A DANP-Based NDEA-MOP Approach to Evaluating the Patent Commercialization Performance of Industry–Academic Collaborations
Abstract
:1. Introduction
2. IAC, Patent Commercialization and Performance Evaluation
2.1. IAC
2.2. Patent Commercialization by Universities
2.3. Performance Evaluation of the IAC
2.4. NDEA
3. Research Methods
3.1. Modified Delphi Method
3.2. DEMATEL
3.3. DANP
3.4. NDEA-MOP Model
4. Empirical Study
4.1. IAC and Patent Commercialization in Taiwan
4.2. Confirmation of Input and Output Variables Using the Modified Delphi Method
4.3. Derivations of the Weights Associated with the Divisions
4.4. The NDEA-MOP Model with Variables and Data
4.5. The Efficiency of DMUs
5. Discussion
5.1. Managerial Implications
5.2. Advances in the Research Method
5.3. Limitations and Future Possibilities
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marotta, D.; Mark, M.; Blom, A.; Thorn, K. Human Capital and University-Industry Linkages’ Role in Fostering Firm Innovation: An Empirical Study of Chile and Colombia; The World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Perkmann, M.; Neely, A.; Walsh, K. How should firms evaluate success in university–industry alliances? A performance measurement system. R D Manag. 2011, 41, 202–216. [Google Scholar] [CrossRef]
- Ankrah, S.; Omar, A.-T. Universities–industry collaboration: A systematic review. Scand. J. Manag 2015, 31, 387–408. [Google Scholar] [CrossRef]
- Marhl, M.; Pausits, A. Third mission indicators for new ranking methodologies. Eval High Educ. 2011, 5, 43–64. [Google Scholar] [CrossRef]
- Perkmann, M.; Tartari, V.; McKelvey, M.; Autio, E.; Broström, A.; D’este, P.; Fini, R.; Geuna, A.; Grimaldi, R.; Hughes, A. Academic engagement and commercialisation: A review of the literature on university–industry relations. Res. Policy 2013, 42, 423–442. [Google Scholar] [CrossRef]
- Rybnicek, R.; Königsgruber, R. What makes industry–university collaboration succeed? A systematic review of the literature. J. Bus. Econ. 2019, 89, 221–250. [Google Scholar] [CrossRef] [Green Version]
- Guimón, J. Promoting University-Industry Collaboration in Developing Countries. The Innovation Policy Platform; World Bank: New York, NY, USA, 2013. [Google Scholar]
- Philbin, S.P. Developing and Managing University-Industry Research Collaborations through a Process Methodology/Industrial Sector Approach. J. Res. Adm. 2010, 41, 51–68. [Google Scholar]
- Jiang, M.; Zhou, P. Research on the patent innovation performance of university–industry collaboration based on complex network analysis. J. Bus.-to-Bus. Mark 2014, 21, 65–83. [Google Scholar]
- Guan, J.C.; Yam, R.C.; Mok, C.K. Collaboration between industry and research institutes/universities on industrial innovation in Beijing, China. Technol. Anal. Strateg. Manag. 2005, 17, 339–353. [Google Scholar] [CrossRef]
- George, G.; Zahra, S.A.; Wood, D.R. The effects of business–university alliances on innovative output and financial performance: A study of publicly traded biotechnology companies. J. Bus. Ventur. 2002, 17, 577–609. [Google Scholar] [CrossRef]
- Perrini, F.; Tencati, A. Sustainability and stakeholder management: The need for new corporate performance evaluation and reporting systems. Bus. Strategy Environ. 2006, 15, 296–308. [Google Scholar] [CrossRef]
- Anderson, T.R.; Daim, T.U.; Lavoie, F.F. Measuring the efficiency of university technology transfer. Technovation 2007, 27, 306–318. [Google Scholar] [CrossRef]
- Rast, S.; Khabiri, N.; Senin, A.A. Evaluation framework for assessing university-industry collaborative research and technological initiative. Procedia Soc. Behav. Sci. 2012, 40, 410–416. [Google Scholar] [CrossRef] [Green Version]
- Crescenzi, R.; Filippetti, A.; Iammarino, S. Academic inventors: Collaboration and proximity with industry. J. Technol. Transf. 2017, 42, 730–762. [Google Scholar] [CrossRef]
- Gong, H.; Peng, S. Effects of patent policy on innovation outputs and commercialization: Evidence from universities in China. Scientometrics 2018, 117, 687–703. [Google Scholar] [CrossRef]
