Investigation of the Fractional Strongly Singular Thermostat Model via Fixed Point Techniques
Abstract
:1. Introduction
2. Basic Notions
3. Main Results
- (i)
- is differentiable at and for .
- (ii)
- two non-decreasing maps exist such that
- (iii)
- fulfills and for all and also
4. Hybrid Version
- (i)
- a non-decreasing map exists with so that for , we have
- (ii)
- .
5. Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FDE | Fractional Differential Equation |
FBVP | Fractional Boundary Value Problem |
References
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier: Amsterdam, The Netherlands, 2006; Volume 204. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: London, UK, 1974. [Google Scholar]
- Podlubny, I. Fractional Differential Equation; Academic Press: New York, NY, USA, 1999. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integral and Derivative: Theory and Applications; Gordon and Breach: London, UK, 1993. [Google Scholar]
- Baleanu, D.; Etemad, S.; Mohammadi, H.; Rezapour, S. A novel modeling of boundary value problems on the glucose graph. Commun. Nonlinear Sci. Numer. Simulat. 2021, 100, 1–13. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 1–13. [Google Scholar] [CrossRef]
- Boutiara, A.; Guerbati, K.; Benbachir, M. Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces. Aims Math. 2020, 5, 259–272. [Google Scholar]
- Alzabut, J.; Ahmad, B.; Etemad, S.; Rezapour, S.; Zada, A. Novel existence techniques on the generalized ϕ-Caputo fractional inclusion boundary problem. Adv. Differ. Equ. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Alzabut, J.; Selvam, G.M.; El-Nabulsi, R.A.; Vignesh, D.; Samei, M.E. Asymptotic stability of nonlinear discrete fractional pantograph equations with non-local initial conditions. Symmetry 2021, 13, 473. [Google Scholar] [CrossRef]
- Baitiche, Z.; Derbazi, C.; Matar, M.M. Ulam stability for nonlinear Langevin fractional differential equations involving two fractional orders in the ψ-Caputo sense. Appl. Anal. 2021, 1–16. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Mohammadi, H.; Rezapour, S. A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative. Chaos Solitons Fractals 2020, 134, 109705. [Google Scholar] [CrossRef]
- Bouazza, Z.; Etemad, S.; Souid, M.S.; Rezapour, S.; Martinez, F.; Kaabar, M.K.A. A study on the solutions of a multiterm FBVP of variable order. J. Funct. Spaces 2021, 2021, 1–9. [Google Scholar] [CrossRef]
- Jamil, M.; Khan, R.A.; Shah, K. Existence theory to a class of boundary value problems of hybrid fractional sequential integro-differential equations. Bound. Value Probl. 2019, 2019, 77. [Google Scholar] [CrossRef] [Green Version]
- Kaabar, M.K.A.; Martínez, F.; Aguilar, J.F.G.; Ghanbari, B.; Kaplan, M.; Günerhan, H. New approximate analytical solutions for the nonlinear fractional Schrödinger equation with second-order spatio-temporal dispersion via double Laplace transform method. Math. Methods Appl. Sci. 2021, 44, 1–19. [Google Scholar] [CrossRef]
- Matar, M.M.; Abbas, M.I.; Alzabut, J.; Kaabar, M.K.A.; Etemad, S.; Rezapour, S. Investigation of the p-Laplacian non-periodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 2021, 68. [Google Scholar] [CrossRef]
- Riaz, U.; Zada, A.; Ali, Z.; Popa, I.L.; Rezapour, S.; Etemad, S. On a Riemann-Liouville type implicit coupled system via generalized boundary conditions. Mathematics 2021, 9, 1205. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bazighifan, O.; Ragusa, M.A. Nonlinear neutral delay differential equations of fourth-order: Oscillation of solutions. Entropy 2021, 23, 129. [Google Scholar] [CrossRef]
- Feng, X.; Feng, B.; Farid, G.; Bibi, S.; Xiaoyan, Q.; Wu, Z. Caputo fractional derivative Hadamard inequalities for strongly m-convex functions. J. Funct. Spaces 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Zafar, R.; Ur Rehman, M.; Shams, M. On Caputo modification of Hadamard-type fractional derivative and fractional Taylor series. Adv. Differ. Equ. 2020, 2020, 219. [Google Scholar] [CrossRef]
- Phuong, N.D.; Sakar, F.M.; Etemad, S.; Rezapour, S. A novel fractional structure of a multi-order quantum multi-integro-differential problem. Adv. Differ. Equ. 2020, 633. [Google Scholar] [CrossRef]
- Amara, A.; Etemad, S.; Rezapour, S. Topological degree theory and Caputo-Hadamard fractional boundary value problems. Adv. Differ. Equ. 2020, 369. [Google Scholar] [CrossRef]
