A High-Resolution Dyadic Transform for Non-Stationary Signal Analysis
Abstract
:1. Introduction
2. Definitions
Fourier and Wavelet Transforms
3. Dyadic Te-Transform
3.1. Inverse Dyadic Te-Transform
3.2. Properties of the Dyadic Te-Transform
3.3. Energy Analysis
3.3.1. Energy Distribution in the Frequency Dyadic Spectrum
4. Te-Periodogram
5. Validation
5.1. Experimental Results and Discussion of Dyadic Te-Transform and Its Inverse
5.2. Analysis of a Signal in the Te Domain
5.3. Experimental Result and Discussion of Te-Periodogram
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Meyer, Y. Wavelets: Algorithms & Applications; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1993. [Google Scholar]
- Goswami, J.C.; Chan, A.K. Fundamentals of Wavelets: Theory, Algorithms, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Mallat, S. A Wavelet Tour of Signal Processing, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Seshukumar, K.; Saravanan, R.; Suraj, M.S. Spectrum sensing review in cognitive radio. In Proceedings of the 2013 International Conference on Emerging Trends in VLSI, Embedded System, Nano Electronics and Telecommunication System, ICEVENT, Tiruvannamalai, India, 7–9 January 2013; pp. 1–4. [Google Scholar]
- Omer, A.E. Review of spectrum sensing techniques in Cognitive Radio networks. In Proceedings of the 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering, ICCNEEE, Khartoum, Sudan, 14 January 2016; pp. 439–446. [Google Scholar]
- Goyal, D.; Pabla, B.S. The Vibration Monitoring Methods and Signal Processing Techniques for Structural Health Monitoring: A Review. Arch. Comput. Methods Eng. 2016, 23, 585–594. [Google Scholar] [CrossRef]
- Li, L.; Cai, H.; Han, H.; Jiang, Q.; Ji, H. Adaptive short-time fourier transform and synchrosqueezing transform for non-stationary Signal Separation. Signal Process. 2020, 166, 107231. [Google Scholar] [CrossRef]
- Przystupa, K.; Ambrożkiewicz, B.; Litak, G. Diagnostics of Transient States in Hydraulic Pump System with Short Time Fourier Transform. Adv. Sci. Technol. Res. J. 2020, 14, 178–183. [Google Scholar] [CrossRef]
- Zhou, S.; Xiao, M.; Bartos, P.; Filip, M.; Geng, G. Remaining Useful Life Prediction and Fault Diagnosis of Rolling Bearings Based on Short-Time Fourier Transform and Convolutional Neural Network. Shock Vib. 2020, 1–14. [Google Scholar] [CrossRef]
- Liebhart, B.; Komsiyska, L.; Endisch, C. Passive impedance spectroscopy for monitoring lithium-ion battery cells during vehicle operation. J. Power Sources 2020, 449, 227297. [Google Scholar] [CrossRef]
- KévinGuépié, B.; Grall-Maës, E.; Beauseroy, P.; Nikiforov, I.; Michel, F. Reliable leak detection in a heat exchanger of a sodium-cooled fast reactor. Ann. Nucl. Energy 2020, 142, 107357. [Google Scholar] [CrossRef]
- Wan, J.; Yao, K.; Peng, E.; Cao, Y.; U, Y.N.I.; Yu, J. Separation characteristics between time domain and frequency domain of wireless power communication signal in wind farm. EURASIP J. Wirel. Commun. Netw. 2020, 2020, 1–12. [Google Scholar] [CrossRef]
- Pham, M.T.; Kim, J.M.; Kim, C.H. Accurate bearing fault diagnosis under variable shaft speed using convolutional neural networks and vibration spectrogram. Appl. Sci. 2020, 10, 6385. [Google Scholar] [CrossRef]
- Manhertz, G.; Bereczky, A. STFT spectrogram based hybrid evaluation method for rotating machine transient vibration analysis. Mech. Syst. Signal Process. 2021, 154, 107583. [Google Scholar] [CrossRef]
- Tran, T.; Lundgren, J. Drill Fault Diagnosis Based on the Scalogram and Mel Spectrogram of Sound Signals Using Artificial Intelligence. IEEE Access 2020, 8, 203655–203666. [Google Scholar] [CrossRef]
