Next Article in Journal
A DANP-Based NDEA-MOP Approach to Evaluating the Patent Commercialization Performance of Industry–Academic Collaborations
Next Article in Special Issue
Robust Multivariate Shewhart Control Chart Based on the Stahel-Donoho Robust Estimator and Mahalanobis Distance for Multivariate Outlier Detection
Previous Article in Journal
Two Different Views for Generalized Rough Sets with Applications
Previous Article in Special Issue
Residual Probability Function for Dependent Lifetimes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

The Exponentiated Burr–Hatke Distribution and Its Discrete Version: Reliability Properties with CSALT Model, Inference and Applications

by
Mahmoud El-Morshedy
1,2,*,
Hassan M. Aljohani
3,
Mohamed S. Eliwa
2,
Mazen Nassar
4,5,
Mohammed K. Shakhatreh
6 and
Ahmed Z. Afify
7
1
Department of Mathematics, Faculty of Science, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia
2
Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
3
Department of Mathematics & Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
4
Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
5
Department of Statistics, Faculty of Commerce, Zagazig University, Zagazig 44511, Egypt
6
Department of Mathematics and Statistics, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
7
Department of Statistics, Mathematics and Insurance, Benha University, Benha 13511, Egypt
*
Author to whom correspondence should be addressed.
Mathematics 2021, 9(18), 2277; https://doi.org/10.3390/math9182277
Submission received: 7 August 2021 / Revised: 10 September 2021 / Accepted: 13 September 2021 / Published: 16 September 2021
(This article belongs to the Special Issue Probability and Statistics in Quality and Reliability Engineering)

Abstract

:
Continuous and discrete distributions are essential to model both continuous and discrete lifetime data in several applied sciences. This article introduces two extended versions of the Burr–Hatke model to improve its applicability. The first continuous version is called the exponentiated Burr–Hatke (EBuH) distribution. We also propose a new discrete analog, namely the discrete exponentiated Burr–Hatke (DEBuH) distribution. The probability density and the hazard rate functions exhibit decreasing or upside-down shapes, whereas the reversed hazard rate function. Some statistical and reliability properties of the EBuH distribution are calculated. The EBuH parameters are estimated using some classical estimation techniques. The simulation results are conducted to explore the behavior of the proposed estimators for small and large samples. The applicability of the EBuH and DEBuH models is studied using two real-life data sets. Moreover, the maximum likelihood approach is adopted to estimate the parameters of the EBuH distribution under constant-stress accelerated life-tests (CSALTs). Furthermore, a real data set is analyzed to validate our results under the CSALT model.

1. Introduction

Statistical distributions are very important in predicting and describing different real-world phenomena. Choosing a probability distribution that should be utilized to make inference about the real-life data under study is a critical issue in statistics. Hence, considerable efforts over the last few years have been expended in constructing more flexible generalized distributions to model several real data sets encountered in different applied fields such as medicine, insurance, economics, engineering, and agriculture, among others.
Exponentiated models and their successful applications in several applied sciences have been prevalent in the statistical literature. Moreover, one of the most widely adopted generalization techniques is the exponentiated-G (Exp-G) class that can be traced back to [1]. This technique of generalization has received significant attention in the last three decades, and more than forty Exp-G distributions have been published. Some notable models include the Exp-Weibull [2], Exp-exponential [3], Exp-gamma, Exp-Fréchet and Exp-Gumbel [4], Exp-generalized modified-Weibull [5], Exp-Weibull Pareto [6], Exp-Weibull family [7], and Exp Chen-G family [8], among others.
On the other hand, discrete distributions have their importance in modeling count data encountered in many applied fields such as biology, insurance, medicine, life testing, and engineering. Recently, several statisticians constructed new, more flexible discrete models using different discretization techniques and discrete analogs. For example, discrete Burr–Hatke [9], natural discrete Lindley [10], uniform Poisson–Ailamujia [11], and transmuted record type geometric distributions [12].
The aim of the current paper is five-fold as follows:
  • Introducing a more flexible two-parameter version of the Burr–Hatke (BuH) distribution [13] based on the exponentiated-G (E-G) family. The proposed model is called the exponentiated Burr–Hatke (EBuH) distribution. Some statistical and reliability properties of the EBuH distribution are derived in explicit forms. This distribution includes the BuH model as a special case, and it can provide decreasing and unimodal hazard shapes.
  • Proposing a discrete version of the new EBuH distribution called the discrete exponentiated Burr–Hatke (DEBuH) distribution based on the survival discretization approach. The DEBuH distribution with a decreasing hazard rate shape fits real-life data better than eight competing discrete models.
  • Discussing the estimation of the EBuH parameters using eight classical approaches of estimation, including the maximum likelihood estimators (MLE), Cramér–von Mises estimators (CVME), maximum product of spacing estimators (MPSE), right-tail Anderson–Darling estimators (RADE), least-squares estimators (LSE), Anderson–Darling estimators (ADE), percentile-based estimators (PCE), and weighted least-squares estimators (WLSE). The simulation results are conducted to assess the performance of the estimators and compare between them to determine the best approach to estimate the EBuH parameters.
  • Studying the empirical importance of the EBuH and DEBuH distributions using two real-life data sets, illustrating that the two introduced models compare very well with other competing continuous and discrete distributions in modeling data.
  • Discussing the estimation of the EBuH parameters using the maximum likelihood under CSALT. Further, the EBuH distribution is fitted to a CSALT data set.
The paper is outlined in eight sections. In Section 2, we define the new EBuH distribution. We derive its properties in Section 3. We define the discrete version of the EBuH distribution in Section 4. The EBuH parameters are estimated using several approaches of estimation in Section 5. The simulation results are also investigated in the same section. Section 6 illustrates the potentiality and importance of the new two distributions by using two real-life data sets. We consider the estimation of the two parameters of the EBuH under CSALT model and validate the results using a real data set in Section 7. Section 8 presents some conclusions.

2. The EBuH Distribution

Maniu and Voda [13] proposed the continuous BuH model, which is specified by the following CDF
G ( x ; α ) = 1 e α x x + 1 , x > 0 ,
where α > 0 is a shape parameter. In this section, we introduce a new generalization of the BuH model based on the exponentiated technique (adding another shape parameter to the base CDF) to increase the flexibility of this distribution in modeling various types of data in different fields. The newly generated model is called the EBuH distribution. The CDF and PDF of the EBuH distribution can be formulated, respectively, as
F ( x ; α , β ) = 1 e α x x + 1 β , x > 0
and
f ( x ; α , β ) = β ( α x + α + 1 ) 1 + x e α x β 1 x + 1 β + 1 e α x , x > 0 ,
where α > 0 and β > 0 are shape parameters. The asymptotic behavior of the PDF is
f ( x ; α , β ) β ( α + 1 ) x β 1 , x 0 , α β 1 + x exp ( α x ) , x .
A physical interpretation of the EBuH model based on the newly added parameter β can be provided as follows. Let β > 0 be an integer number and let X 1 , . . . , X β be a random sample from the BuH distribution with shape parameter α . If we define X = max ( X 1 , . . . , X β ) , then the distribution of X leads to the EBuH distribution, which certainly can be used to model the last failure time of a random sample from the BuH distribution.
The following proposition summarizes the possible shape properties for the PDF of the EBuH distribution.
Proposition 1.
The PDF of the EBuH distribution is decreasing for 0 < β 1 . It is unimodal for β > 1 , where the mode is the root of the following nonlinear equation
( β 1 ) 1 + α ( 1 + x ) 1 + α exp ( α x ) = α 2 ( 1 + x ) 2 1 + x exp ( α x ) + v ( x ) ,
where
v ( x ) = ( β + 1 ) 1 + x ( 1 + α ( x + 1 ) ) 1 + x exp ( α x ) .
Proof. 
Let
g ( x ) = ln [ f ( x , α , β ) ] = ln [ 1 + α ( x + 1 ) ] + ( β 1 ) ln [ 1 + x exp ( α x ) ] α x ( β + 1 ) ln [ 1 + x ] .
By differentiating the above equation with respect to x, followed by rearranging the terms, it follows that
g ( x ) = α 2 1 + x 1 + ( 1 + x ) α + ( β 1 ) 1 + α exp ( α x ) 1 + x exp ( α x ) β + 1 1 + x .
Clearly, when β 1 , we have g ( x ) < 0 for x > 0 . Therefore, g ( x ) is a decreasing function, and hence the PDF of the EBuH distribution is a decreasing function. Next, suppose that β > 1 , and Equation (5) is rewritten as follows:
g ( x ) = Δ ( x ) ( 1 1 + x + α ) 1 exp ( α x ) 1 + x ,
where
Δ ( x ) = α 2 + β + 1 ( 1 + x ) 1 1 + x + α 1 exp ( α x ) 1 + x + ( β 1 ) 1 1 + x + α 1 + α exp ( α x ) 1 + x .
Clearly, g ( x ) = 0 if and only if Δ ( x ) = 0 . Assume that there exists a root, say x 0 > 0 , for Equation (5). It then follows that g ( x 0 ) = Δ ( x 0 ) = 0 . Observe now that lim x 0 Δ ( x ) = ( 1 + α ) 2 ( β 1 ) > 0 and lim x Δ ( x ) = α 2 . Immediately, it follows that lim x 0 g ( x ) = ( 1 + α ) ( β 1 ) lim x 0 1 exp ( α x ) 1 + x 1 = + and lim x g ( x ) = α . This implies that f ( x ; α , β ) is an increasing function for x < x 0 and a decreasing function for x > x 0 . So, the PDF of the EBuH distribution is a unimodal function with a mode that occurs at x 0 .
Figure 1 shows that the PDF of the EBuH model can be decreasing or unimodal as proved in Proposition 1.