- Hsu, D.H.; Hsu, P.-H.; Zhou, T.; Ziedonis, A.A. Benchmarking U.S. university patent value and commercialization efforts: A new approach. Res. Policy 2021, 50, 104076. [Google Scholar] [CrossRef]
- D’Este, P.; Patel, P. University–industry linkages in the UK: What are the factors underlying the variety of interactions with industry? Res. Policy 2007, 36, 1295–1313. [Google Scholar] [CrossRef]
- Ramos-Vielba, I.; Fernández-Esquinas, M.; Espinosa-de-los-Monteros, E. Measuring university–industry collaboration in a regional innovation system. Scientometrics 2010, 84, 649–667. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Banker, R.D.; Charnes, A.; Cooper, W.W. Some models for estimating technical and scale inefficiencies in data envelopment analysis. Manag. Sci 1984, 30, 1078–1092. [Google Scholar] [CrossRef] [Green Version]
- Tone, K.; Tsutsui, M. Network DEA: A slacks-based measure approach. Eur. J. Oper. Res. 2009, 197, 243–252. [Google Scholar] [CrossRef] [Green Version]
- Seiford, L.M.; Zhu, J. Profitability and marketability of the top 55 US commercial banks. Manag. Sci. 1999, 45, 1270–1288. [Google Scholar] [CrossRef] [Green Version]
- Kao, H.-Y.; Chan, C.-Y.; Wu, D.-J. A multi-objective programming method for solving network DEA. Appl. Soft Comput. 2014, 24, 406–413. [Google Scholar] [CrossRef]
- Saaty, T.L. Decision Making with Dependence and Feedback: The Analytic Network Process; RWS Publications: Pittsburgh, PA, USA, 1996. [Google Scholar]
- Han, J. Technology commercialization through sustainable knowledge sharing from university-industry collaborations, with a focus on patent propensity. Sustainability 2017, 9, 1808. [Google Scholar] [CrossRef] [Green Version]
- Wang, J. Knowledge creation in collaboration networks: Effects of tie configuration. Res. Policy 2016, 45, 68–80. [Google Scholar] [CrossRef] [Green Version]
- Perkmann, M.; Walsh, K. University–industry relationships and open innovation: Towards a research agenda. Int. J. Manag. Rev. 2007, 9, 259–280. [Google Scholar] [CrossRef]
- Hagedoorn, J.; Link, A.N.; Vonortas, N.S. Research partnerships1. Res. Policy 2000, 29, 567–586. [Google Scholar] [CrossRef]
- D’Este, P.; Guy, F.; Iammarino, S. Shaping the formation of university–industry research collaborations: What type of proximity does really matter? J. Econ. Geogr. 2012, 13, 537–558. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.-H.; Wang, M.-Y. Complementary assets, appropriability, and patent commercialization: Market sensing capability as a moderator. Asia Pacific Manag. Rev. 2015, 20, 141–147. [Google Scholar] [CrossRef]
- Baldini, N.; Grimaldi, R.; Sobrero, M. To patent or not to patent? A survey of Italian inventors on motivations, incentives, and obstacles to university patenting. Scientometrics 2007, 70, 333–354. [Google Scholar] [CrossRef]
- Ambos, T.C.; Mäkelä, K.; Birkinshaw, J.; d’Este, P. When does university research get commercialized? Creating ambidexterity in research institutions. J. Manag. Stud. 2008, 45, 1424–1447. [Google Scholar] [CrossRef]
- Wu, Y.; Welch, E.W.; Huang, W.-L. Commercialization of university inventions: Individual and institutional factors affecting licensing of university patents. Technovation 2015, 36–37, 12–25. [Google Scholar] [CrossRef]
- Giuri, P.; Munari, F.; Pasquini, M. What determines university patent commercialization? Empirical evidence on the role of IPR ownership. Ind. Innov. 2013, 20, 488–502. [Google Scholar] [CrossRef]
- Agrawal, A.; Henderson, R. Putting patents in context: Exploring knowledge transfer from MIT. Manag. Sci. 2002, 48, 44–60. [Google Scholar] [CrossRef]
- Ripoll Feliu, V.; Diaz Rodriguez, A. Knowledge transfer and university-business relations: Current trends in research. Intang. Cap. 2017, 13, 697–719. [Google Scholar] [CrossRef] [Green Version]
