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1. Introduction

In 1782, Adrien-Marie Legendre discovered Legendre polynomials, which have numer-
ous physical applications. The Legendre polynomials Pn(x), sometimes called Legendre
functions of the first kind, are the particular solutions to the Legendre differential equation(

1− x2
)

y
′′ − 2xy

′
+ n(n + 1)y = 0, n ∈ N0, |x| < 1.

Here and in the following, let C and N denote the sets of complex numbers and
positive integers, respectively, and let N0 = N ∪ {0}. The Legendre polynomials are
defined by Rodrigues’ formula

Pn(x) =
1

2nn!
dn

dxn

(
x2 − 1

)n
(n ∈ N0),

for arbitrary real or complex values of the variable x. The Legendre polynomials Pn(x) are
generated by the following function

1√
1− 2xt + t2

=
∞

∑
n=0

Pn(x)tn, (1)

where the particular branch of
(
1− 2xt + t2)− 1

2 is taken to be 1 as t → 0. The first few
Legendre polynomials are

P0(x) = 1, P1(x) = x, P2(x) =
1
2

(
3x2 − 1

)
, P3(x) =

1
2

(
5x3 − 3x

)
.

A general case of the Legendre polynomials and their applications can be found in [1,2].
Let A be the class of analytic functions in the open unit disc U = {z ∈ C : |z| < 1} with
the following Taylor–Maclaurin series expansion

f (z) = z +
∞

∑
n=2

anzn , (2)
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and let S be the subclass ofA consisting of univalent functions in U. An important member
of the class S is the Koebe function

K(z) = z(1− z)−2 =
1
4

[(
1 + z
1− z

)2
− 1

]
=

∞

∑
n=1

nzn ,

for every z ∈ U. This function maps U in a one-to-one manner onto the domain D that
consists of the entire complex plane except for a slit along the negative real axis from
w = −∞ to w = − 1

4 . The function

φ(z) =
1− z√

1− 2z cos α + z2
,

is in P for every real α (see [[3] Page 102]), where P is the Caratheodory class defined by

P = {p(z) : <(p(z)) > 0, z ∈ U},

p(z) = 1 + c1z + c2z2 + · · · . By using (1), it is easy to check that

φ(z) = 1 +
∞
∑

n=1
[Pn(cos α)− Pn−1(cos α)]zn,

= 1 +
∞
∑

n=1
Bnzn, z ∈ U.

(3)

If we consider

1

(φ(z))2 =
1− 2z cos α + z2

(1− z)2 ,

= 1 + 2(1− cos α)
z

(1− z)2 .

From the geometric properties of the Koebe function, the function φ maps the unit
disc onto the right plane <(w) > 0 minus the slit along the positive real axis from 1

|cos α
2 |

to ∞. φ(U) is univalent, symmetric with respect to the real axis and starlike with respect
to φ(0) = 1. It is well known, by using the Koebe one-quarter theorem [4], that every
univalent function f ∈ S has an inverse function f−1, which is defined by

f−1( f (z)) = z (z ∈ U),

and
f ( f−1(w)) = w (w ∈ U∗ = {w ∈ C : |w| < 1

4
}),

where

g(w) = f−1(w) = w− a2w2 + (2a2
2 − a3)w3 − (5a3

2 − 5a2a3 + a4)w4 + ... .

The function f ∈ S is said to be a bi-univalent function if its inverse f−1 is also
univalent in U. Let σ be the class of all bi-univalent functions in U. Lewin [5] is the first
author who introduced the class of analytic bi-univalent functions and estimated the second
coefficient |a2|. Many authors created several subclasses of analytic bi-univalent functions
and found the bounds for the first two coefficients |a2| and |a3| , see for example [6–23]. Let
Ω be the class of all analytic functions ω in U which satisfy these conditions ω(0) = 0 and
|ω(z)| < 1 for all z ∈ U. A function f is said to be subordinate to g, written as f (z) ≺ g(z)
if there exists a Schwarz function ω ∈ Ω such that f (z) = g(ω(z)). Furthermore, if the
function g is univalent in U, then f is subordinate to g is equivalent to f (0) = g(0) and
f (U) ⊂ g(U).
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Definition 1. A function f ∈ σ belongs to the class Lσ(λ, φ) with 0 ≤ λ ≤ 1 if the following
subordination conditions are satisfied

λ

(
1 +

z f
′′
(z)

f ′(z)

)
+ (1− λ)

(
z f
′
(z)

f (z)

)
≺ φ(z) (z ∈ U),

and

λ

(
1 +

wg
′′
(w)

g′(w)

)
+ (1− λ)

(
wg

′
(w)

g(w)

)
≺ φ(w) (w ∈ U),

where g(w) = f−1(w).