3. Properties of the EBuH Distribution

3.1. Moment and Related Measures

If X EBuH α , β , the rth moment of X can be formulated as
μ r = 0 x r f ( x ; α , β ) d x .
Using the negative binomial series, Equation (3) can be expressed in a simple form as follows:
f ( x ; α , β ) = β ( α x + α + 1 ) j = 0 ( 1 ) j Γ ( β ) j ! ( x + 1 ) j + 2 Γ ( β j ) e α ( j + 1 ) x = β ( α x + α + 1 ) j , k = 0 ( 1 ) j + k Γ ( β ) j ! Γ ( β j ) j + k + 1 k x k e α ( j + 1 ) x = β j , k = 0 Θ β ( j , k ) α x k + 1 + ( α + 1 ) x k e α ( j + 1 ) x ,
where
Θ β ( j , k ) = ( 1 ) j + k Γ ( β ) j ! Γ ( β j ) j + k + 1 k .
Using Equations (6) and (7), we get
μ r = β j , k = 0 Θ β ( j , k ) α 0 x r + k + 1 e α ( j + 1 ) x d x + ( α + 1 ) 0 x r + k e α ( j + 1 ) x d x = β j , k = 0 Θ β ( j , k ) r + k + 1 ( j + 1 ) ( α + 1 ) j + 1 r + k + 2 α r + k + 1 Γ r + k + 1 ,
where r + k + 1 0 , 1 , 2 , 3 , . . . .
The qth incomplete moment of X can be expressed as follows
Φ ( q ) ( x ) = 0 x t q f ( t ; α , β ) d x = β j , k = 0 Θ β ( j , k ) α 0 x t q + k + 1 e α ( j + 1 ) t d t + ( α + 1 ) 0 x t q + k e α ( j + 1 ) t d t = β j , k , m = 0 Θ β ( j , k ) [ α ( j + 1 ) ] m m ! α x q + k + m + 2 q + k + m + 2 + ( α + 1 ) x q + k + m + 1 q + k + m + 1 .
Table 1 lists some statistical computations of the EBuH model for various values of the model parameters.
From Table 1, it is clear that the EBuH distribution can be used to model positively skewed and leptokurtic data sets. Moreover, the proposed model is suitable for studying data suffering from over- and under-dispersed data where the index of dispersion “variance to mean ratio” >(<) 1.

3.2. Hazard Rate Function and Availability

If X EBuH α , β , then the hazard rate function (HRF) can be expressed by utilizing the well-known relationship h ( x ; α , β ) = f ( x ; α , β ) R ( x ; α , β ) , where R ( x ; α , β ) = 1 F ( x ; α , β ) represents the reliability function (RF) of the EBuH distribution. The asymptotic behavior of the HRF is given by
h ( x ; α , β ) β ( α + 1 ) x β 1 , x 0 , α , x .
Note that for β < 1 , it is observed that the HRF is a decreasing function. The following proposition provides possible shape properties for the HRF of the EBuH distribution.
Proposition 2.
The HRF of the EBuH distribution is decreasing for 0 < β 1 and is upside-down shaped (unimodal) for β > 1 . In the last scenario, the turning point (mode) of the HRF can be determined as the root for the following equation:
( β 1 ) α 2 ( 1 + x ) + 2 α + exp ( α x ) exp ( α x ) ( 1 + x exp ( α x ) ) 2 = β α 2 ( 1 + x ) 2 ( β + 1 ) [ 1 + 2 α ( 1 + x ) ] ( 1 + x ) 2 ( 1 + α ( 1 + x ) ) 2 .
Proof. 
Put ψ ( x ) = ( / x ) [ ln ( f ( x , α , β ) ) ] . Then
ψ ( x ) = α 2 ( 1 + x ) ( 1 + α ( 1 + x ) ) ( β 1 ) 1 + α exp ( α x ) 1 + x exp ( α x ) + β + 1 1 + x .
The first derivative of ψ ( x ) is
ψ ( x ) = ( β 1 ) α 2 ( 1 + x ) + 2 α + exp ( α x ) exp ( α x ) ( 1 + x exp ( α x ) ) 2 β α 2 ( 1 + x ) 2 + ( β + 1 ) [ 1 + 2 α ( 1 + x ) ] ( 1 + x ) 2 ( 1 + α ( 1 + x ) ) 2 .
It can be easily seen that ψ ( x ) < 0 whenever 0 < β 1 , and hence it follows from Glaser’s theorem [14] that the HRF is a decreasing function. Next, suppose that β > 1 and suppose there exists x 0 such that ψ ( x 0 ) = 0 .
Observe that
lim x 0 + ψ ( x ) = ( β 1 ) ( 1 + α ) 2 lim x 0 + 1 ( 1 + x exp ( α x ) ) 2 ξ ( α , β ) ( 1 + α ) 2 ,
where ξ ( α , β ) = β α 2 + ( β + 1 ) ( 1 + 2 α ) . Due to the assumption that β > 1 , it follows that lim x 0 + ψ ( x ) = + . Note that the first term in Equation (11) is positive for all x > 0 since β > 1 , whereas the second term is negative for all x > 0 . Consequently, we have (for β > 1 )
lim x ψ ( x ) ( β 1 ) ( 1 + α ) 2 lim x 1 ( 1 + x exp ( α x ) ) 2 = 0 .
Therefore, ψ ( x ) has a root at x = x 0 with ψ ( x ) > 0 for all x < x 0 and ψ ( x ) < 0 for all x > x 0 . Since lim x 0 + f ( x , α , β ) = 0 , it then follows from Glaser’s theorem that the HRF of the EBuH distribution is upside-down shaped. □
Figure 2 shows the plots of the HRF for some values of the parameters α and β . It is evident that the HRF can be decreasing or upside-down shaped. Further, it can be seen that the HRF converges to α for large values of x (see Equation (10)).

3.3. Reversed Hazard Rate Function

The reversed HRF (RHRF) for an absolutely continuous random variable x is defined as the ratio between the PDF of X and its corresponding CDF as follows:
r ( x ; α , β ) = ln ( F ( x , α , β ) ) x = f ( x ; α , β ) F ( x ; α , β ) .
It can be considered as one of reliability functions that can be used to identify lifetime variables. In addition, it can be interpreted as the instantaneous rate of increase in the RF. The RHRF of the two-parameter EBuH distribution has the form
r ( x ; α , β ) = β exp ( α x ) 1 + x exp ( α x ) 2 .
The following proposition illustrates that the RHRF of the EBuH distribution is deceasing for all α , β > 0 .
Proposition 3.
The RHRF of the EBuH distribution is deceasing for all α , β > 0 .
Proof. 
On differentiating Equation (13), we obtain the following:
r ( x ; α , β ) x = β α ( 1 + x exp ( α x ) ) + 2 exp ( α x ) 1 + x exp ( α x ) 3 < 0 ,
and hence the result follows. □

3.4. The Odds Function

The odds function (OF) at time x is defined as the quotient between the RF and the CDF as follows:
O F ( x ) = F ( x ) 1 F ( X ) .
Recently, Lando et al. [15] discussed the problem of examining aging forms of the lifetime in the so-called k-out-n systems. Such systems are of practical interest in engineering reliability. Notable, among the four classes of probability distribution function they considered, they showed that the class identified by the convexity of the OF, say ( F C O ), is the widest class. Additionally, F F C O if and only if the quotient between the HRF and the RF, i.e., O ( x ) = h ( x ) / ( 1 F ( x ) ) , is an increasing function. Obviously, if h is an increasing function, then O ( x ) is also an increasing function. In this subsection, we study the OF of the EBuH distribution. Unfortunately, the HRF of the EBuH distribution (as shown in Proposition 2) can be either decreasing or upside-down, and hence the CDF of the EBuH does not belong to F C O . In the following proposition, we show that O can be either increasing or bathtub-shaped.
Proposition 4.
The O ( x ) function of the EBuH distribution is increasing for β > 1 , and it is bathtub-shaped for β 1 .
Proof. 
We have that O ( x ) = h ( x ; α , β ) / ( 1 F ( x ; α , β ) ) , where h ( x ; α , β ) and F ( x ; α , β ) are the HRF and CDF of the EBuH distribution. Let
Λ ( x ; α , β ) = ln [ O ( x , α , β ) ] = ln ( β ) + ( β 1 ) ln [ 1 + X exp ( α x ) ] + ln [ 1 + α ( 1 + x ) ] α ( β + 1 ) ln ( 1 + x ) 2 ln [ 1 F ( x ; α , β ) ] .
The first derivative of Λ ( x ; α , β ) is
Λ ( x ; α , β ) = ( β 1 ) 1 + α exp ( α x ) 1 + x exp ( α x ) ρ ( x , α , β ) + 2 h ( x , α , β ) ,
where
ρ ( x , α , β ) = α 2 ( 1 + x ) 2 + ( β + 1 ) [ 1 + α ( 1 + x ) ] ( 1 + x ) ( 1 + α ( 1 + x ) ) .
Since h ( x ; α , β ) 0 for all x , it then follows that
Λ ( x ; α , β ) ( β 1 ) 1 + α exp ( α x ) 1 + x exp ( α x ) ρ ( x , α , β ) .
If β > 1 , it then follows that
lim x 0 Λ ( x ; α , β ) ( β 1 ) lim x 0 1 + α exp ( α x ) 1 + x exp ( α x ) lim x 0 ρ ( x , α , β ) .
Since lim x 0 ρ ( x , α , β ) = [ α 2 + ( 1 + α ) ( β + 1 ) ] / ( 1 + α ) , then we have that lim x 0 Λ ( x ; α , β ) > 0 . On the other hand, since ρ ( x , α , β ) < 0 , it then follows that
Λ ( x ; α , β ) < ( β 1 ) 1 + α exp ( α x ) 1 + x exp ( α x ) + 2 h ( x , α , β ) .
Notice that 2 h ( x , α , β ) 2 α as (see Equation (10)) and 1 + x exp ( α x ) 1 exp ( α x ) . So,
lim x Λ ( x ; α , β ) < ( β 1 ) lim x ( β 1 ) 1 exp ( α x ) + 2 α = ( β 1 ) + 2 α .
Therefore, we have for all β > 1 that lim x Λ ( x ; α , β ) > 0 . Next suppose that β 1 , and assume that there exists a root, say x 0 , for Equation (14), i.e., Λ ( x 0 ; α , β ) = 0 . As x 0 , we have that lim x 0 h ( x , α , β ) = 0 and lim x 0 ρ ( x , α , β ) = [ α 2 + ( 1 + α ) ( β + 1 ) ] / ( 1 + α ) . Therefore, we have lim x 0 Λ ( x ; α , β ) = .
On the other hand, as x , we have h ( x , α , β ) 2 α and ρ ( x , α , β ) α . Hence, we have Λ x ( x 0 ; α , β ) = α > 0 . Therefore, for all x < x 0 we have Λ ( x ; α , β ) < 0 and for x > x 0 , we have Λ ( x ; α , β ) > 0 . Hence, Λ ( x ; α , β ) is bathtub-shaped. □
Notice that the CDF of the EBuH distribution lies in F C O for β > 1 .  Figure 3 shows the behavior of the O of the EBuH distribution for some values of α and β .
Recall, Equation (8), we can derive some important measures in survival analysis such as the mean time to failure (MTTF), mean time to repair (MTTR), mean time between failures (MTBF), and availability (Av). These measures can be adopted to design and manufacture a maintainable system. Assume X 1 represents the time to failure with parameters α 1 and β 1 ( X 1 EBuH α 1 , β 1 ), and X 2 represents the time to repair with parameters α 2 and β 2 ( X 1 EBuH α 1 , β 1 ), then MTTF = μ 1 ( α 1 , β 1 ) , MTTR = μ 1 ( α 2 , β 2 ) , MTBF = μ 1 ( α 1 , β 1 ) + μ 1 ( α 2 , β 2 ) , and Av = μ 1 ( α 1 , β 1 ) / μ 1 ( α 1 , β 1 ) + μ 1 ( α 2 , β 2 ) . The Av is the probability that the system can conduct its required function when it is called upon given that it is not failed or undergoing a repair action. Therefore, the Av is not only a function of reliability, but it is also a function of maintainability. Table 2 reports some reliability computations of the EBuH model for various values of its parameters.
From Table 2, it is observed that the MTTF, MTBF, and Av increase for fixed values of α with the increasing of β .