- De Wit-de Vries, E.; Dolfsma, W.A.; van der Windt, H.J.; Gerkema, M.P. Knowledge transfer in university–industry research partnerships: A review. J. Technol. Transf. 2019, 44, 1236–1255. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, J.J.; Carayannis, E.G. University-industry knowledge transfer-unpacking the “black box”: An introduction. Knowl. Manag. Res. Pract. 2019, 17, 353–357. [Google Scholar] [CrossRef]
- De Almeida, M.V.; Ferreira, J.J.; Ferreira, F.A. Developing a multi-criteria decision support system for evaluating knowledge transfer by higher education institutions. Knowl. Manag. Res. Pract. 2018, 17, 358–372. [Google Scholar] [CrossRef]
- Kang, B.; Motohashi, K. Academic contribution to industrial innovation by funding type. Scientometrics 2020, 124, 169–193. [Google Scholar] [CrossRef]
- Hou, B.; Hong, J.; Chen, Q.; Shi, X.; Zhou, Y. Do academia-industry R&D collaborations necessarily facilitate industrial innovation in China? The role of technology transfer institutions. Eur. J. Innov. Manag. 2019, 22, 717–746. [Google Scholar]
- Rothaermel, F.T.; Agung, S.D.; Jiang, L. University entrepreneurship: A taxonomy of the literature. Ind. Corp. Chang. 2007, 16, 691–791. [Google Scholar] [CrossRef]
- Shane, S. Selling university technology: Patterns from MIT. Manag. Sci. 2002, 48, 122–137. [Google Scholar] [CrossRef]
- Thursby, J.G.; Thursby, M.C. Who is selling the ivory tower? Sources of growth in university licensing. Manag. Sci. 2002, 48, 90–104. [Google Scholar] [CrossRef] [Green Version]
- Sine, W.D.; Shane, S.; Gregorio, D.D. The halo effect and technology licensing: The influence of institutional prestige on the licensing of university inventions. Manag. Sci. 2003, 49, 478–496. [Google Scholar] [CrossRef] [Green Version]
- Shane, S.; Stuart, T. Organizational endowments and the performance of university start-ups. Manag. Sci. 2002, 48, 154–170. [Google Scholar] [CrossRef] [Green Version]
- Wright, M.; Lockett, A.; Clarysse, B.; Binks, M. University spin-out companies and venture capital. Res. Policy 2006, 35, 481–501. [Google Scholar] [CrossRef]
- Munari, F.; Toschi, L. Do venture capitalists have a bias against investment in academic spin-offs? Evidence from the micro-and nanotechnology sector in the UK. Ind. Corp. Chang. 2011, 20, 397–432. [Google Scholar] [CrossRef]
- Drucker, P.S. The Practice of Management: A study of the Most Important Function in America Society; Harper & Row: New York, NY, USA, 1954. [Google Scholar]
- Ahmed, I.; Sultana, I.; Paul, S.K.; Azeem, A. Employee performance evaluation: A fuzzy approach. Int. J. Product. Perform. Manag. 2013, 62, 718–734. [Google Scholar] [CrossRef]
- Murphy, K.R. Performance evaluation will not die, but it should. Hum. Resour. Manag. J. 2020, 30, 13–31. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-Y.; Tzeng, G.H.; Chen, Y.T.; Chen, H. Performance evaluation of leading fabless integrated circuit design houses by using a multiple objective programming based data envelopment analysis approach. Int. J. Innov. Comput. Inf. Control. 2012, 8, 5899–5916. [Google Scholar]
- Wu, M.-J.; Huang, C.-Y.; Kao, Y.-S.; Lue, Y.-F.; Chen, L.-C. Developing a professional performance evaluation system for pre-Service automobile repair vocational high school teachers in Taiwan. Sustainability 2018, 10, 3537. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Trimi, S. A fuzzy TOPSIS method for performance evaluation of reverse logistics in social commerce platforms. Expert Syst. Appl. 2018, 103, 133–145. [Google Scholar] [CrossRef]
- Kao, Y.-S.; Nawata, K.; Huang, C.-Y. Evaluating the performance of systemic innovation problems of the IoT in manufacturing industries by novel MCDM methods. Sustainability 2019, 11, 4970. [Google Scholar] [CrossRef] [Green Version]
- Islam, R.; bin Mohd Rasad, S. Employee performance evaluation by the AHP: A case study. Asia Pacific Manag. Rev. 2006, 11, 163–176. [Google Scholar]