Definition 2. A function f ∈ σ belongs to the class Lσ(γ, ρ, φ) with 0 ≤ γ, ρ ≤ 1 if the following
subordination conditions are satisfied

(1− γ + 2ρ)
f (z)

z
+ (γ− 2ρ) f

′
(z) + ρz f

′′
(z) ≺ φ(z) (z ∈ U),

and

(1− γ + 2ρ)
g(w)

w
+ (γ− 2ρ)g

′
(w) + ρwg

′′
(w) ≺ φ(w) (w ∈ U),

where g(w) = f−1(w).

Remark 1. In Definition 1, if λ = 1 and α = π, then the subclass in [15] will be obtained. If
λ = 0 and α = π, then the subclass in [24] will be obtained. In addition, putting α = π, this
yields to the subclass in [25].

Remark 2. In Definition 2, taking ρ = 0 and α = π, the subclass in [26] will be obtained. In
addition, putting γ = 1, ρ = 0 and α = π, this yields to the subclass in [27].

In this paper, the estimates for initial coefficients of functions in the two classes
Lσ(λ, φ) and Lσ(γ, ρ, φ) are found.

2. The Estimate of the Coefficients for the Classes Lσ(λ, φ) and Lσ(γ, ρ, φ)

Lemma 1 ([4]). Let ω ∈ Ω with ω(z) =
∞
∑

n=1
ωnzn (z ∈ U). Then

|ω1| ≤ 1, |ωn| ≤ 1− |ω1|2 (n ∈ N\{1}).

Theorem 1. Let the function f ∈ Lσ(λ, φ). Then

|a2| ≤
√

2(1− cos α)√
(1 + λ)[3λ(cos α + 1) + 5 + cos α]

,

and

|a3| ≤


1−cos α
2(1+2λ)

i f cos α ≥ 1− (1+λ)2

2(1+2λ)

(1−cos α)[2(1+2λ)(1−cos α)−(1+λ)2]
(1+2λ)(1+λ)[3λ(cos α+1)+5+cos α]

+ 1−cos α
2(1+2λ)

i f cos α < 1− (1+λ)2

2(1+2λ)

Proof. Since f ∈ Lσ(λ, φ), from Definition 1, we have

λ

(
1 +

z f
′′
(z)

f ′(z)

)
+ (1− λ)

(
z f
′
(z)

f (z)

)
= φ(u(z)) (z ∈ U), (4)
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and

λ

(
1 +

wg
′′
(w)

g′(w)

)
+ (1− λ)

(
wg

′
(w)

g(w)

)
= φ(v(w)) (w ∈ U), (5)

for some 0 ≤ λ ≤ 1, where g(w) = f−1(w) and u, v ∈ Ω such that

u(z) =
∞

∑
n=1

bnzn,

and

v(w) =
∞

∑
n=1

cnwn.

Then

φ(u(z)) = 1 + B1b1z +
(

B1b2 + B2b2
1

)
z2 +

(
B1b3 + 2b1b2B2 + B3b3

1

)
z3 + ..., (6)

and

φ(v(w)) = 1 + B1c1w +
(

B1c2 + B2c2
1

)
w2 +

(
B1c3 + 2c1c2B2 + B3c3

1

)
w3 + ..., (7)

where

B1 = cos α− 1, B2 =
1
2
(cos α− 1)(1 + 3 cos α) and B3 =

1
2

(
5 cos3 α− 3 cos2 α− 3 cos α + 1

)
. (8)

Then, Equations (4) and (5) become

λ
[
1 + 2a2z +

(
6a3 − 4a2

2
)
z2 + ...

]
+ (1− λ)

[
1 + a2z +

(
2a3 − a2

2
)
z2 + ...

]
= 1 + B1b1z +

(
B1b2 + B2b2

1
)
z2 +

(
B1b3 + 2b1b2B2 + B3b3

1
)
z3 + ...,

(9)

and

λ
[
1− 2a2w +

(
8a2

2 − 6a3
)
w2 + ...

]
+ (1− λ)

[
1− a2w +

(
3a2

2 − 2a3
)
w2 + ...

]
= 1 + B1c1w +

(
B1c2 + B2c2

1
)
w2 +

(
B1c3 + 2c1c2B2 + B3c3

1
)
w3 + ....