4. The DEBuH Distribution

If X EBuH α , β , then the CDF of the DEBuH model can be formulated as
Π ( x ; p , β ) = 1 p x + 1 x + 2 β , x N 0 ,
where p = e α and N 0 = 0 , 1 , 2 , 3 , . . . , s for 0 < s < .
The probability mass function (PMF) of the DEBuH model reduces to
π ( x ; p , β ) = 1 p x + 1 x + 2 β 1 p x x + 1 β , x N 0 .
Now, we discuss the shape characteristics of the CDF and PMF of the DEBuH model. The behavior of the CDF and PMF are given, respectively, by
Π ( x ; p , β ) = 1 , β 0 , x + 1 x + 2 β , p 1
and
π ( x ; p , β ) = 0 , β 0 , x + 1 x + 2 β x x + 1 β , p 1 .
The HRF can be introduced by using the well-known relationship h ( x ; p , β ) = π ( x ; p , β ) 1 Π ( x 1 ; p , β ) . The behavior of the HRF of the DEBuH model is given by
h ( x ; p , β ) = 1 1 ln 1 p x x + 1 ln 1 p x + 1 x + 2 ; β 0 , x x + 1 β x + 1 x + 2 β x x + 1 β 1 ; p 1 .
Figure 4 and Figure 5 display the PMF and HRF plots for different values of the parameters p and β .
From Figure 4 and Figure 5, it is noted that the PMF and HRF of the DEBuH model are decreasing functions of X.

5. Estimation Methods

In this section, we estimate the unknown parameters α and β of the EBuH model by utilizing the eight most frequent estimators.

5.1. Maximum Likelihood Estimators

In this section, we present the MLE of the EBuH parameters. Let x 1 , x 2 , . . . , x m be m independent random variables with the EBuH( α , β ) model, then the log-likelihood function, say L ( α , β ; x ) , of the EBuH model can be formulated as
L ( α , β ; x ) = j = 1 m log β ( α x j + α + 1 ) + ( β 1 ) j = 1 m log ( 1 + x j e α x j ) α j = 1 m x j ( β + 1 ) j = 1 m log x j + 1 .
To estimate the unknown parameters α and β , we take the partial derivative of L ( α , β ; x ) with respect to α and β , and equate the result equation to zero. The solution can be reported by utilizing the Newton–Raphson procedure.

5.2. Maximum Product of Spacings Estimators

For j = 1 , 2 , , m + 1 , let
K j ( α , β ) = F x ( j ) | α , β F x ( j 1 ) | α , β ,
be the uniform spacings of a random sample from the EBuH model, where F x ( 0 ) | α , β = 0 , F x ( m + 1 ) | α , β = 1 and j = 1 m + 1 K j ( α , β ) = 1 .
The MPSEs of α and β , say α ^ M P S and β ^ M P S , can be derived by maximizing the geometric mean of the spacings
G α , β = j = 1 m + 1 K j ( α , β ) 1 m + 1 ,
with respect to the parameters α and β .

5.3. Least-Squares Estimators

Let x ( 1 ) , x ( 2 ) , , x ( m ) be the order statistics of a random sample from the EBuH model. The LSE of the EBuH parameters, say α ^ L S and β ^ L S , can be derived by solving the non-linear equation defined by
j = 1 m 1 e α x j x j + 1 β j m + 1 Δ l x ( j ) | α , β = 0 ; l = 1 , 2 ,
where
Δ 1 x ( i ) | α , β = α 1 e α x j x j + 1 β and Δ 2 x ( i ) | α , β = β 1 e α x j x j + 1 β .
Note that the solution of Δ l x ( j ) | α , β can be obtained numerically.

5.4. Cramer–Von Mises Estimators

The CVME follows as the difference between the estimate of the CDF and the empirical CDF. The CVME of the EBuH parameters can be estimated by solving the non-linear equation defined as
j = 1 m 1 e α x j x j + 1 β 2 j 1 2 m Δ l x ( j ) | α , β = 0 ; l = 1 , 2 ,
where Δ l x ( j ) | α , β is defined in Equation (20).

5.5. Percentile Estimator

Let u j = j / m + 1 be an unbiased estimator of F x ( j ) | α , β . Hence, the PCE of the parameters α and β , denoted by α ^ P T and β ^ P T , can be reported by minimizing
P ( α , β ) = j = 1 m x ( j ) Q u j 2 ,
with respect to the parameters α and β , where Q u j = F 1 x ( j ) | α , β is the quantile function (QF) of the EBuH model.

5.6. Weighted Least-Squares Estimators

The WLSE of the EBuH parameters, say α ^ W L S and β ^ W L S , can be derived by solving the non-linear equation defined by
j = 1 m m + 1 2 m + 2 j m j + 1 1 e α x j x j + 1 β j m + 1 Δ l x ( j ) | α , β = 0 ,
where Δ l x ( j ) | α , β is provided in Equation (20).

5.7. Anderson–Darling and Right-Tail Anderson–Darling Estimators

The ADE is another type of minimum distance estimator. The ADEs of the EBuH parameters, say α ^ A D and β ^ A D , are derived by minimizing
A D ( α , β ) = m 1 m j = 1 m ( 2 j 1 ) β log 1 e α x j x j + 1 + log 1 1 e α x j x j + 1 β ,
with respect to the parameters α and β , whereas the RADE of the model parameters can be obtained by minimizing
R T A D ( α , β ) = m 2 2 j = 1 m F x ( j : m ) | α , β 1 m j = 1 m ( 2 j 1 ) log 1 F x ( m + 1 j : m ) | α , β ,
with respect to the parameters α and β .

5.8. Simulation Results

This section is devoted to exploring the performance of several estimators by the following algorithm.
1.
Random samples of sizes n = 20 , 50 , 150 and 300 are generated using the QF of the EBuH distribution. Its QF has the form
x i = 1 + 1 α W α e α u 1 / β 1 , i = 1 , 2 , , n .
2.
The simulation results are obtained based on 8 combinations of the parameters, i.e., α = 0.50 , 1.50 , 3.00 and β = 0.50 , 1.50 , 3.00 .
3.
Each sample is repeated N = 5000 times.
4.
The results of average absolute biases | B I A S | = 1 N i = 1 N | δ ^ δ | , the average mean square errors ( M S E ), M S E = 1 N i = 1 N ( δ ^ δ ) 2 , and average mean relative errors ( M R E ), M R E = 1 N i = 1 N | δ ^ δ | / δ , where δ = ( α , β ) , are computed, using the R software, for all combinations and presented in Table 3, Table 4, Table 5 and Table 6.
From the results in Table 3, Table 4, Table 5 and Table 6, we observe that all the estimation methods show the property of consistency for all parameter combinations.

6. Applications of the EBuH and DEBuH Distributions

This section is devoted to illustrating the practical importance of the EBuH model and its discrete version, the DEBuH model, using two real data applications as compared with various competing continuous and discrete distributions. We adopted some fitting measures to compare the EBuH and DEBuH distributions and other compared models such as the minus log-likelihood ( L ), Akaike information (AIC), consistent Akaike information (CAIC), Bayesian information (BIC), and Hannan-Quinn information (HQIC) criteria along with the Cramér–von Mises (W ), Anderson–Darling (A ), and Kolmogorov–Smirnov (K-S) with its associated p-value.