- Karim, A.; Arif-Uz-Zaman, K. A methodology for effective implementation of lean strategies and its performance evaluation in manufacturing organizations. Bus. Process Manag. J. 2013, 19, 169–196. [Google Scholar] [CrossRef]
- Mone, E.M.; London, M. Employee Engagement Through Effective Performance Management: A Practical Guide for Managers, 2nd ed.; Routledge: New York, NY, USA, 2018. [Google Scholar]
- Zhang, L.; Luo, Y. Evaluation of input output efficiency in higher education based on data envelope analysis. Int. J. Database Theory Appl. 2016, 9, 221–230. [Google Scholar] [CrossRef]
- Kerssens-van Drongelen, I.; Nixon, B.; Pearson, A. Performance measurement in industrial R&D. Int. J. Manag. Rev. 2000, 2, 111–143. [Google Scholar]
- Moed, H.F. Citation Analysis in Research Evaluation; Springer Science & Business Media: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Louis, K.S.; Blumenthal, D.; Gluck, M.E.; Stoto, M.A. Entrepreneurs in academe: An exploration of behaviors among life scientists. Adm. Sci. Q. 1989, 1, 110–131. [Google Scholar] [CrossRef]
- Bercovitz, J.; Feldman, M. Academic entrepreneurs: Organizational change at the individual level. Organ. Sci. 2008, 19, 69–89. [Google Scholar] [CrossRef] [Green Version]
- Nugent, A.; Chan, H.F.; Dulleck, U. Government Funding of University-Industry Collaboration: Exploring the Impact of Targeted Funding on University Patent Activity [Working Paper]; QUT Business School: Brisbane, QLD, Australia, 2019. [Google Scholar]
- Albats, E.; Fiegenbaum, I.; Cunningham, J.A. A micro level study of university industry collaborative lifecycle key performance indicators. J. Technol. Transf. 2018, 43, 389–431. [Google Scholar] [CrossRef]
- Voytek, K.P.; Lellock, K.L.; Schmit, M.A. Developing performance metrics for science and technology programs: The case of the manufacturing extension partnership program. Econ. Dev. Q. 2004, 18, 174–185. [Google Scholar] [CrossRef]
- Rouyendegh, B.D.; Erol, S. The DEA–FUZZY ANP department ranking model applied in Iran Amirkabir University. Acta Polytech. Hung. 2010, 7, 103–114. [Google Scholar]
- Färe, R.; Grosskopf, S. Productivity and intermediate products: A frontier approach. Econ. Lett. 1996, 50, 65–70. [Google Scholar] [CrossRef]
- Cook, W.D.; Liang, L.; Zhu, J. Measuring performance of two-stage network structures by DEA: A review and future perspective. Omega 2010, 38, 423–430. [Google Scholar] [CrossRef]
- Cook, W.D.; Zhu, J.; Bi, G.; Yang, F. Network DEA: Additive efficiency decomposition. Eur. J. Oper. Res. 2010, 207, 1122–1129. [Google Scholar] [CrossRef]
- Fukuyama, H.; Mirdehghan, S.M. Identifying the efficiency status in network DEA. Eur. J. Oper. Res. 2012, 220, 85–92. [Google Scholar] [CrossRef]
- Tzeng, G.-H.; Huang, J.-J. Fuzzy Multiple Objective Decision Making; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Despotis, D.K.; Koronakos, G.; Sotiros, D. Composition versus decomposition in two-stage network DEA: A reverse approach. J. Product. Anal. 2016, 45, 71–87. [Google Scholar] [CrossRef] [Green Version]
- Koronakos, G.; Sotiros, D.; Despotis, D.K. Reformulation of Network Data Envelopment Analysis models using a common modelling framework. Eur. J. Oper. Res. 2019, 278, 472–480. [Google Scholar] [CrossRef] [Green Version]
- Kao, H.-Y.; Bold, T. Evaluating Human Resource Efficiencies of Mongolian Hospitals with network DEA. Int. J. Inf. 2017, 28, 177–194. [Google Scholar]
- Brady, S.R. Utilizing and adapting the Delphi method for use in qualitative research. Int. J. Qual. Methods 2015, 14, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Murry, J.W., Jr.; Hammons, J.O. Delphi: A versatile methodology for conducting qualitative research. Rev. High. Educ. 1995, 18, 423–436. [Google Scholar] [CrossRef]
- Gabus, A.; Fontela, E. World Problems, an Invitation to Further Thought within the Framework of DEMATEL; Battelle Geneva Research Center: Geneva, Switzerland, 1972. [Google Scholar]
- Huang, C.-Y.; Shyu, J.Z.; Tzeng, G.-H. Reconfiguring the innovation policy portfolios for Taiwan’s SIP Mall industry. Technovation 2007, 27, 744–765. [Google Scholar] [CrossRef]