- Rezapour, S.; Ntouyas, S.K.; Iqbal, M.Q.; Hussain, A.; Etemad, S.; Tariboon, J. An analytical survey on the solutions of the generalized double-order φ-integrodifferential equation. J. Funct. Spaces 2021, 2021, 6667757. [Google Scholar] [CrossRef]
- Etemad, S.; Ntouyas, S.K. Application of the fixed point theorems on the existence of solutions for q-fractional boundary value problems. AIMS Math. 2019, 4, 997–1018. [Google Scholar] [CrossRef]
- Rezapour, S.; Imran, A.; Hassain, A.; Martínez, F.; Etemad, S.; Kaabar, M.K.A. Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 2021, 13, 469. [Google Scholar] [CrossRef]
- Amara, A.; Etemad, S.; Rezapour, S. Approximate solutions for a fractional hybrid initial value problem via the Caputo conformable derivative. Adv. Differ. Equ. 2020, 608. [Google Scholar] [CrossRef]
- Mohammadi, H.; Kaabar, M.K.A.; Alzabut, J.; Selvam, A.G.M.; Rezapour, S. A Complete Model of Crimean-Congo Hemorrhagic Fever (CCHF) Transmission Cycle with Nonlocal Fractional Derivative. J. Funct. Spaces 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Etemad, S.; Souid, M.S.; Telli, B.; Kaabar, M.K.A.; Rezapour, S. Investigation of the neutral fractional differential inclusions of Katugampola-type involving both retarded and advanced arguments via Kuratowski MNC technique. Adv. Differ. Equ. 2021, 2021, 1–20. [Google Scholar] [CrossRef]
- Alam, M.; Zada, A.; Popa, I.L.; Kheiryan, A.; Rezapour, S.; Kaabar, M.K.A. A fractional differential equation with multi-point strip boundary condition involving the Caputo fractional derivative and its Hyers–Ulam stability. Bound. Value Probl. 2021, 2021, 1–18. [Google Scholar] [CrossRef]
- Samei, M.E.; Ghaffari, R.; Yao, S.W.; Kaabar, M.K.A.; Martínez, F.; Inc, M. Existence of Solutions for a Singular Fractional q-Differential Equations under Riemann–Liouville Integral Boundary Condition. Symmetry 2021, 13, 1235. [Google Scholar] [CrossRef]
- Alzabut, J.; Selvam, A.; Dhineshbabu, R.; Kaabar, M.K.A. The Existence, Uniqueness, and Stability Analysis of the Discrete Fractional Three-Point Boundary Value Problem for the Elastic Beam Equation. Symmetry 2021, 13, 789. [Google Scholar] [CrossRef]
- Webb, J.R.L. Multiple positive solutions of some nonlinear heat flow problems. Discret. Contin. Dyn. Syst. 2005, 2005, 895–903. [Google Scholar]
- Shen, C.; Zhou, H.; Yang, L. Existence and nonexistence of positive solutions of a fractional thermostat model with a parameter. Math. Methods Appl. Sci. 2016, 39, 4504–4511. [Google Scholar] [CrossRef]
- Baleanu, D.; Etemad, S.; Rezapour, S. A hybrid Caputo fractional modeling for thermostat with hybrid boundary value conditions. Bound. Value Probl. 2020, 2020, 64. [Google Scholar] [CrossRef] [Green Version]
- Thaiprayoon, C.; Sudsutad, W.; Alzabut, J.; Etemad, S.; Rezapour, S. On the qualitative analysis of the fractional boundary value problem describing thermostat control model via ψ-Hilfer fractional operator. Adv. Differ. Equ. 2021, 2021, 201. [Google Scholar] [CrossRef]
- Baleanu, B.; Ghafarnezhad, K.; Rezapour, S.; Shabibi, M. On a strong-singular fractional differential equation. Adv. Differ. Equ. 2020, 2020, 350. [Google Scholar] [CrossRef]
- Shabibi, M.; Postolache, M.; Rezapour, S. A positive solutions for a singular sum fractional differential system. Int. J. Anal. Appl. 2017, 13, 108–118. [Google Scholar]
- Samet, B.; Vetro, C.; Vetro, P. Fixed point theorems for α-ψ-contractive type mappings. Nonlinear Anal. 2012, 75, 2154–2165. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaabar, M.K.A.; Shabibi, M.; Alzabut, J.; Etemad, S.; Sudsutad, W.; Martínez, F.; Rezapour, S. Investigation of the Fractional Strongly Singular Thermostat Model via Fixed Point Techniques. Mathematics 2021, 9, 2298. https://doi.org/10.3390/math9182298
Kaabar MKA, Shabibi M, Alzabut J, Etemad S, Sudsutad W, Martínez F, Rezapour S. Investigation of the Fractional Strongly Singular Thermostat Model via Fixed Point Techniques. Mathematics. 2021; 9(18):2298. https://doi.org/10.3390/math9182298
Chicago/Turabian StyleKaabar, Mohammed K. A., Mehdi Shabibi, Jehad Alzabut, Sina Etemad, Weerawat Sudsutad, Francisco Martínez, and Shahram Rezapour. 2021. "Investigation of the Fractional Strongly Singular Thermostat Model via Fixed Point Techniques" Mathematics 9, no. 18: 2298. https://doi.org/10.3390/math9182298
APA StyleKaabar, M. K. A., Shabibi, M., Alzabut, J., Etemad, S., Sudsutad, W., Martínez, F., & Rezapour, S. (2021). Investigation of the Fractional Strongly Singular Thermostat Model via Fixed Point Techniques. Mathematics, 9(18), 2298. https://doi.org/10.3390/math9182298