6.1. Data Set I: Continuous Data

The first data set refers to strengths of glass fibers [16]. The data are: 1.014, 1.081, 1.082, 1.185,1.223, 1.248, 1.267, 1.271, 1.272, 1.275, 1.276, 1.278, 1.286, 1.288, 1.292, 1.304, 1.306, 1.355, 1.361, 1.364, 1.379, 1.409, 1.426, 1.459, 1.460, 1.476, 1.481, 1.484, 1.501, 1.506, 1.524, 1.526, 1.535, 1.541, 1.568, 1.579, 1.581, 1.591, 1.593, 1.602, 1.666, 1.670, 1.684, 1.691, 1.704, 1.731, 1.735, 1.747, 1.748, 1.757, 1.800, 1.806, 1.867, 1.876, 1.878, 1.910, 1.916, 1.972, 2.012, 2.456, 2.592, 3.197, 4.121. The EBuH distribution is compared with some continuous rival models, namely the exponential (E), Rayleigh (R), Lindley (Li), Burr X (BuX) [17], Gompertz (Gz), Weibull (W), odd exponentiated Burr–Hatke (OEBuH), odd Lindley Burr–Hatke (OLiBuH), Burr VII (Bu-VII), Marshall–Olkin exponential (MOE) [18] and BuH.
The parameters of all models were estimated using the maximum likelihood (ML) approach. Table 7 reports the ML estimates (MLEs), the standard errors (SE) and the confidence intervals (C.I.) of the estimates. Table 8 lists the fitting measures for all compared distributions. The estimated CDF and PDF plots of the best seven fitted models are displayed in Figure 6, whereas the PP plots of all models are depicted in Figure 7. The values in Table 8 are supported by the plots in Figure 6 and Figure 7, showing that the new EBuH model provides the best fit for glass fibers data. Further, the profile log-likelihood functions of the EBuH parameters are displayed in Figure 8 for data set I.

6.2. Data Set II: Discrete Data

Now, we check the flexibility of the DEBuH distribution using a real data set, which refers to final mathematics examination marks of 48 slow space students in the Indian Institute of Technology at Kanpur [19]. The data are: 29, 25, 50, 15, 13, 27, 15, 18, 7, 7, 8, 19, 12, 18, 5, 21, 15, 86, 21, 15, 14, 39, 15, 14, 70, 44, 6, 23, 58, 19, 50, 23, 11, 6, 34, 18, 28, 34, 12, 37, 4, 60, 20, 23, 40, 65, 19, 31. The DEBuH distribution is compared with some discrete rival models called the Geometric (Geo), generalized geometric (GGeo), discrete Pareto (DPar), discrete Lindley (DLi), discrete flexible one parameter [20] (DFI), negative Binomial (NeBi), discrete Burr X type II (DBuX-II), and discrete Burr–Hatke (DBuH).
The parameters of the DEBuH and other competing models are estimated using the ML approach. Table 9 reports the MLEs, SE, and C.I. of the estimates. Table 10 shows the fitting measures of all studied distributions. The estimated CDFs of all considered models are displayed in Figure 9, whereas the PP plots of these discrete models are depicted in Figure 10. The values in Table 10 are supported by the plots in Figure 9 and Figure 10, showing that the new DEBuH model provides a superior fit to the analyzed data. Further, the profile log-likelihood functions of the DEBuH parameters are shown in Figure 11 for data set II.

7. Estimation of the EBuH Parameters under CSALT

In this section, we consider the ML method to estimate the unknown parameters of the EBuH CSALT model. The estimated shape parameter, RF, and MTTF are also obtained under normal use conditions. One real data set is analyzed for illustration purposes. For estimation under CSALT, we need the following assumptions:
1
Let S u be the stress under normal use condition and S 1 < S 2 < . . . < S r are r increased stress levels, where S u < S 1 .
2
A sample size of N identical units is divided into n 1 , n 2 , . . . . , n k , where n j units are operated at a fixed stress level S j , j = 1 , . . . , r . .
3
The failure times X i j , i = 1 , 2 , . . . , n j ; j = 1 , 2 , . . . , r . are independently and identically distributed EBuH random variables with PDF (3).
4
The shape parameter β j , j = 1 , 2 , . . . , r is related to the stress level through a log linear relationship, i.e., log β j = v + u S j , where v and u are two unknown parameters.

7.1. The MLE of the EBuH under the CSALT Model

On the basis of the PDF of the EBuH distribution (3), the likelihood function under CSALT can be expressed as
L ( x ̲ ; α , v , u ) = j = 1 r i = 1 n r e v + u S j α x i j ( α x i j + α + 1 ) 1 + x i j e α x i j e v + u S j 1 x i j + 1 e v + u S j + 1 .
The natural logarithm of the likelihood function (23), say ( x ̲ ; α , v , u ) = log L ( x ̲ ; α , v , u ) , takes the form
( x ̲ ; α , v , u ) = j = 1 r i = 1 n r v + u S j α x i j + log ( α x i j + α + 1 ) + j = 1 r i = 1 n r e v + u S j 1 log 1 + x i j e α x i j j = 1 r i = 1 n r e v + u S j + 1 log ( x i j + 1 ) .
The MLEs of the unknown parameters u , v , and β can be obtained by maximizing (24) with respect to u , v , and β , or equivalently by solving the following three nonlinear equations:
j = 1 r i = 1 n r x i j + 1 α x i j + α + 1 x i j + j = 1 r i = 1 n r e v + u S j 1 x i j e α x i j 1 + x i j e α x i j = 0 ,
N + j = 1 r i = 1 n r e v + u S j log 1 + x i j e α x i j j = 1 r i = 1 n r e v + u S j log ( x i j + 1 ) = 0
and
N j = 1 r S j + j = 1 r i = 1 n r S j e v + u S j log 1 + x i j e α x i j j = 1 r i = 1 n r S j e v + u S j log ( x i j + 1 ) = 0 .
Any numerical technique can be used to solve (25)–(27) to obtain the MLEs of u , v , and β denoted by u ^ , v ^ , and β ^ . Upon obtaining u ^ , v ^ , and β ^ , we can obtain the MLE of the shape parameter at stress level j as follows:
β ^ j = e v ^ + u ^ S j , j = 1 , . . . , r .
Similarly, the estimated shape parameter, RF at life time x 0 and MTTF can be obtained under normal use conditions, respectively, as follows:
β ^ u = e v ^ + u ^ S u ,
R ^ u ( x 0 ) = 1 1 e α ^ x 0 x 0 + 1 β ^ u
and
M T T F u = β ^ u j , k = 0 Θ β ^ u ( j , k ) k + 2 ( j + 1 ) ( α ^ + 1 ) j + 1 k + 3 α ^ k + 2 Γ k + 2 ,

7.2. Data Analysis under CSALT

In this subsection, we analyze the data set considered by [21] and analyzed recently by [22]. The data refer to the M00071 white organic light-emitting diode (WOLED) mixed with red, green, and blue colors. The failure times of CSALT samples at S 1 = 9.64 mA and S 2 = 17.09 mA are displayed in Table 4 in [21]. For computational purposes, we subtracted 1500 from each data point at S 1 and divided them by 300; we also subtracted 500 from each data point at S 2 and divided them by 200. The transformed data are displayed in Table 11. The MLEs are obtained and used to check the validity of the EBuH distribution to fit these data.
For this purpose, the K-S distance and the corresponding p-value are obtained for each stress level and displayed in Table 11. It is observed from Table 11 that the EBuH distribution provides acceptable fit to the CSALT data. Figure 12 presents the empirical and the estimated EBuH CDF for the two stress levels, indicating that the EBuH distribution is a good choice for modeling this data set. The different estimates of the unknown parameters and MTTF at each stress level, estimated shape parameter, and MTTF at normal use conditions are given by α ^ = 0.350 , v ^ = 4.157 , u ^ = 0.173 , β 1 ^ = 12.395 , β 2 ^ = 3.302 , β u ^ = 22.581 , M T T F 1 ^ = 4.389 , M T T F 2 ^ = 2.376 , and M T T F u ^ = 5.476 .
In addition, the estimated RFs for some selected values, x 0 = 1 , 2 , 3 , at normal use conditions are given by R u ^ ( 1 ) = 1.000 , R u ^ ( 2 ) = 0.873 , and R u ^ ( 3 ) = 0.485 . From these results we conclude that the MTTF decreases as the stress level increases; this is due to the fact that at higher levels of stress the products will fail more quickly. Additionally, it is observed that the MTTF at the normal use condition is higher than those at higher levels of stress. Finally, we can see that the estimated reliability at different mission times decreases as the mission time increases.

8. Conclusions

In this article, we proposed a new form of the Burr–Hatke distribution, called exponentiated Burr–Hatke (EBuH) distribution, that provides more accuracy and flexibility in modeling real data. The discrete version of the new EBuH model is also derived to introduce the discrete exponentiated Burr–Hatke (DEBuH) distribution. The hazard rate and density functions of the EBuH distribution are addressed analytically, and they can be decreasing or unimodal shaped. Furthermore, we studied the shape properties for the reversed hazard rate and odds functions of the EBuH distribution. The reversed hazard function is deceasing for all α , β > 0 , whereas the odds function can be either increasing or bathtub-shaped. Some of the basic reliability properties of the EBuH distribution are derived. The parameters of the EBuH distribution are estimated using several estimation approaches. The behaviors of these estimators are assessed via simulation results. The importance of the EBuH and DEBuH distributions is illustrated empirically using two real-life datasets. It is shown that the two distributions have superior fits compared to other competing models. Additionally, the maximum likelihood approach is adopted to estimate the EBuH parameters under constant-stress accelerated life tests, and a real data set is analyzed to validate our results.

Author Contributions

Conceptualization, M.E.-M.; methodology, M.S.E., M.N. and M.K.S.; software, M.E.-M., M.N. and A.Z.A.; formal analysis, M.E.-M. and A.Z.A.; investigation, M.S.E., H.M.A.; writing—original draft preparation, M.E.-M., M.S.E., M.N. and A.Z.A.; writing—review and editing, H.M.A., M.K.S. and A.Z.A.; project administration, A.Z.A.; funding acquisition, H.M.A. All authors have read and agreed to the published version of the manuscript.

Funding

This study was funded by Taif University Researchers Supporting Project number (TURSP-2020/279), Taif University, Taif, Saudi Arabia.