- Tzeng, G.-H.; Huang, C.-Y. Combined DEMATEL technique with hybrid MCDM methods for creating the aspired intelligent global manufacturing & logistics systems. Ann. Oper. Res. 2012, 197, 159–190. [Google Scholar]
- Kao, Y.-S.; Nawata, K.; Huang, C.-Y. Systemic functions evaluation based technological innovation system for the sustainability of IoT in the manufacturing industry. Sustainability 2019, 11, 2342. [Google Scholar] [CrossRef] [Green Version]
- Shyu, J.Z.; Huang, C.-Y. Configuring the knowledge diffusion policy portfolio of higher education institutes. Eurasia J. Math. Sci. Technol. Educ. 2017, 13, 5685–5734. [Google Scholar]
- Huang, C.-Y.; Kao, Y.-S.; Lu, H.-H.; Wu, M.-J. Curriculum development for enhancing the imagination in the technology commercialization process. Eurasia J. Math. Sci. Technol. Educ. 2017, 13, 6249–6283. [Google Scholar]
- Shiau, S.J.; Huang, C.-Y.; Yang, C.-L.; Juang, J.-N. A derivation of factors influencing the innovation diffusion of the OpenStreetMap in STEM education. Sustainability 2018, 10, 3447. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-Y.; Wang, H.-Y.; Yang, C.-L.; Shiau, S.J. A derivation of factors influencing the diffusion and adoption of an open source learning platform. Sustainability 2020, 12, 7532. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chung, P.-H.; Shyu, J.Z.; Ho, Y.-H.; Wu, C.-H.; Lee, M.-C.; Wu, M.-J. Evaluation and selection of materials for particulate matter MEMS sensors by using hybrid MCDM methods. Sustainability 2018, 10, 3451. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-Y.; Hsieh, H.-L.; Chen, H. Evaluating the investment projects of spinal medical device firms using the real option and DANP-mV based MCDM methods. Int. J. Environ. Res. Public Health 2020, 17, 3335. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Tung, I. Strategies for heterogeneous r&d alliances of in vitro diagnostics firms in rapidly catching-up economies. Int. J. Environ. Res. Public Health 2020, 17, 3688. [Google Scholar]
- Yang, C.-L.; Shieh, M.-C.; Huang, C.-Y.; Tung, C.-P. A derivation of factors influencing the successful integration of corporate volunteers into public flood disaster inquiry and notification systems. Sustainability 2018, 10, 1973. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.-L.; Huang, C.-Y.; Kao, Y.-S.; Tasi, Y.-L. Disaster Recovery Site Evaluations and Selections for Information Systems of Academic Big Data. Eurasia J. Math. Sci. Technol. Educ. 2017, 13, 4553–4589. [Google Scholar]
- Liu, C.-H.; Tzeng, G.-H.; Lee, M.-H. Improving tourism policy implementation—The use of hybrid MCDM models. Tour. Manag. 2012, 33, 413–426. [Google Scholar] [CrossRef]
- Phillips-Wren, G.; Jain, L.C.; Nakamatsu, K.; Howlett, R.J. Advances in Intelligent Decision Technologies: Proceedings of the Second Kes International Symposium Idt 2010; Springer: Berlin, Germany, 2010. [Google Scholar]
- Tzeng, G.-H.; Huang, J.-J. Multiple Attribute Decision Making: Methods and Applications; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Huang, C.-Y.; Yang, C.-L.; Hsiao, Y.-H. A Novel Framework for Mining Social Media Data Based on Text Mining, Topic Modeling, Random Forest, and DANP Methods. Mathematics 2021, 9, 2041. [Google Scholar] [CrossRef]
- Lee, E.S.; Li, R.J. Fuzzy multiple objective programming and compromise programming with Pareto optimum. Fuzzy Sets Syst. 1993, 53, 275–288. [Google Scholar]
- Lo, W.Y.W. Taiwan’s Higher Education System in Context; University Rankings; Springer: Singapore, 2014; pp. 15–39. [Google Scholar]
- Huang, C.-Y.; Yang, C.-W.; Fang, S.-C. The contrasting interaction effects of university-industry collaboration motivation with demographic characteristics on university-industry collaboration performance in Taiwan. Technol. Anal. Strateg. Manag. 2019, 31, 1048–1062. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chen, M.H.; Yang, I.S. Policy Instruments to Foster University-Industry Links: A Comparative Study of U.K., U.S. and Taiwan; Ministry of Economic Affair Conference: Taipei, Taiwan, 2002.
