{(1+2\gamma+2\rho)[2(1+2\gamma+2\rho)(1-\cos\alpha)+3(1+\gamma)^{2}(1+\cos\alpha)]} + \frac{1-\cos\alpha}{1+2\gamma+2\rho} & if \ \cos\alpha < 1 - \frac{(1+\gamma)^{2}}{(1+2\gamma+2\rho)(1+2\gamma+2\rho)} \end{cases}$$

which completes the proof. \Box

3. Conclusions

In this paper, we have used the Legendre polynomials to define and study two new subclasses of the bi-univalent function class σ . Moreover, we have provided the estimations for the first two Taylor–Maclaurin coefficients $|a_2|$ and $|a_3|$ for the functions belonging to these new subclasses. Some special cases have been discussed as applications of our main results.

Author Contributions: Conceptualization, A.M.Y.L.; Funding acquisition, A.O.B. and A.Z.B.; Investigation, A.Z.B.; Project administration, A.O.B.; Supervision, A.M.Y.L. and A.O.B.; Writing—original draft, A.Z.B.; Writing—review & editing, A.M.Y.L. and A.O.B. All authors have read and agreed to the published version of the manuscript.

Funding: The Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, Saudi Arabia, has funded this project, under grant no. (FP-177-43).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing not applicable.

Acknowledgments: The authors would like to express their thanks to the referees and Rosihan M. Ali for their helpful comments and suggestions, which improved the presentation of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Kukushkin, M.V. On Solvability of the Sonin–Abel Equation in the Weighted Lebesgue Space. Fractal Fract. 2021, 5, 21. [CrossRef]
- 2. Muckenhoupt, B. Mean Convergence of Jacobi Series. Proc. Am. Math. Soc. 1969, 23, 306–310. [CrossRef]
- 3. Goodman, A.W. Univalent Functions; Mariner Publishing Company Inc.: Tampa, FL, USA, 1983; Volumes I and II.
- 4. Duren, P.L. Univalent Functions, Grundlehren Math. Wissenschaften, Band 259; Springer: Berlin/Heidelberg, Germany, 1983.
- 5. Lewin, M. On a coefficient problem for bi-univalent functions. Proc. Am. Math. Soc. 1967, 18, 63-68. [CrossRef]
- 6. Altınkaya, S. Bounds for a new subclass of bi-univalent functions subordinate to the Fibonacci numbers. *Turk. J. Math.* **2020**, 44, 553–560.
- 7. Altınkaya, S.; Yalcın, S. Faber polynomial coefficient bounds for a subclass of bi-univalent functions. *C. R. Math.* 2015, 353, 1075–1080. [CrossRef]
- 8. Amourah, A.; Alamoush, A.; Al-Kaseasbeh, M. Gegenbauer polynomials and Bi-univalent functions. *Palest. J. Math.* 2021, 10, 625–632.
- Amourah, A.; Frasin, B.A.; Abdeljawad, T. Fekete-Szego inequality for analytic and Biunivalent functions subordinate to Gegenbauer polynomials. J. Funct. Space 2021, 2021, 5574673. [CrossRef]
- Caglar, M.; Orhan, H.; Yagmur, N. Coefficient bounds for new subclasses of bi-univalent functions. *Filomat* 2013, 27, 1165–1171. [CrossRef]
- 11. Deniz, E. Certain subclasses of bi-univalent functions satisfying subordinate conditions. J. Class. Anal. 2013, 2, 49–60. [CrossRef]
- 12. Goyal, S.P.; Kumar, R. Coefficient estimates and quasi-subordination properties associated with certain subclasses of analytic and bi-univalent functions. *Math. Slov.* **2015**, *65*, 533–544. [CrossRef]
- 13. Hayami, T.; Owa, S. Coefficient bounds for bi-univalent functions. Panam. Am. Math. J. 2012, 22, 15–26.
- 14. Lashin, A.Y. On certain subclasses of analytic and bi-univalent functions. J. Egypt. Math. Soc. 2016, 24, 220–225. [CrossRef]
- 15. Lashin, A.Y. Coefficient estimates for two subclasses of analytic and bi-univalent functions. *Ukr. Math. J.* **2019**, *70*, 1484–1492. [CrossRef]
- 16. Lashin, A.Y.; El-Emam, F.Z. Faber polynomial coefficients for certain subclasses of analytic and bi-univalent functions. *Turk. J. Math.* **2020**, *44*, 1345–1361. [CrossRef]
- 17. Magesh, N.; Rosy, T.; Varma, S. Coefficient estimate problem for a new subclass of bi-univalent functions. *J. Complex Anal.* **2013**, 2013, 474231.
- Magesh, N.; Yamini, J. Coefficient bounds for certain subclasses of bi-univalent functions. *Internat. Math. Forum* 2013, *8*, 1337–1344.
 [CrossRef]
- 19. Murugusundaramoorthy, G.; Magesh, N.; Prameela, V. Coefficient bounds for certain subclasses of bi-univalent function. *Abstr. Appl. Anal.* 2013, 2013, 573017. [CrossRef]
- 20. Peng, Z.-G.; Han, Q.-Q. On the coefficients of several classes of bi-univalent functions. *Acta Math. Sci. Ser. B Engl. Ed.* 2014, 34, 228–240. [CrossRef]

- 21. Porwal, S.; Darus, M. On a new subclass of bi-univalent functions. J. Egypt. Math. Soc. 2013, 21, 190–193. [CrossRef]
- 22. Srivastava, H.M.; Bulut, S.; Caglar, M.; Yagmur, N. Coefficient estimates for a general subclass of analytic and bi-univalent functions. *Filomat* 2013, 27, 831–842. [CrossRef]
- Zireh, A.; Adegani, E.A.; Bidkham, M. Faber polynomial coefficient estimates for subclass of bi-univalent functions defined by quasi-subordinate. *Math. Slov.* 2018, 68, 369–378. [CrossRef]
- 24. Ali, R.M.; Lee, S.K.; Ravichandran, V.; Supramaniam, S. Coefficient estimates for bi-univalent Ma-Minda starlike and convex functions. *Appl. Math. Lett.* **2012**, *25*, 344–351. [CrossRef]
- 25. Hamidi, S.G.; Jahangiri, J.M. Faber polynomial coefficients of bi-subordinate functions. C. R. Math. 2016, 354, 365–370. [CrossRef]
- 26. Frasin, B.A.; Aouf, M.K. New subclasses of bi-univalent functions. Appl. Math. Lett. 2011, 24, 1569–1573. [CrossRef]
- 27. Srivastava, H.M.; Mishra, A.K.; Gochhayat, P. Certain subclasses of analytic and bi-univalent functions. *Appl. Math. Lett.* 2010, 23, 1188–1192. [CrossRef]