# Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?

^{1}

^{3}S

^{2}, The Clarkson Center for Complex Systems Science, Clarkson University, Potsdam, NY 13699, USA

^{2}

^{*}

## Abstract

**:**

## 1. Significance

## 2. Instantaneous Lyapunov Exponent Analysis

#### 2.1. Instantaneous Attraction and Repulsion Rates

#### 2.2. Finite-Time Lyapunov Exponent

## 3. On Evolution of Observations, the Koopman Operator and Its Eigenfunction PDE

## 4. One-Dimensional Vector Fields

## 5. Two-Dimensional Non-Linear Saddle Flow

## 6. General Two-Dimensional Vector Fields

## 7. Polynomial Vector Fields

#### 7.1. Quadratic Vector Fields

#### 7.2. Cubic Vector Fields

#### 7.3. Cubic Vector Field Example

#### 7.4. Cubic Vector Field Transformation to Simplify

#### 7.5. Properties of KEIGs of 2-Dimensional Cubic Vector Fields

#### 7.6. A Family of Polynomial Vector Fields with a KEIG Attraction Rate

## 8. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Appendix A. Verification of the Form of the Koopman Eigenfunctions

## Appendix B. Arbitrary Functions g(x) Can Be Written as an Infinite Series of Koopman Eigenfunctions

## References

- Haller, G.; Yuan, G. Lagrangian coherent structures and mixing in two-dimensional turbulence. Physical D
**2000**, 147, 352–370. [Google Scholar] [CrossRef] - Shadden, S.C.; Lekien, F.; Marsden, J.E. Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys. D Nonlinear Phenom.
**2005**, 212, 271–304. [Google Scholar] [CrossRef] - Haller, G. Lagrangian Coherent Structures. Annu. Rev. Fluid Mech.
**2015**, 47, 137–162. [Google Scholar] [CrossRef][Green Version] - Lekien, F.; Ross, S.D. The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos Interdiscip. J. Nonlinear Sci.
**2010**, 20, 017505. [Google Scholar] [CrossRef][Green Version] - Serra, M.; Haller, G. Objective Eulerian coherent structures. Chaos Interdiscip. J. Nonlinear Sci.
**2016**, 26, 053110. [Google Scholar] [CrossRef][Green Version] - Nolan, P.J.; Serra, M.; Ross, S.D. Finite-time Lyapunov exponents in the instantaneous limit and material transport. Nonlinear Dyn.
**2020**, 100, 3825–3852. [Google Scholar] [CrossRef] - Nolan, P.J.; Pinto, J.; González-Rocha, J.; Jensen, A.; Vezzi, C.; Bailey, S.; de Boer, G.; Diehl, C.; Laurence, R.; Powers, C.; et al. Coordinated unmanned aircraft system (UAS) and ground-based weather measurements to predict Lagrangian coherent structures (LCSs). Sensors
**2018**, 18, 4448. [Google Scholar] [CrossRef] [PubMed][Green Version] - Brunton, S.L.; Rowley, C.W. Fast computation of FTLE fields for unsteady flows: A comparison of methods. Chaos Interdiscip. J. Nonlinear Sci.
**2010**, 20, 017503. [Google Scholar] [CrossRef] - Rypina, I.I.; Scott, S.; Pratt, L.J.; Brown, M.G. Investigating the connection between complexity of isolated trajectories and Lagrangian coherent structures. Nonlinear Process. Geophys.
**2011**, 18, 977–987. [Google Scholar] [CrossRef] - Pratt, L.J.; Rypina, I.I.; Özgökmen, T.M.; Wang, P.; Childs, H.; Bebieva, Y. Chaotic advection in a steady, three-dimensional, Ekman-driven eddy. J. Fluid Mech.
**2014**, 738, 143–183. [Google Scholar] [CrossRef][Green Version] - Lekien, F.; Shadden, S.C.; Marsden, J.E. Lagrangian coherent structures in n-dimensional systems. J. Math. Phys.
**2007**, 48, 065404. [Google Scholar] [CrossRef] - Budišić, M.; Mohr, R.; Mezić, I. Applied Koopmanism. Chaos Interdiscip. J. Nonlinear Sci.
**2012**, 22, 047510. [Google Scholar] [CrossRef][Green Version] - Kutz, J.N.; Brunton, S.L.; Brunton, B.W.; Proctor, J.L. Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems; SIAM: Philadelphia, PA, USA, 2016. [Google Scholar]
- Lan, Y.; Mezić, I. Linearization in the large of nonlinear systems and Koopman operator spectrum. Phys. D Nonlinear Phenom.
**2013**, 242, 42–53. [Google Scholar] [CrossRef] - Mezić, I. Analysis of fluid flows via spectral properties of the Koopman operator. Annu. Rev. Fluid Mech.
**2013**, 45, 357–378. [Google Scholar] [CrossRef][Green Version] - Mezić, I. Spectral properties of dynamical systems, model reduction and decompositions. Nonlinear Dyn.
**2005**, 41, 309–325. [Google Scholar] [CrossRef] - Mezić, I. Spectrum of the Koopman operator, spectral expansions in functional spaces, and state-space geometry. J. Nonlinear Sci.
**2020**, 30, 2091–2145. [Google Scholar] [CrossRef][Green Version] - Koopman, B.O. Hamiltonian systems and transformation in Hilbert space. Proc. Natl. Acad. Sci. USA
**1931**, 17, 315. [Google Scholar] [CrossRef][Green Version] - Cvitanovic, P.; Artuso, R.; Mainieri, R.; Tanner, G.; Vattay, G.; Whelan, N.; Wirzba, A. Chaos: Classical and Quantum. Chaosbook.Org; Niels Bohr Institute: Copenhagen, Denmark, 2005. [Google Scholar]
- Gaspard, P. Chaos, Scattering and Statistical Mechanics; Cambridge University Press: Cambridge, UK, 2005; Volume 9. [Google Scholar]
- Mauroy, A.; Mezić, I. Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Trans. Autom. Control.
**2016**, 61, 3356–3369. [Google Scholar] [CrossRef][Green Version] - Bollt, E.M. Geometric considerations of a good dictionary for Koopman analysis of dynamical systems: Cardinality, “primary eigenfunction”, and efficient representation. Commun. Nonlinear Sci. Numer. Simul.
**2021**, 100, 105833. [Google Scholar] [CrossRef] - Korda, M.; Mezić, I. Optimal construction of Koopman eigenfunctions for prediction and control. IEEE Trans. Autom. Control
**2020**, 65, 5114–5129. [Google Scholar] [CrossRef][Green Version] - Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech.
**2010**, 656, 5–28. [Google Scholar] [CrossRef][Green Version] - Williams, M.O.; Kevrekidis, I.G.; Rowley, C.W. A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition. J. Nonlinear Sci.
**2015**, 25, 1307–1346. [Google Scholar] [CrossRef][Green Version] - Williams, M.O.; Rowley, C.W.; Mezić, I.; Kevrekidis, I.G. Data fusion via intrinsic dynamic variables: An application of data-driven Koopman spectral analysis. EPL (Europhys. Lett.)
**2015**, 109, 40007. [Google Scholar] [CrossRef][Green Version] - Li, Q.; Dietrich, F.; Bollt, E.M.; Kevrekidis, I.G. Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator. Chaos Interdiscip. J. Nonlinear Sci.
**2017**, 27, 103111. [Google Scholar] [CrossRef] [PubMed] - Lasota, A.; Mackey, M.C. Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics; Springer Science & Business Media: Berlin, Germany, 2013; Volume 97. [Google Scholar]
- Bollt, E.M.; Santitissadeekorn, N. Applied and Computational Measurable Dynamics; SIAM: Philadelphia, PA, USA, 2013. [Google Scholar]
- Bollt, E.M.; Li, Q.; Dietrich, F.; Kevrekidis, I. On matching, and even rectifying, dynamical systems through Koopman operator eigenfunctions. SIAM J. Appl. Dyn. Syst.
**2018**, 17, 1925–1960. [Google Scholar] [CrossRef] - John, F. Partial Differential Equations; Springer: Berlin, Germany, 1975. [Google Scholar]
- Schlomiuk, D. Algebraic and geometric aspects of the theory of polynomial vector fields. In Bifurcations and Periodic Orbits of Vector Fields; Springer: Berlin, Germany, 1993; pp. 429–467. [Google Scholar]
- Carleman, T. Applications de la théore des équations intégral singulières aux équations différentielles de la dynamique. T. Ark. Mat. Astron. Fys.
**1932**, 22B, 1–7. [Google Scholar] - Brunton, S.L.; Kutz, J.N. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar]