- Executive Yuan. Program for the Promotion of Invention Patent Industrialization; Executive Yuan: Taipei, Taiwan, 2010. [Google Scholar]
- Wang, M.-Y.; Lin, J.-H.; Lo, H.-C. Influential factors of the commercialization of academic patents: The Taiwan experience. In Proceedings of the PICMET’12: Technology Management for Emerging Technologies, Vancouver, BC, Canada, 29 July–2 August 2012. [Google Scholar]
- Intellectual Property Office. The Incubation Mechanism of University Spin-Off Companies of R&D Services. Available online: https://pcm.tipo.gov.tw/PCM2010/pcm/commercial/show/article_detail.aspx?aType=1&Articletype=1&aSn=629 (accessed on 27 July 2021).
- Department of Higher Education. Higher Education in Taiwan 2012–2013; Department of Higher Education, Ministry of Education: Taipei, Taiwain, 2012.
- Lee, L.-S. Technological and Vocational Education in Taiwan. In Proceedings of the Conference of the Japan Academic Society for Industrial Education (JASIE), 8 July 2000; Available online: https://eric.ed.gov/?id=ED441956 (accessed on 27 July 2021).
- Ho, M.H.-C.; Liu, J.S.; Kuan, M.C.-H. Torn between academic publications and university–industry collaboration. Res. Eval. 2016, 25, 151–160. [Google Scholar] [CrossRef]
- Lu, M.-T.; Lin, S.-W.; Tzeng, G.-H. Improving RFID adoption in Taiwan’s healthcare industry based on a DEMATEL technique with a hybrid MCDM model. Decis. Support Syst. 2013, 56, 259–269. [Google Scholar] [CrossRef]
- Färe, R.; Grosskopf, S. Network DEA. Socio Econ. Plan. Sci. 2000, 1, 35–49. [Google Scholar] [CrossRef]
- Hsu, D.W.; Shen, Y.-C.; Yuan, B.J.; Chou, C.J. Toward successful commercialization of university technology: Performance drivers of university technology transfer in Taiwan. Technol. Forecast. Soc. Chang. 2015, 92, 25–39. [Google Scholar] [CrossRef]
- Nam, G.M.; Kim, D.G.; Choi, S.O. How resources of universities influence industry cooperation. J. Open Innov. Technol. Mark. Complex. 2019, 5, 9. [Google Scholar] [CrossRef] [Green Version]
No. | Gender | Exp. (Years) | Education | Industry | Title |
---|---|---|---|---|---|
1 | Male | 27 | Ph.D. | Academia | Professor |
2 | Male | 10 | Ph.D. | Academia | Assistant Professor |
3 | Male | 23 | Ph.D. | Institute | Director |
4 | Female | 19 | Ph.D. | Institute | Principal Engineer |
5 | Male | 20+ | Ph.D. | Business | C.O.O. |
6 | Male | 30 | Master | Business | Consultant |
7 | Male | 15 | Master | Business | Manager |
8 | Male | 20+ | Master | Business | Senior Engineer |
Expert | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | A | D | A% | D% | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Structure Model | A | A | A | A | A | A | A | A | 8 | 0 | 100.000 | 0.000 | ||
Inputs | Faculty | Instructors | A | A | A | A | A | A | A | A | 8 | 0 | 100.000 | 0.000 |
Staff | D | D | D | D | D | D | D | D | 0 | 8 | 0.000 | 100.000 | ||
Financial resources | Budget | A | A | A | A | A | A | A | A | 8 | 0 | 100.000 | 0.000 | |
Tuition | D | D | D | D | D | D | D | D | 0 | 8 | 0.000 | 100.000 | ||
Gov. Grants | A | A | A | A | A | A | A | A | 8 | 0 | 100.000 | 0.000 | ||
Ind. Grants | A | A | A | A | A | A | A | A | 8 | 0 | 100.000 | 0.000 | ||
Other Grants | A | A | A | A | A | A | A | A | 8 | 0 | 100.000 | 0.000 | ||
Outputs | IPR | Patents | A | A | A | A | A | A | A | A | 8 | 0 | 100.000 | 0.000 |
Patent Licensed | A | A | A | A | A | A | A | A | 8 | 0 | 100.000 | 0.000 | ||
License Fee and Royalties | A | A | A | A | A | A | A | A | 8 | 0 | 100.000 | 0.000 |
D1 | D2 | |
---|---|---|
D1 | 5.000 | 4.000 |
D2 | 3.625 | 5.000 |
D1 | D2 | |
---|---|---|
D1 | 0.488 | 0.488 |
D2 | 0.512 | 0.512 |
Division 1 | Weight | ||||
---|---|---|---|---|---|
Division 1 | 47.000 | 44.750 | 91.750 | 2.250 | 48.800% |
Division 2 | 44.750 | 47.000 | 91.750 | −2.250 | 51.200% |
Division | Input | Linkage | Output |