(10)

Now, equating the corresponding coefficients in (9) and (10), we get

(1 + λ)a2 = B1b1, (11)

2(1 + 2λ)a3 − (1 + 3λ)a2
2 = B1b2 + B2b2

1, (12)

− (1 + λ)a2 = B1c1, (13)

(3 + 5λ)a2
2 − 2(1 + 2λ)a3 = B1c2 + B2c2

1. (14)

(11) and (13) yield
b1 = −c1, (15)

and

b2
1 + c2

1 =
2(1 + λ)2

B2
1

a2
2. (16)

From (12), (14) and (16), we have

a2
2 =

B3
1

2(1 + λ)
[
B2

1 − (1 + λ)B2
] (b2 + c2).
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By using Lemma 1, (11) and (15), we obtain

|a2|2 ≤
|B1|3

(
1− |b1|2

)
(1 + λ)

∣∣B2
1 − (1 + λ)B2

∣∣ ,
=

|B1|3

(1 + λ)
[∣∣B2

1 − (1 + λ)B2
∣∣+ (1 + λ)|B1|

] .

Therefore,

|a2| ≤
|B1|

√
|B1|√

(1 + λ)
[∣∣B2

1 − (1 + λ)B2
∣∣+ (1 + λ)|B1|

] . (17)

By noting that,

B2
1 − (1 + λ)B2 =

1
2
(1− cos α){(1 + 3λ) cos α + 3 + λ},

≥ (1− cos α)(1− λ) ≥ 0,

now substituting the values of B1 and B2 from (8) in (17), we obtain

|a2| ≤
√

2(1− cos α)√
(1 + λ)[3λ(cos α + 1) + 5 + cos α]

,

which is the required estimation for |a2|.
Next, in order to estimate |a3|, subtracting (14) from (12), we obtain

a3 = a2
2 +

B1

4(1 + 2λ)
(b2 − c2).

By using Lemma 1 and (11),we find

|a3| ≤
[

1− (1 + λ)2

2(1 + 2λ)|B1|

]
|a2|2 +

|B1|
2(1 + 2λ)

.

Case 1. If 1− (1+λ)2

2(1+2λ)|B1|
≤ 0, then

|a3| ≤
|B1|

2(1 + 2λ)
.

Case 2. If 1− (1+λ)2

2(1+2λ)|B1|
> 0, then

|a3| ≤
[

1− (1 + λ)2

2(1 + 2λ)|B1|

]
|a2|2 +

|B1|
2(1 + 2λ)

.

Therefore,

|a3| ≤


1−cos α
2(1+2λ)

i f cos α ≥ 1− (1+λ)2

2(1+2λ)

(1−cos α)[2(1+2λ)(1−cos α)−(1+λ)2]
(1+2λ)(1+λ)[3λ(cos α+1)+5+cos α]

+ 1−cos α
2(1+2λ)

i f cos α < 1− (1+λ)2

2(1+2λ)

which completes the proof.
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Theorem 2. Let the function f ∈ Lσ(γ, ρ, φ). Then

|a2| ≤
√

2(1− cos α)√
2(1 + 2γ + 2ρ)(1− cos α) + 3(1 + γ)2(1 + cos α)

,

and

|a3| ≤


1−cos α

(1+2γ+2ρ)
i f cos α ≥ 1− (1+γ)2

(1+2γ+2ρ)

2[(1+2γ+2ρ)(1−cos α)−(1+γ)2](1−cos α)

(1+2γ+2ρ)[2(1+2γ+2ρ)(1−cos α)+3(1+γ)2(1+cos α)]
+ 1−cos α

1+2γ+2ρ i f cos α < 1− (1+γ)2

(1+2γ+2ρ)

Proof. Since f ∈ Lσ(γ, ρ, φ), from Definition 2, we have

(1− γ + 2ρ)
f (z)

z
+ (γ− 2ρ) f

′
(z) + ρz f

′′
(z) = φ(u(z)) (z ∈ U), (18)

and

(1− γ + 2ρ)
g(w)

w
+ (γ− 2ρ)g

′
(w) + ρwg

′′
(w) = φ(v(w)) (w ∈ U), (19)

for 0 ≤ γ, ρ ≤ 1, where g(w) = f−1(w) and u, v ∈ Ω are defined as in Theorem 1. Then,
rewriting (18) and (19) as

(1− γ + 2ρ)
[
1 + a2z + a3z2 + ...

]
+ (γ− 2ρ)

[
1 + 2a2z + 3a3z2 + ...