Acknowledgments

The authors would like to thank the Editorial Board and the reviewers for their constructive suggestions and comments that greatly improved the final version of the paper.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Lehmann, E.L. The power of rank tests. Ann. Math. Stat. 1952, 24, 23–43. [Google Scholar] [CrossRef]
  2. Mudholkar, G.S.; Srivastava, D.K. Exponentiated Weibull family for analyzing bathtub failure-rate data. IEEE Trans. Reliab. 1993, 42, 299–302. [Google Scholar] [CrossRef]
  3. Gupta, R.C.; Gupta, P.L.; Gupta, R.D. Modeling failure time data by Lehmann alternatives. Commun. Stat. Theory Methods 1998, 27, 887–904. [Google Scholar] [CrossRef]
  4. Nadarajah, S.; Kotz, S. The exponentiated type distributions. Acta Appl. Math. 2006, 92, 97–111. [Google Scholar] [CrossRef]
  5. Aryal, G.; Elbatal, I. On the exponentiated generalized modified Weibull distribution. Commun. Stat. Appl. Methods 2015, 22, 333–348. [Google Scholar] [CrossRef] [Green Version]
  6. Afify, A.Z.; Yousof, H.M.; Hamedani, G.G.; Aryal, G. The exponentiated Weibull-Pareto distribution with application. J. Stat. Theory Appl. 2016, 15, 328–346. [Google Scholar] [CrossRef] [Green Version]
  7. Cordeiro, G.M.; Afify, A.Z.; Yousof, H.M.; Pescim, R.R.; Aryal, G.R. The exponentiated Weibull-H family of distributions: Theory and Applications. Mediterr. J. Math. 2017, 14, 155. [Google Scholar] [CrossRef]
  8. Eliwa, M.S.; El-Morshedy, M.; Ali, S. Exponentiated odd Chen-G family of distributions: Statistical properties, Bayesian and non-Bayesian estimation with applications. J. Appl. Stat. 2020, 48, 1–27. [Google Scholar] [CrossRef]
  9. El-Morshedy, M.; Eliwa, M.S.; Altun, E. Discrete Burr-Hatke distribution with properties, estimation methods and regression model. IEEE Access 2020, 8, 74359–74370. [Google Scholar] [CrossRef]
  10. Al-Babtain, A.A.; Ahmed, A.H.N.; Afify, A.Z. A new discrete analog of the continuous Lindley distribution, with reliability applications. Entropy 2020, 22, 603. [Google Scholar] [CrossRef]
  11. Aljohani, H.M.; Akdoğan, Y.; Cordeiro, G.M.; Afify, A.Z. The uniform Poisson–Ailamujia distribution: Actuarial measures and applications in biological science. Symmetry 2021, 13, 1258. [Google Scholar] [CrossRef]
  12. Almazah, M.M.A.; Erbayram, T.; Akdoğan, Y.; ALSobhi, M.M.; Afify, A.Z. A new extended geometric distribution: Properties, regression model, and actuarial applications. Mathematics 2021, 9, 1336. [Google Scholar] [CrossRef]
  13. Maniu, A.I.; Voda, V.G. Generalized Burr-Hatke equation as generator of a homogaphic failure rate. J. Appl. Quant. Methods 2008, 3, 215–222. [Google Scholar]
  14. Glaser, R.E. Bathtub and related failure rate characterizations. J. Am. Stat. Assoc. 1980, 75, 667–672. [Google Scholar] [CrossRef]
  15. Lando, T.; Arab, I.; Oliveira, P.E. Second-order stochastic comparisons of order statistics. Statistics 2021. [Google Scholar] [CrossRef]
  16. Mahmoud, M.R.; Mandouh, R.M. On the transmuted Fréchet distribution. J. Appl. Sci. Res. 2013, 9, 5553–5561. [Google Scholar]
  17. Raqab, M.Z.; Kundu, D. Burr type X distribution: Revisited. J. Probab. Stat. Sci. 2006, 4, 179–193. [Google Scholar]
  18. Marshall, A.W.; Olkin, I. A new method for adding a parameter to a family of distributions with application to the exponential and Weibull families. Biometrika 1997, 84, 641–652. [Google Scholar] [CrossRef]
  19. Gupta, R.D.; Kundu, D. A new class of weighted exponential distributions. Statistics 2009, 43, 621–634. [Google Scholar] [CrossRef]
  20. Eliwa, M.S.; El-Morshedy, M. A one-parameter discrete distribution for over-dispersed data: Statistical and reliability properties with applications. J. Appl. Stat. 2021. [Google Scholar] [CrossRef]
  21. Zhang, J.; Cheng, G.; Chen, X.; Han, Y.; Zhou, T.; Qiu, Y. Accelerated life test of white OLED based on lognormal distribution. Indian J. Pure Appl. Phys. 2014, 52, 671–677. [Google Scholar]
  22. Lin, C.; Hsu, Y.; Lee, S.; Balakrishnan, N. Inference on constant stress accelerated life tests for log-location-scale lifetime distributions with type-I hybrid censoring. J. Stat. Comput. Simul. 2019, 89, 720–749. [Google Scholar] [CrossRef]
Figure 1. Some possible shapes for the PDF of the EBuH distribution.
Figure 1. Some possible shapes for the PDF of the EBuH distribution.
Mathematics 09 02277 g001
Figure 2. Some possible shapes for the HRF of the EBuH distribution.
Figure 2. Some possible shapes for the HRF of the EBuH distribution.
Mathematics 09 02277 g002
Figure 3. Some possible shapes for the O of the EBuH distribution.
Figure 3. Some possible shapes for the O of the EBuH distribution.
Mathematics 09 02277 g003
Figure 4. The PMF plots of the DEBuH distribution.
Figure 4. The PMF plots of the DEBuH distribution.
Mathematics 09 02277 g004
Figure 5. The HRF plots of the DEBuH distribution.
Figure 5. The HRF plots of the DEBuH distribution.
Mathematics 09 02277 g005
Figure 6. Estimated CDFs (left panel) and PDFs (right panel) of the EBuH distribution and other models for data set I.
Figure 6. Estimated CDFs (left panel) and PDFs (right panel) of the EBuH distribution and other models for data set I.
Mathematics 09 02277 g006
Figure 7. The PP plots of the fitted models for data set I.
Figure 7. The PP plots of the fitted models for data set I.
Mathematics 09 02277 g007
Figure 8. The profile L functions for the EBuH parameters for data set I.
Figure 8. The profile L functions for the EBuH parameters for data set I.
Mathematics 09 02277 g008
Figure 9. Estimated CDFs of the DEBuH model and other discrete models for data set II.
Figure 9. Estimated CDFs of the DEBuH model and other discrete models for data set II.
Mathematics 09 02277 g009
Figure 10. The PP plots of the fitted models for data set II.
Figure 10. The PP plots of the fitted models for data set II.
Mathematics 09 02277 g010
Figure 11. The profile L functions of the DEBuH parameters for data set II.
Figure 11. The profile L functions of the DEBuH parameters for data set II.
Mathematics 09 02277 g011
Figure 12. The empirical and estimated CDFs of the EBuH distribution for the two stress levels.
Figure 12. The empirical and estimated CDFs of the EBuH distribution for the two stress levels.
Mathematics 09 02277 g012
Table 1. Some descriptive statistics of the EBuH model.
Table 1. Some descriptive statistics of the EBuH model.
ParameterMeasure
α β MeanVarianceSkewnessKurtosisIndex of Dispersion
0.05 0.05 0.169113 1.784937 23.90187 970.79179 10.554675
0.50 1.459027 15.63631 8.167996 115.04027 10.716944
1.50 3.551243 38.64713 5.233569 48.62806 10.88270
2.00 4.390324 47.91511 4.702076 39.76626 10.91379
0.50 0.05 0.068414 0.116458 10.88104 186.8619 1.702242
0.50 0.549573 0.838333 3.813721 26.06214 1.525425
1.50 1.208888 1.613429 2.579902 13.83731 1.334638
2.00 1.442168 1.843117 2.370207 12.22692 1.278018
1.50 0.05 0.034694 0.024182 8.886853 120.2940 0.697004
0.50 0.272041 0.160844 3.067550 17.40487 0.591247