---|---|---|---|
Department | Gov. Grants () Ind. Grants () | Patents () | N.A. |
University | Other Grants () Faculty () Budget () | N.A. | Patent Licensed () License Fee and Royalties () |
DMU | Inputs | Outputs | Linkage | |||||
---|---|---|---|---|---|---|---|---|
Gov. Grants (1) | Industry Grants (1) | Other Grants (1) | Faculties | Budget | License Fee & Royalty | Patent Licensed | Link12 (Patents) | |
A1 | 92.948 | 213.667 | 60.708 | 462 | 2893.740 | 40.336 | 13 | 133 |
A2 | 250.753 | 71.437 | 20.443 | 370 | 2167.332 | 7.048 | 1 | 49 |
A3 | 136.947 | 151.589 | 36.694 | 445 | 3423.780 | 38.810 | 4 | 59 |
A4 | 111.685 | 51.201 | 28.601 | 266 | 1563.000 | 16.001 | 7 | 30 |
A5 | 59.714 | 44.240 | 15.167 | 355 | 1822.636 | 14.174 | 2 | 57 |
A6 | 62.452 | 75.942 | 22.663 | 330 | 1553.903 | 11.428 | 5 | 34 |
A7 | 7.222 | 28.916 | 9.244 | 286 | 1391.950 | 2.805 | 6 | 80 |
A8 | 23.441 | 13.705 | 6.328 | 403 | 1666.169 | 0.074 | 1 | 6 |
A9 | 29.108 | 77.585 | 42.432 | 576 | 3035.482 | 10.038 | 1 | 140 |
A10 | 64.649 | 34.758 | 13.583 | 376 | 1767.798 | 12.536 | 7 | 88 |
A11 | 52.318 | 48.049 | 0.721 | 493 | 2064.406 | 2.796 | 1 | 25 |
A12 | 2.515 | 68.857 | 5.419 | 328 | 1638.733 | 4.721 | 5 | 14 |
A13 | 3.615 | 11.554 | 6.246 | 325 | 1308.637 | 0.848 | 5 | 7 |
A14 | 38.041 | 165.729 | 26.331 | 440 | 2209.844 | 19.427 | 9 | 18 |
A15 | 7.259 | 12.231 | 2.279 | 249 | 1198.237 | 0.807 | 2 | 25 |
A16 | 10.354 | 13.887 | 4.827 | 275 | 934.030 | 0.469 | 1 | 34 |
A17 | 6.683 | 17.921 | 2.739 | 268 | 1184.800 | 0.122 | 2 | 2 |
A18 | 21.349 | 38.288 | 4.398 | 243 | 1074.339 | 10.548 | 9 | 67 |
A19 | 0.500 | 13.545 | 1.251 | 228 | 1206.356 | 0.264 | 2 (2) | 1 |
A20 | 4.700 | 7.067 | 55.841 | 354 | 1728.185 | 0.250 | 3 | 3 |
DMU | Inputs | Outputs | Linkage | |||||
---|---|---|---|---|---|---|---|---|
Gov. Grants (1) | Industry Grants (1) | Other Grants (1) | Faculties | Budget | License Fee & Royalty | Patent Licensed | Link12 (Patents) | |
A1 | 0.371 | 1.000 | 1.000 | 0.802 | 0.845 | 1.000 | 1.000 | 0.950 |
A2 | 1.000 | 0.334 | 0.337 | 0.642 | 0.633 | 0.175 | 0.077 | 0.350 |
A3 | 0.546 | 0.709 | 0.604 | 0.773 | 1.000 | 0.962 | 0.308 | 0.421 |
A4 | 0.445 | 0.240 | 0.471 | 0.462 | 0.457 | 0.397 | 0.538 | 0.214 |
A5 | 0.238 | 0.207 | 0.250 | 0.616 | 0.532 | 0.351 | 0.154 | 0.407 |
A6 | 0.249 | 0.355 | 0.373 | 0.573 | 0.454 | 0.283 | 0.385 | 0.243 |
A7 | 0.029 | 0.135 | 0.152 | 0.497 | 0.407 | 0.070 | 0.462 | 0.571 |
A8 | 0.093 | 0.064 | 0.104 | 0.700 | 0.487 | 0.002 | 0.077 | 0.043 |
A9 | 0.116 | 0.363 | 0.699 | 1.000 | 0.887 | 0.249 | 0.077 | 1.000 |
A10 | 0.258 | 0.163 | 0.224 | 0.653 | 0.516 | 0.311 | 0.538 | 0.629 |
A11 | 0.209 | 0.225 | 0.012 | 0.856 | 0.603 | 0.069 | 0.077 | 0.179 |
A12 | 0.010 | 0.322 | 0.089 | 0.569 | 0.479 | 0.117 | 0.385 | 0.100 |
A13 | 0.014 | 0.054 | 0.103 | 0.564 | 0.382 | 0.021 | 0.385 | 0.050 |
A14 | 0.152 | 0.776 | 0.434 | 0.764 | 0.645 | 0.482 | 0.692 | 0.129 |
A15 | 0.029 | 0.057 | 0.038 | 0.432 | 0.350 | 0.020 | 0.154 | 0.179 |
A16 | 0.041 | 0.065 | 0.080 | 0.477 | 0.273 | 0.012 | 0.077 | 0.243 |
A17 | 0.027 | 0.084 | 0.045 | 0.465 | 0.346 | 0.003 | 0.154 | 0.014 |
A18 | 0.085 | 0.179 | 0.072 | 0.422 | 0.314 | 0.261 | 0.692 | 0.479 |
A19 | 0.002 | 0.063 | 0.021 | 0.396 | 0.352 | 0.007 | 0.154 | 0.007 |
A20 | 0.019 | 0.033 | 0.920 | 0.615 | 0.505 | 0.006 | 0.231 | 0.021 |
DMU | CCR | BCC | ||||||
---|---|---|---|---|---|---|---|---|
Division 1 | Division 2 | Division 1 | Division 2 | |||||
Effcy. | Rank | Effcy. | Rank | Effcy. | Rank | Effcy. | Rank | |
A1 | 0.225 | 10 | 1.000 | 1 | 0.336 | 9 | 1.000 | 1 |
A2 | 0.248 | 9 | 0.304 | 17 | 0.248 | 10 | 0.304 | 17 |
A3 | 0.140 | 17 | 1.000 | 1 | 0.140 | 18 | 1.000 | 1 |
A4 | 0.211 | 11 | 1.000 | 1 | 0.211 | 12 | 1.000 | 1 |
A5 | 0.465 | 7 | 1.000 | 1 | 0.465 | 7 | 1.000 | 1 |
A6 | 0.162 | 14 | 0.715 | 13 | 0.162 | 15 | 0.715 | 13 |
A7 | 1.000 | 1 | 0.567 | 15 | 1.000 | 1 | 0.567 | 15 |
A8 | 0.159 | 15 | 0.200 | 19 | 0.159 | 16 | 0.200 | 19 |