]
+ρz[2a2 + 6a3z + ...] = 1 + B1b1z +

(
B1b2 + B2b2

1
)
z2

+
(

B1b3 + 2b1b2B2 + B3b3
1
)
z3 + ...,

(20)

and

(1− γ + 2ρ)
[
1− 2a2w +

(
2a2

2 − a3
)
w2 + ...

]
+ (γ− 2ρ)

[
1− 2a2w +

(
6a2

2 − 3a3
)
w2 + ...

]
+ρw

[
−2a2 +

(
12a2

2 − 6a3
)
w + ...

]
= 1 + B1c1w +

(
B1c2 + B2c2

1
)
w2

+
(

B1c3 + 2c1c2B2 + B3c3
1
)
w3 + ...,

(21)

where B1, B2 and B3 are defined as in (8). Now, equating the coefficients in (20) and
(21) yields

(1 + γ)a2 = B1b1, (22)

(1 + 2γ + 2ρ)a3 = B1b2 + B2b2
1, (23)

− (1 + γ)a2 = B1c1, (24)

(1 + 2γ + 2ρ)
(

2a2
2 − a3

)
= B1c2 + B2c2

1. (25)

From (22) and (24), it is easy to see that

b1 = −c1, (26)

and

b2
1 + c2

1 =
2(1 + γ)2

B2
1

a2
2. (27)

From (23), (25) and (27), we have

a2
2 =

B3
1

2
[
(1 + 2γ + 2ρ)B2

1 − (1 + γ)2B2

] (b2 + c2).
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By using Lemma 1, (22) and (26), we obtain

|a2|2 ≤
|B1|3

(
1− |b1|2

)
∣∣∣(1 + 2γ + 2ρ)B2

1 − (1 + γ)2B2

∣∣∣ ,
=

|B1|3∣∣∣(1 + 2γ + 2ρ)B2
1 − (1 + γ)2B2

∣∣∣+ (1 + γ)2|B1|
.

Therefore,

|a2| ≤
|B1|

√
|B1|√∣∣∣(1 + 2γ + 2ρ)B2

1 − (1 + γ)2B2

∣∣∣+ (1 + γ)2|B1|
. (28)

By noting that,

(1 + 2γ + 2ρ)B2
1 − (1 + γ)2B2

=
1
2
(1− cos α){2(1 + 2γ + 2ρ)(1− cos α) + (1 + γ)2(1 + 3 cos α)},

=
1
2
(1− cos α){2(1 + γ)2(1 + cos α) + [1 + γ(2− γ) + 4ρ](1− cos α)} > 0,

now substituting the values of B1 and B2 from (8) in (28), we obtain

|a2| ≤
√

2(1− cos α)√
2(1 + 2γ + 2ρ)(1− cos α) + 3(1 + γ)2(1 + cos α)

,

which is the desired estimation for |a2|.
Next, in order to estimate |a3|, subtracting (25) from (23) ,we obtain

a3 = a2
2 +

B1

2(1 + 2γ + 2ρ)
(b2 − c2).

By using Lemma 1 and (22), we find

|a3| ≤
[

1− (1 + γ)2

(1 + 2γ + 2ρ)|B1|

]
|a2|2 +

|B1|
(1 + 2γ + 2ρ)

.

Case 1. If 1− (1+γ)2

(1+2γ+2ρ)|B1|
≤ 0, then

|a3| ≤
|B1|

(1 + 2γ + 2ρ)
.

Case 2. If 1− (1+γ)2

(1+2γ+2ρ)|B1|
> 0, then

|a3| ≤
[

1− (1 + γ)2

(1 + 2γ + 2ρ)|B1|

]
|a2|2 +

|B1|
(1 + 2γ + 2ρ)

.

Therefore,

|a3| ≤


1−cos α

(1+2γ+2ρ)
i f cos α ≥ 1− (1+γ)2

(1+2γ+2ρ)

2[(1+2γ+2ρ)(1−cos α)−(1+γ)2](1−cos α)

(1+2γ+2ρ)[2(1+2γ+2ρ)(1−cos α)+3(1+γ)2(1+cos α)]
+ 1−cos α

1+2γ+2ρ i f cos α < 1− (1+γ)2

(1+2γ+2ρ)
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which completes the proof.

3. Conclusions

In this paper, we have used the Legendre polynomials to define and study two new
subclasses of the bi-univalent function class σ. Moreover, we have provided the estimations
for the first two Taylor–Maclaurin coefficients |a2| and |a3| for the functions belonging
to these new subclasses. Some special cases have been discussed as applications of our
main results.
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