1.50 0.578837 0.280556 2.078336 9.931718 0.484689
2.00 0.682764 0.310802 1.919330 9.004244 0.455212
2.00 0.05 0.028164 0.015420 8.596504 111.7193 0.547495
0.50 0.219971 0.101137 2.952361 16.22215 0.459776
1.50 0.465489 0.173284 1.995780 9.358395 0.372262
2.00 0.548039 0.190881 1.843722 8.520078 0.348298
Table 2. Some reliability computations of the EBuH model.
Table 2. Some reliability computations of the EBuH model.
ParameterMeasure
α β MTTFMTTR α = 1 . 5 β = 2 . 5 MTBFAv
0.05 0.05 0.169113 0.769202 0.938315 0.180230
0.50 1.459027 0.769202 2.228229 0.654792
1.50 3.551243 0.769202 4.320446 0.821962
2.00 4.390324 0.769202 5.159527 0.850916
0.50 0.05 0.068414 0.769202 0.837617 0.081677
0.50 0.549573 0.769202 1.318775 0.416729
1.50 1.208888 0.769202 1.978091 0.611139
2.00 1.442168 0.769202 2.211371 0.652160
1.50 0.05 0.034694 0.769202 0.80389 0.043157
0.50 0.272041 0.769202 1.041244 0.261266
1.50 0.578837 0.769202 1.348039 0.429391
2.00 0.682764 0.769202 1.451966 0.470234
2.00 0.05 0.028164 0.769202 0.797367 0.035322
0.50 0.219971 0.769202 0.989174 0.222379
1.50 0.465489 0.769202 1.234692 0.377008
2.00 0.548039 0.769202 1.317242 0.416050
Table 3. Simulation results of the eight estimation methods for α = 0.5 and β = 0.5 , 1.5 .
Table 3. Simulation results of the eight estimation methods for α = 0.5 and β = 0.5 , 1.5 .
nEstParMLEMPSELSECVMEWLSEPCEADERADE
α = 0.5 β = 0.5
20 B i a s α ^ 0.23722 0.27668 0.34071 0.32819 0.31814 0.32973 0.28512 0.26870
β ^ 0.08737 0.08549 0.09428 0.09916 0.08978 0.15681 0.08473 0.09921
M S E α ^ 0.05627 0.07655 0.11608 0.10771 0.10121 0.10872 0.08129 0.07220
β ^ 0.00763 0.00731 0.00889 0.00983 0.00806 0.02459 0.00718 0.00984
M R E α ^ 0.47443 0.55335 0.68141 0.65639 0.63628 0.65947 0.57024 0.53739
β ^ 0.17475 0.17098 0.18857 0.19832 0.17957 0.31363 0.16946 0.19842
50 B i a s α ^ 0.15666 0.17705 0.20838 0.20459 0.17955 0.21029 0.18225 0.16923
β ^ 0.05446 0.05683 0.05811 0.05934 0.05943 0.12094 0.05313 0.06225
M S E α ^ 0.02454 0.03135 0.04342 0.04186 0.03224 0.04422 0.03321 0.02864
β ^ 0.00297 0.00323 0.00338 0.00352 0.00353 0.01463 0.00282 0.00387
M R E α ^ 0.31331 0.35409 0.41676 0.40917 0.35910 0.42058 0.36450 0.33846
β ^ 0.10892 0.11366 0.11622 0.11868 0.11886 0.24188 0.10625 0.12450
150 B i a s α ^ 0.08750 0.09626 0.12423 0.1177 0.10233 0.14031 0.10166 0.09940
β ^ 0.03092 0.03314 0.03579 0.03553 0.03166 0.08872 0.03261 0.03476
M S E α ^ 0.00766 0.00927 0.01543 0.01387 0.01047 0.01969 0.01033 0.00988
β ^ 0.00096 0.00110 0.00128 0.00126 0.00100 0.00787 0.00106 0.00121
M R E α ^ 0.17500 0.19252 0.24845 0.23552 0.20467 0.28062 0.20331 0.19880
β ^ 0.06184 0.06629 0.07158 0.07105 0.06331 0.17744 0.06522 0.06952
300 B i a s α ^ 0.06342 0.06800 0.08196 0.08513 0.07609 0.09662 0.06943 0.07255
β ^ 0.02101 0.02288 0.02474 0.02624 0.02302 0.06228 0.02304 0.02466
M S E α ^ 0.00402 0.00462 0.00672 0.00725 0.00579 0.00934 0.00482 0.00526
β ^ 0.00044 0.00052 0.00061 0.00069 0.00053 0.00388 0.00053 0.00061
M R E α ^ 0.12685 0.13599 0.16393 0.17025 0.15219 0.19324 0.13886 0.14511
β ^ 0.04202 0.04576 0.04948 0.05247 0.04604 0.12457 0.04609 0.04933
α = 0.5 β = 1.5
20 B i a s α ^ 0.16642 0.19079 0.21021 0.21342 0.19171 0.22395 0.16993 0.17923
β ^ 0.29323 0.29386 0.34907 0.36117 0.29864 0.43715 0.29031 0.34217
M S E α ^ 0.02770 0.03640 0.04419 0.04555 0.03675 0.05016 0.02888 0.03212
β ^ 0.08598 0.08635 0.12185 0.13044 0.08918 0.19110 0.08428 0.11708
M R E α ^ 0.33284 0.38159 0.42042 0.42685 0.38342 0.44791 0.33986 0.35846
β ^ 0.19549 0.19591 0.23271 0.24078 0.19909 0.29143 0.19354 0.22811
50 B i a s α ^ 0.10566 0.11679 0.12932 0.12951 0.11824 0.14983 0.11307 0.11572
β ^ 0.18331 0.18701 0.20858 0.21783 0.18733 0.33351 0.18904 0.21078
M S E α ^ 0.01116 0.01364 0.01672 0.01677 0.01398 0.02245 0.01279 0.01339
β ^ 0.03360 0.03497 0.04350 0.04745 0.03509 0.11123 0.03574 0.04443
M R E α ^ 0.21132 0.23357 0.25864 0.25902 0.23649 0.29967 0.22614 0.23145
β ^ 0.12221 0.12467 0.13905 0.14522 0.12489 0.22234 0.12603 0.14052
150 B i a s α ^ 0.05879 0.06331 0.07489 0.07387 0.06563 0.08672 0.06150 0.06668
β ^ 0.10070 0.10767 0.12217 0.12126 0.11415 0.21314 0.10941 0.12615
M S E α ^ 0.00346 0.00401 0.00561 0.00546 0.00431 0.00752 0.00378 0.00445
β ^ 0.01014 0.01159 0.01493 0.01470 0.01303 0.04543 0.01197 0.01591
M R E α ^ 0.11758 0.12662 0.14978 0.14774 0.13125 0.17345 0.12301 0.13336
β ^ 0.06714 0.07178 0.08145 0.08084 0.07610 0.14209 0.07294 0.08410
300 B i a s α ^ 0.04119 0.04401 0.04948 0.04997 0.04759 0.06348 0.04638 0.04581
β ^ 0.07171 0.07178 0.08188 0.08412 0.07626 0.16093 0.07559 0.08796
M S E α ^ 0.00170 0.00194 0.00245 0.00250 0.00226 0.00403 0.00215 0.00210
β ^ 0.00514 0.00529 0.00670 0.00708 0.00582 0.02590 0.00571 0.00774
M R E α ^ 0.08237 0.08801 0.09895 0.09994 0.09517 0.12696 0.09277 0.09162
β ^ 0.04780 0.04850 0.05459 0.05608 0.05084 0.10728 0.05039 0.05864
Table 4. Simulation results of the eight estimation methods for α = 0.5 , 1.5 and β = 0.5 , 3.0 .
Table 4. Simulation results of the eight estimation methods for α = 0.5 , 1.5 and β = 0.5 , 3.0 .
nEstParMLEMPSELSECVMEWLSEPCEADERADE
α = 0.5 β = 3.0
20 B i a s α ^ 0.13710 0.15163 0.16056 0.16007 0.14606 0.17658 0.13811 0.14064
β ^ 0.66604 0.66802 0.73752 0.71864 0.69278 0.92649 0.65335 0.77032
M S E α ^ 0.01880 0.02299 0.02578 0.02562 0.02133 0.03118 0.01907 0.01978
β ^ 0.44361 0.44625 0.54393 0.51645 0.47994 0.85838 0.42687 0.59339
M R E α ^ 0.27419 0.30325 0.32111 0.32014 0.29211 0.35317 0.27622 0.28128
β ^ 0.22201 0.22267 0.24584 0.23955 0.23093 0.30883 0.21778 0.25677
50 B i a s α ^ 0.08079 0.09341 0.09837 0.10138 0.08887 0.12180 0.08980 0.09521
β ^ 0.39722 0.43020 0.47341 0.46289 0.41913 0.64776 0.42198 0.48202
M S E α ^ 0.00653 0.00873 0.00968 0.01028 0.00790 0.01483 0.00806 0.00907
β ^ 0.15778 0.18507 0.22412 0.21427 0.17567 0.41959 0.17807 0.23234
M R E α ^ 0.16157 0.18683 0.19674 0.20277 0.17773 0.24359 0.17960 0.19043
β ^ 0.13241 0.14340 0.15780 0.15430 0.13971 0.21592 0.14066 0.16067
150 B i a s α ^ 0.04963 0.04975 0.05792 0.05732 0.05231 0.07053 0.05290 0.05541
β ^ 0.22530 0.23303 0.26602 0.27166 0.25062 0.42233 0.24857 0.27333
M S E α ^ 0.00246 0.00247 0.00335 0.00329 0.00274 0.00497 0.00280 0.00307
β ^ 0.05076 0.05430 0.07076 0.07380 0.06281 0.17836 0.06179 0.07471
M R E α ^ 0.09925 0.09949 0.11584 0.11464 0.10463 0.14105 0.10580 0.11082
β ^ 0.07510 0.07768 0.08867 0.09055 0.08354 0.14078 0.08286 0.09111
300 B i a s α ^ 0.03357 0.03566 0.04066 0.04120 0.03662 0.05295 0.03472 0.03936
β ^ 0.16199 0.16688 0.19048 0.18551 0.16784 0.31531 0.16637 0.20481
M S E α ^ 0.00113 0.00127 0.00165 0.00170 0.00134 0.00280 0.00121 0.00155
β ^ 0.02624 0.02785 0.03628 0.03441 0.02817 0.09942 0.02768 0.04195
M R E α ^ 0.06713 0.07131 0.08132 0.08240 0.07324 0.10590 0.06945 0.07871
β ^ 0.05400 0.05563 0.06349 0.06184 0.05595 0.10510 0.05546 0.06827
α = 1.5 β = 0.5
20 B i a s α ^ 0.55333 0.61664 0.69601 0.68754 0.60181 0.72988 0.55489 0.57848