A9 | 0.651 | 4 | 0.271 | 18 | 1.000 | 1 | 0.271 | 18 |
A10 | 0.912 | 2 | 0.666 | 14 | 1.000 | 1 | 0.666 | 14 |
A11 | 0.188 | 12 | 1.000 | 1 | 0.188 | 13 | 1.000 | 1 |
A12 | 0.508 | 6 | 1.000 | 1 | 0.508 | 6 | 1.000 | 1 |
A13 | 0.130 | 18 | 1.000 | 1 | 0.219 | 11 | 1.000 | 1 |
A14 | 0.431 | 8 | 1.000 | 1 | 0.431 | 8 | 1.000 | 1 |
A15 | 0.043 | 19 | 0.455 | 16 | 0.043 | 19 | 0.455 | 16 |
A16 | 0.884 | 3 | 0.170 | 20 | 0.884 | 4 | 0.170 | 20 |
A17 | 0.039 | 20 | 0.819 | 12 | 0.039 | 20 | 0.819 | 12 |
A18 | 0.633 | 5 | 1.000 | 1 | 0.633 | 5 | 1.000 | 1 |
A19 | 0.178 | 13 | 1.000 | 1 | 0.178 | 14 | 1.000 | 1 |
A20 | 0.150 | 16 | 0.833 | 11 | 0.150 | 17 | 1.000 | 1 |
DMU | CCR | BCC | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Division 1 | Division 2 | Overall Perf. | Division 1 | Division 2 | Overall Perf. | |||||||
Effcy. | Rank | Effcy. | Rank | Effcy. | Rank | Effcy. | Rank | Effcy. | Rank | Effcy. | Rank | |
A1 | 0.225 | 11 | 1.000 | 1 | 0.622 | 5 | 0.336 | 10 | 1.000 | 1 | 0.676 | 4 |
A2 | 0.248 | 10 | 1.000 | 1 | 0.633 | 4 | 0.248 | 11 | 1.000 | 1 | 0.633 | 5 |
A3 | 0.140 | 18 | 1.000 | 1 | 0.580 | 11 | 0.140 | 18 | 1.000 | 1 | 0.580 | 11 |
A4 | 0.211 | 12 | 1.000 | 1 | 0.615 | 6 | 0.211 | 12 | 1.000 | 1 | 0.615 | 6 |
A5 | 0.465 | 9 | 0.258 | 17 | 0.359 | 17 | 0.465 | 9 | 0.258 | 17 | 0.359 | 17 |
A6 | 0.162 | 15 | 0.710 | 10 | 0.443 | 13 | 0.162 | 15 | 0.710 | 10 | 0.443 | 13 |
A7 | 0.619 | 5 | 0.545 | 14 | 0.581 | 10 | 0.619 | 5 | 0.545 | 14 | 0.581 | 10 |
A8 | 0.159 | 16 | 0.189 | 18 | 0.174 | 20 | 0.159 | 16 | 0.189 | 18 | 0.174 | 20 |
A9 | 0.651 | 3 | 0.173 | 19 | 0.406 | 15 | 0.651 | 3 | 0.173 | 19 | 0.406 | 15 |
A10 | 0.574 | 7 | 0.615 | 12 | 0.595 | 9 | 0.574 | 7 | 0.615 | 12 | 0.595 | 9 |
A11 | 0.188 | 13 | 1.000 | 1 | 0.604 | 7 | 0.188 | 13 | 1.000 | 1 | 0.604 | 7 |
A12 | 0.508 | 8 | 0.903 | 9 | 0.710 | 3 | 0.508 | 8 | 1.000 | 1 | 0.760 | 3 |
A13 | 0.043 | 19 | 0.538 | 15 | 0.296 | 19 | 0.043 | 19 | 0.538 | 15 | 0.296 | 19 |
A14 | 0.742 | 1 | 1.000 | 1 | 0.874 | 1 | 0.742 | 1 | 1.000 | 1 | 0.874 | 1 |
A15 | 0.742 | 1 | 0.270 | 16 | 0.500 | 12 | 0.742 | 1 | 0.270 | 16 | 0.500 | 12 |
A16 | 0.586 | 6 | 0.148 | 20 | 0.362 | 16 | 0.586 | 6 | 0.148 | 20 | 0.362 | 16 |
A17 | 0.039 | 20 | 0.604 | 13 | 0.328 | 18 | 0.039 | 20 | 0.604 | 13 | 0.328 | 18 |
A18 | 0.633 | 4 | 1.000 | 1 | 0.821 | 2 | 0.633 | 4 | 1.000 | 1 | 0.821 | 2 |
A19 | 0.178 | 14 | 1.000 | 1 | 0.599 | 8 | 0.178 | 14 | 1.000 | 1 | 0.599 | 8 |
A20 | 0.150 | 17 | 0.663 | 11 | 0.413 | 14 | 0.150 | 17 | 0.663 | 11 | 0.413 | 14 |
Method | Division 1 | Division 2 | Overall Performance | |
---|---|---|---|---|
Separation | CCR | A7 | A1, A3, A4, A5, A11, A12, A13, A14, A18 and A19 | N.A. |
BCC | A7, A9, A10 | A1, A3, A4, A5, A11, A12, A13, A14, A18, A19 and A20 | N.A. | |
Compensatory Solution | CCR | N.A. | A1, A2, A3, A4, A11, A12, A14, A18, A19 | A14 |
BCC | N.A. | A1, A2, A3, A4, A11, A12, A14, A15, A18, A19 | A14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-Y.; Yang, M.-J.; Li, J.-F.; Chen, H. A DANP-Based NDEA-MOP Approach to Evaluating the Patent Commercialization Performance of Industry–Academic Collaborations. Mathematics 2021, 9, 2280. https://doi.org/10.3390/math9182280
Huang C-Y, Yang M-J, Li J-F, Chen H. A DANP-Based NDEA-MOP Approach to Evaluating the Patent Commercialization Performance of Industry–Academic Collaborations. Mathematics. 2021; 9(18):2280. https://doi.org/10.3390/math9182280
Chicago/Turabian StyleHuang, Chi-Yo, Min-Jen Yang, Jeen-Fong Li, and Hueiling Chen. 2021. "A DANP-Based NDEA-MOP Approach to Evaluating the Patent Commercialization Performance of Industry–Academic Collaborations" Mathematics 9, no. 18: 2280. https://doi.org/10.3390/math9182280
APA StyleHuang, C.-Y., Yang, M.-J., Li, J.-F., & Chen, H. (2021). A DANP-Based NDEA-MOP Approach to Evaluating the Patent Commercialization Performance of Industry–Academic Collaborations. Mathematics, 9(18), 2280. https://doi.org/10.3390/math9182280