- Sahoo, S.; Das, J.K. Application of Adaptive Wavelet Transform for Gear Fault Diagnosis Using Modified-LLMS Based Filtered Vibration Signal. Recent Adv. Electr. Electron. Eng. 2018, 12, 257–262. [Google Scholar] [CrossRef]
- Maher, P.; Young, N. An Introduction to Hilbert Space; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Cooley, J.W.; Lewis, P.A.W.; Welch, P.D. The Fast Fourier Transform and Its Applications; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1969. [Google Scholar]
- Napolitano, A. Cyclostationary Processes and Time Series: Theory, Applications, and Generalizations; Academic Press: London, UK, 2019. [Google Scholar]
- Hong, D.; Wang, J.; Gardner, R. Real Analysis with an Introduction to Wavelets and Applications; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- Griffel, D.H.; Daubechies, I. Ten Lectures on Wavelets; Siam: Philadelphia, PA, USA, 1995. [Google Scholar]
- Gao, R.X.; Yan, R. Wavelets: Theory and Applications for Manufacturing; Springer Science & Business Media: Berlin, Germany, 2011. [Google Scholar]
- Manolakis, D.; Ingle, V.; Kogon, S. Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering, and Array Processing; McGraw-Hill: Boston, MA, USA, 2005. [Google Scholar]
- Shah, F.A.; Debnath, L. Wavelet neural network model for yield spread forecasting. Mathematics 2017, 5, 72. [Google Scholar] [CrossRef] [Green Version]
- Bakić, D.; Krishtal, I.; Wilson, E.N. Parseval frame wavelets with En(2)-dilations. Appl. Comput. Harmon. Anal. 2005, 19, 386–431. [Google Scholar] [CrossRef] [Green Version]
- Luthy, P.M.; Weiss, G.L.; Wilson, E.N. Projections and dyadic Parseval frame MRA wavelets. Appl. Comput. Harmon. Anal. 2015, 39, 511–533. [Google Scholar] [CrossRef]
- Li, Z.; Shi, X. Parseval frame wavelet multipliers in L2(ℝd). Chin. Ann. Math. Ser. B 2012, 33, 949–960. [Google Scholar] [CrossRef]
- Kadambe, S.; Boudreaux-Bartels, G.F. A Comparison of the Existence of “Cross Terms” in the Wigner Distribution and the Squared Magnitude of the Wavelet Transform and the Short Time Fourier Transform. IEEE Trans. Signal Process. 1992, 40, 2498–2517. [Google Scholar] [CrossRef]
- Pachori, R.B.; Sircar, P. A novel technique to reduce cross terms in the squared magnitude of the wavelet transform and the short-time Fourier transform. In Proceedings of the 2005 IEEE International Workshop on Intelligent Signal Processing, Faro, Portugal, 1–3 September 2005; pp. 217–222. [Google Scholar]
- Proakis, J.G.; Monolakis, D.G. Digital Signal Processing: Principles, Algorithms, and Applications; Pearson Education: New Delhi, India, 1996. [Google Scholar]
- Nuñez, M. Time Frequency Analysis Using CWT. MATLAB Central File Exchange. Retrieved 11 November 2021. Available online: https://www.mathworks.com/matlabcentral/fileexchange/64860-time-frequency-analysis-using-cwt (accessed on 25 July 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trutié-Carrero, E.; Seuret-Jiménez, D.; Nieto-Jalil, J.M. A High-Resolution Dyadic Transform for Non-Stationary Signal Analysis. Mathematics 2021, 9, 3041. https://doi.org/10.3390/math9233041
Trutié-Carrero E, Seuret-Jiménez D, Nieto-Jalil JM. A High-Resolution Dyadic Transform for Non-Stationary Signal Analysis. Mathematics. 2021; 9(23):3041. https://doi.org/10.3390/math9233041
Chicago/Turabian StyleTrutié-Carrero, Eduardo, Diego Seuret-Jiménez, and José M. Nieto-Jalil. 2021. "A High-Resolution Dyadic Transform for Non-Stationary Signal Analysis" Mathematics 9, no. 23: 3041. https://doi.org/10.3390/math9233041
APA StyleTrutié-Carrero, E., Seuret-Jiménez, D., & Nieto-Jalil, J. M. (2021). A High-Resolution Dyadic Transform for Non-Stationary Signal Analysis. Mathematics, 9(23), 3041. https://doi.org/10.3390/math9233041