β ^ 0.09267 0.09250 0.10210 0.10488 0.09108 0.17221 0.09377 0.10395
M S E α ^ 0.30617 0.38025 0.03123 0.47271 0.36218 0.53273 0.30791 0.33464
β ^ 0.00859 0.00856 0.00079 0.01100 0.00830 0.02966 0.00879 0.01080
M R E α ^ 0.36888 0.41110 0.46401 0.45836 0.40121 0.48659 0.36993 0.38565
β ^ 0.18535 0.18499 0.20419 0.20977 0.18217 0.34442 0.18754 0.20789
50 B i a s α ^ 0.34677 0.37896 0.41602 0.42225 0.39230 0.49684 0.36109 0.36519
β ^ 0.05600 0.05969 0.06457 0.06216 0.06002 0.13105 0.05730 0.06699
M S E α ^ 0.12025 0.14361 0.06692 0.17830 0.15390 0.24685 0.13038 0.13336
β ^ 0.00314 0.00356 0.00142 0.00386 0.00360 0.01718 0.00328 0.00449
M R E α ^ 0.23118 0.25264 0.27734 0.28150 0.26154 0.33122 0.24073 0.24346
β ^ 0.11199 0.11938 0.12914 0.12433 0.12004 0.26211 0.11460 0.13398
150 B i a s α ^ 0.19410 0.20715 0.25869 0.24023 0.22276 0.31247 0.21283 0.20047
β ^ 0.03126 0.03216 0.03772 0.03478 0.03385 0.08456 0.03483 0.03611
M S E α ^ 0.03768 0.04291 0.17307 0.05771 0.04962 0.09764 0.04530 0.04019
β ^ 0.00098 0.00103 0.00417 0.00121 0.00115 0.00715 0.00121 0.00130
M R E α ^ 0.12940 0.13810 0.17246 0.16016 0.14851 0.20831 0.14189 0.13364
β ^ 0.06252 0.06433 0.07544 0.06955 0.06770 0.16913 0.06965 0.07221
300 B i a s α ^ 0.13498 0.14512 0.17673 0.18095 0.14821 0.22005 0.15110 0.14417
β ^ 0.02255 0.02404 0.02808 0.02620 0.02308 0.06334 0.02364 0.02637
M S E α ^ 0.01822 0.02106 0.48443 0.03274 0.02197 0.04842 0.02283 0.02078
β ^ 0.00051 0.00058 0.01042 0.00069 0.00053 0.00401 0.00056 0.00070
M R E α ^ 0.08999 0.09675 0.11782 0.12063 0.09881 0.14670 0.10073 0.09611
β ^ 0.04510 0.04808 0.05615 0.05240 0.04617 0.12669 0.04728 0.05274
Table 5. Simulation results of the eight estimation methods for α = 1.5 and β = 1.5 , 3.0 .
Table 5. Simulation results of the eight estimation methods for α = 1.5 and β = 1.5 , 3.0 .
nEstParMLEMPSELSECVMEWLSEPCEADERADE
α = 1.5 β = 1.5
20 B i a s α ^ 0.38640 0.42631 0.44734 0.44410 0.42012 0.51001 0.41872 0.41095
β ^ 0.32617 0.33283 0.35062 0.37408 0.32936 0.47681 0.32292 0.38228
M S E α ^ 0.14931 0.18174 0.20011 0.19723 0.17650 0.26012 0.17533 0.16888
β ^ 0.10638 0.11078 0.12293 0.13993 0.10848 0.22735 0.10428 0.14614
M R E α ^ 0.25760 0.28421 0.29823 0.29607 0.28008 0.34001 0.27915 0.27397
β ^ 0.21744 0.22189 0.23375 0.24938 0.21957 0.31787 0.21528 0.25485
50 B i a s α ^ 0.24614 0.26438 0.28343 0.30310 0.25686 0.34405 0.25667 0.26600
β ^ 0.19580 0.20293 0.22222 0.24482 0.20090 0.33171 0.20288 0.24313
M S E α ^ 0.06059 0.06990 0.08033 0.09187 0.06598 0.11837 0.06588 0.07075
β ^ 0.03834 0.04118 0.04938 0.05993 0.04036 0.11003 0.04116 0.05911
M R E α ^ 0.16410 0.17625 0.18895 0.20207 0.17124 0.22937 0.17111 0.17733
β ^ 0.13053 0.13529 0.14815 0.16321 0.13393 0.22114 0.13525 0.16209
150 B i a s α ^ 0.13168 0.14588 0.16947 0.17281 0.13983 0.20146 0.14645 0.14508
β ^ 0.10996 0.11734 0.13544 0.12774 0.11770 0.20736 0.11265 0.13733
M S E α ^ 0.01734 0.02128 0.02872 0.02986 0.01955 0.04058 0.02145 0.02105
β ^ 0.01209 0.01377 0.01834 0.01632 0.01385 0.04300 0.01269 0.01886
M R E α ^ 0.08779 0.09725 0.11298 0.11521 0.09322 0.13430 0.09764 0.09672
β ^ 0.07331 0.07823 0.09030 0.08516 0.07847 0.13824 0.07510 0.09155
300 B i a s α ^ 0.10220 0.09939 0.11390 0.11316 0.10156 0.14464 0.10667 0.11071
β ^ 0.08087 0.08350 0.09395 0.09354 0.08145 0.15428 0.08611 0.09689
M S E α ^ 0.01045 0.00988 0.01297 0.01280 0.01031 0.02092 0.01138 0.01226
β ^ 0.00654 0.00697 0.00883 0.00875 0.00663 0.02380 0.00741 0.00939
M R E α ^ 0.06814 0.06626 0.07594 0.07544 0.06770 0.09643 0.07111 0.07381
β ^ 0.05391 0.05566 0.06263 0.06236 0.05430 0.10285 0.05741 0.06459
α = 1.5 β = 3.0
20 B i a s α ^ 0.32486 0.38065 0.42240 0.39870 0.36699 0.42294 0.33770 0.37698
β ^ 0.75200 0.75190 0.86270 0.87298 0.75880 0.97122 0.74942 0.87183
M S E α ^ 0.10553 0.14489 0.17842 0.15896 0.13468 0.17888 0.11404 0.14212
β ^ 0.56550 0.56536 0.74425 0.76209 0.57578 0.94328 0.56163 0.76008
M R E α ^ 0.21657 0.25377 0.28160 0.26580 0.24466 0.28196 0.22513 0.25132
β ^ 0.25067 0.25063 0.28757 0.29099 0.25293 0.32374 0.24981 0.29061
50 B i a s α ^ 0.20578 0.21148 0.24213 0.24123 0.21523 0.28514 0.21028 0.23042
β ^ 0.44026 0.46643 0.52753 0.53593 0.48764 0.68585 0.46757 0.53640
M S E α ^ 0.04235 0.04472 0.05863 0.05819 0.04632 0.08131 0.04422 0.05309
β ^ 0.19383 0.21756 0.27829 0.28722 0.23779 0.47039 0.21863 0.28772
M R E α ^ 0.13719 0.14099 0.16142 0.16082 0.14348 0.19010 0.14019 0.15361
β ^ 0.14675 0.15548 0.17584 0.17864 0.16255 0.22862 0.15586 0.17880
150 B i a s α ^ 0.11517 0.1234 0.13070 0.13567 0.12492 0.16900 0.12654 0.12773
β ^ 0.24791 0.26461 0.30714 0.29786 0.27247 0.44131 0.27571 0.31094
M S E α ^ 0.01326 0.01523 0.01708 0.01841 0.01560 0.02856 0.01601 0.01631
β ^ 0.06146 0.07002 0.09433 0.08872 0.07424 0.19475 0.07602 0.09668
M R E α ^ 0.07678 0.08226 0.08714 0.09045 0.08328 0.11266 0.08436 0.08515
β ^ 0.08264 0.08820 0.10238 0.09929 0.09082 0.14710 0.09190 0.10365
300 B i a s α ^ 0.08373 0.08239 0.09719 0.09941 0.08805 0.12275 0.08429 0.09315
β ^ 0.17666 0.18621 0.21308 0.22002 0.19417 0.31404 0.18537 0.22774
M S E α ^ 0.00701 0.00679 0.00945 0.00988 0.00775 0.02856 0.00710 0.00868
β ^ 0.03121 0.03467 0.04541 0.04841 0.03770 0.19475 0.03436 0.05186
M R E α ^ 0.05582 0.05493 0.06479 0.06628 0.05870 0.08183 0.05619 0.06210
β ^ 0.05889 0.06207 0.07103 0.07334 0.06472 0.10468 0.06179 0.07591
Table 6. Simulation results of the eight estimation methods for α = 3.0 and β = 0.5 , 3.0 .
Table 6. Simulation results of the eight estimation methods for α = 3.0 and β = 0.5 , 3.0 .
nEstParMLEMPSELSECVMEWLSEPCEADERADE
α = 3.0 β = 0.5
20 B i a s α ^ 0.92424 1.05720 1.15802 1.17835 1.08802 1.25299 1.00147 0.96678
β ^ 0.08968 0.09370 0.09921 0.10314 0.09497 0.17558 0.09293 0.10666
M S E α ^ 0.92424 1.11766 1.34102 1.38850 1.18378 . 56998 1.00295 0.93467
β ^ 0.08968 0.00878 0.00984 0.01064 0.00902 0.03083 0.00864 0.01138
M R E α ^ 0.30808 0.35240 0.38601 0.39278 0.36267 0.41766 0.33382 0.32226
β ^ 0.17935 0.18739 0.19843 0.20628 0.18994 0.35116 0.18586 0.21331
50 B i a s α ^ 0.59365 0.62749 0.72994 0.75127 0.68634 0.85446 0.64666 0.63685
β ^ 0.05551 0.05863 0.06820 0.07019 0.05944 0.12463 0.06059 0.06594
M S E α ^ 0.59365 0.39375 0.53281 0.56440 0.47106 0.73010 0.41817 0.40558
β ^ 0.05551 0.00344 0.00465 0.00493 0.00353 0.01553 0.00367 0.00435
M R E α ^ 0.19788 0.20916 0.24331 0.25042 0.22878 0.28482 0.21555 0.21228
β ^ 0.11102 0.11726 0.13639 0.14037 0.11888 0.24925 0.12119 0.13189
150 B i a s α ^ 0.32568 0.35803 0.42058 0.41293 0.38203 0.50455 0.35425 0.37857
β ^ 0.03255 0.03311 0.03732 0.03799 0.03502 0.08078 0.03326 0.03878
M S E α ^ 0.32568 0.12818 0.17689 0.17052 0.14595 0.25458 0.12549 0.14332
β ^ 0.03255 0.00110 0.00139 0.00144 0.00123 0.00652 0.00111 0.00150
M R E α ^ 0.10856 0.11934 0.14019 0.13764 0.12734 0.16818 0.11808 0.12619
β ^ 0.06509 0.06623 0.07465 0.07598 0.07004 0.16155 0.06651 0.07755
300 B i a s α ^ 0.22924 0.25101 0.29912 0.29820 0.25644 0.38293 0.25940 0.27077