**Figure 1.**Schematic of the effect of the co-dimension 1 manifold, corresponding to the trench of the attraction rate, ${s}_{1}$, at an initial time, on a small parcel of phase space. The image of the trench under the time-t flow map, ${\mathbf{F}}_{t}$, is also shown.

**Figure 2.**The action of a Koopman operator (composition operator) is to extract the value of a measurement function downstream, (

**Left**) Equation (13), but (

**Right**) for eigenvalue and eigenfunction pair (KEIGS) $(\lambda ,{\varphi}_{\lambda}\left(\mathbf{x}\right))$ that function has the property Equation (14) effectively interpreting the change of ${\varphi}_{\lambda}$along an orbit as if the dynamics are linear even if the flow may be non-linear in its phase space M.

**Figure 3.**A general eigenfunction, that is, Equation (19) is a solution of Equation (18) is defined in terms of measuring the initial data $h\left(s\right)$ on the data surface $\Lambda $, and then for each $\mathbf{x}$ there is a unique point where that measurement is taken. Then, the solution ${\varphi}_{\lambda}$ is then a linear scaling of that measurement, by the time of the pull back.

**Figure 4.**Phase portrait for vector field (80) in $({x}_{1},{x}_{2})$ coordinates for parameters $(\lambda ,c)=(-1,-1)$. The attraction rate field for this vector field is also a Koopman eigenfunction (KEIG). The ${x}_{2}$-axis $\{{x}_{1}=0\}$, as trench of the attraction rate field, is an attracting instantaneous Lyapunov exponent structure (iLES).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Bollt, E.M.; Ross, S.D.
Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction? *Mathematics* **2021**, *9*, 2731.
https://doi.org/10.3390/math9212731

**AMA Style**

Bollt EM, Ross SD.
Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction? *Mathematics*. 2021; 9(21):2731.
https://doi.org/10.3390/math9212731

**Chicago/Turabian Style**

Bollt, Erik M., and Shane D. Ross.
2021. "Is the Finite-Time Lyapunov Exponent Field a Koopman Eigenfunction?" *Mathematics* 9, no. 21: 2731.
https://doi.org/10.3390/math9212731