β ^ 0.02331 0.02345 0.02632 0.02558 0.02393 0.06243 0.02418 0.02705
M S E α ^ 0.22924 0.06301 0.08947 0.08892 0.06576 0.14664 0.06729 0.07331
β ^ 0.02331 0.00055 0.00069 0.00065 0.00057 0.00390 0.00058 0.00073
M R E α ^ 0.07641 0.08367 0.09971 0.09940 0.08548 0.12764 0.08647 0.09026
β ^ 0.04662 0.04690 0.05264 0.05115 0.04785 0.12485 0.04837 0.05410
α = 3.0 β = 3.0
20 B i a s α ^ 0.35563 0.67929 0.72716 0.72107 0.6728 0.77999 0.60401 0.66579
β ^ 0.53339 0.80527 0.89407 0.87971 0.82125 0.97336 0.74822 0.87495
M S E α ^ 0.59634 0.46144 0.52877 0.51995 0.45274 0.60838 0.36482 0.44327
β ^ 0.73033 0.64847 0.79936 0.77389 0.67445 0.94743 0.55983 0.76553
M R E α ^ 0.19878 0.22643 0.24239 0.24036 0.22429 0.26000 0.20134 0.22193
β ^ 0.24344 0.26842 0.29802 0.29324 0.27375 0.32445 0.24941 0.29165
50 B i a s α ^ 0.13360 0.40658 0.46046 0.42838 0.40043 0.47610 0.39291 0.39464
β ^ 0.20698 0.50872 0.55273 0.57878 0.49298 0.66999 0.48462 0.56211
M S E α ^ 0.36552 0.16531 0.21202 0.18351 0.16035 0.22668 0.15438 0.15574
β ^ 0.45495 0.25879 0.30551 0.33499 0.24303 0.44888 0.23486 0.31597
M R E α ^ 0.12184 0.13553 0.15349 0.14279 0.13348 0.15870 0.13097 0.13155
β ^ 0.15165 0.16957 0.18424 0.19293 0.16433 0.22333 0.16154 0.18737
150 B i a s α ^ 0.04550 0.22413 0.25665 0.24801 0.22401 0.29708 0.21820 0.23174
β ^ 0.07250 0.27363 0.32220 0.31850 0.27846 0.41561 0.27978 0.32834
M S E α ^ 0.21330 0.05023 0.06587 0.06151 0.05018 0.08826 0.04761 0.05370
β ^ 0.26926 0.07487 0.10381 0.10144 0.07754 0.17273 0.07828 0.10780
M R E α ^ 0.07110 0.07471 0.08555 0.08267 0.07467 0.09903 0.07273 0.07725
β ^ 0.08975 0.09121 0.10740 0.10617 0.09282 0.13854 0.09326 0.10945
300 B i a s α ^ 0.02115 0.15295 0.18254 0.16874 0.15710 0.20636 0.15155 0.17288
β ^ 0.03211 0.20131 0.22892 0.22484 0.19284 0.30563 0.19767 0.23609
M S E α ^ 0.14543 0.02339 0.03332 0.02847 0.02468 0.04258 0.02297 0.02989
β ^ 0.17918 0.04053 0.05240 0.05055 0.03719 0.09341 0.03907 0.05574
M R E α ^ 0.04848 0.05098 0.06085 0.05625 0.05237 0.06879 0.05052 0.05763
β ^ 0.05973 0.06710 0.07631 0.07495 0.06428 0.10188 0.06589 0.07870
Table 7. The MLEs, SE, and C.I. of the EBuH model and other models for data set I.
Table 7. The MLEs, SE, and C.I. of the EBuH model and other models for data set I.
Model α β
MLESEC.I.MLESEC.I.
E 0.6189 0.0779 [ 0.4661 , 0.7718 ]
R 0.3523 0.0444 [ 0.2653 , 0.4393 ]
Li 0.9383 0.0889 [ 0.7639 , 1.1126 ]
BuX 8.0472 1.0139 [ 6.0601 , 10.0344 ]
MOE 1819.2109 1519.8527 [ 1159.6457 , 4798.0674 ] 4.8464 0.5296 [ 3.8084 , 5.8844 ]
Gz 0.1791 0.04076 [ 0.0992 , 0.2590 ] 1.0509 0.1174 [ 0.8209 , 1.2809 ]
W 3.0620 0.2403 [ 2.5909 , 3.5331 ] 1.7876 0.0784 [ 1.6339 , 1.9412 ]
OEBuH 0.8235 0.1075 [ 0.6129 , 1.0341 ] 0.0849 0.0247 [ 0.0365 , 0.1334 ]
OLiBuH 0.6256 0.0823 [ 0.4642 , 0.7870 ] 0.2455 0.0488 [ 0.1499 , 0.3411 ]
Bu-VII 20.3511 2.56400 [ 15.3258 , 25.3765 ]
BuH 0.2325 0.0776 [ 0.0804 , 0.3846 ]
EBuH 3.1599 0.3641 [ 2.4463 , 3.8737 ] 227.9811 114.8811 [ 2.8183 , 453.1439 ]
Table 8. Fitting measures of the EBuH model and other models for data set I.
Table 8. Fitting measures of the EBuH model and other models for data set I.
ModelsFitting Measures
L AICCAICBICHQICW A K-Sp-Value
E 93.2229 188.4457 188.5113 190.5889 189.2886 0.3046 2.1029 0.4721 0.0000
Rl 56.8472 115.6944 115.7600 117.8376 116.5373 0.4703 3.0503 0.3461 0.0000
Li 85.4759 172.9519 173.0175 175.0950 173.7948 0.3328 2.2696 0.4347 0.0000
BuX 30.7515 63.5031 63.5686 65.6462 64.3459 0.2669 1.8773 0.1093 0.4099
MOE 30.4045 64.8090 65.0090 69.0953 66.4948 0.2499 1.7998 0.1091 0.4123
Gz 64.3839 132.7679 132.9679 137.0542 134.4537 1.1813 6.6993 0.2964 0.0000
W 46.3669 96.7338 96.9337 101.0200 98.4196 0.7078 4.3254 0.2051 0.0084
OEBuH 62.5454 129.0907 129.2907 133.3770 130.7765 1.1365 6.4814 0.2874 0.0000
OLiBuH 56.5322 117.0643 117.2643 121.3506 118.7502 1.0086 5.8543 0.2464 0.0007
Bu-VII 36.1698 74.3396 74.4051 76.4827 75.1825 0.1982 1.4605 0.2583 0.0003
BuH 113.3643 228.7286 228.7941 230.8717 229.5715 0.2352 1.6851 0.6104 0.0000
EBuH 22.2290 48.4580 48.6580 52.7443 50.1438 0.0918 0.7442 0.0725 0.8713
Table 9. The MLEs, SE, and C.I. of the DEBuH model and other discrete models for data set II.
Table 9. The MLEs, SE, and C.I. of the DEBuH model and other discrete models for data set II.
Modelp β
MLESEC.I.MLESEC.I.
Geo 0.9628 0.0053 [ 0.953 , 0.9731 ]
GGeo 0.9262 0.0134 [ 0.8997 , 0.9525 ] 4.7513 2.2301 [ 0.3804 , 9.1223 ]
DPar 0.7243 0.0337 [ 0.6583 , 0.7904 ]
DLi 0.9294 0.0069 [ 0.9158 , 0.9430 ]
DFI 0.9709 0.0036 [ 0.9639 , 0.9781 ]
NeBi 0.9137 0.01847 [ 0.8775 , 0.9499 ] 2.4447 0.5219 [ 1.4218 , 3.4676 ]
DBuX-II 0.9757 0.0604 [ 0.8573 , 1 ] 13.3408 33.5855 [ 0 , 79.1671 ]
DBuH 0.9990 0.0046 [ 0.9901 , 1 ]
DEBuH 0.9693 0.0085 [ 0.9527 , 0.9858 ] 27.6957 5.1760 [ 17.5509 , 7.8406 ]
Table 10. Fitting measures of the DEBuH model and other discrete models for data set II.
Table 10. Fitting measures of the DEBuH model and other discrete models for data set II.
ModelFitting Measures
L AICCAICBICHQICK-Sp-Value
Geo 205.1110 412.2221 412.3090 414.0933 412.9292 0.2223 0.0174
GGeo 200.1725 404.3451 404.6118 408.0875 405.7593 0.1583 0.0962
DPar 251.1808 504.3617 504.4486 506.2329 505.0688 0.4469 0.0000
DLi 198.2620 398.5239 398.6109 400.3951 399.2310 0.1048 0.6676
DFI 202.5758 407.1516 407.2386 409.0228 407.8588 0.1892 0.0642
NeBi 197.5218 399.0435 399.3102 402.7859 400.4578 0.1029 0.6810
DBuX-II 247.4837 498.9674 499.2341 502.7098 500.3817 0.4308 0.0000
DBuH 297.6761 597.3523 597.4392 599.2235 598.0594 0.8371 0.0000
DEBuH 196.5340 397.0681 397.3347 400.8105 398.4823 0.1019 0.7008
Table 11. WOLED data, K-S statistic, and the corresponding p-value.
Table 11. WOLED data, K-S statistic, and the corresponding p-value.
Stress LevelFailure DataK-S Distance (p-Value)
S 1 = 9.64 mA0.6381.9492.0012.9153.0420.3009(0.3255)
3.6203.7383.9354.5604.598
S 2 = 17.09 mA0.5070.9490.9861.0831.4280.1744(0.9213)
1.7721.9473.0793.1563.757
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

El-Morshedy, M.; Aljohani, H.M.; Eliwa, M.S.; Nassar, M.; Shakhatreh, M.K.; Afify, A.Z. The Exponentiated Burr–Hatke Distribution and Its Discrete Version: Reliability Properties with CSALT Model, Inference and Applications. Mathematics 2021, 9, 2277. https://doi.org/10.3390/math9182277

AMA Style

El-Morshedy M, Aljohani HM, Eliwa MS, Nassar M, Shakhatreh MK, Afify AZ. The Exponentiated Burr–Hatke Distribution and Its Discrete Version: Reliability Properties with CSALT Model, Inference and Applications. Mathematics. 2021; 9(18):2277. https://doi.org/10.3390/math9182277

Chicago/Turabian Style

El-Morshedy, Mahmoud, Hassan M. Aljohani, Mohamed S. Eliwa, Mazen Nassar, Mohammed K. Shakhatreh, and Ahmed Z. Afify. 2021. "The Exponentiated Burr–Hatke Distribution and Its Discrete Version: Reliability Properties with CSALT Model, Inference and Applications" Mathematics 9, no. 18: 2277. https://doi.org/10.3390/math9182277

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop