Using a Fuzzy Inference System to Obtain Technological Tables for Electrical Discharge Machining Processes
Abstract
1. Introduction
2. State of the Art
3. Methodology
Algorithm 1. Methodology for obtaining the technological tables. FIS—fuzzy inference system. |
|
4. Results and Discussion
4.1. Analysis of Experimentation Using the FIS
4.2. Development of the Technological Tables
5. Conclusions
Funding
Conflicts of Interest
Appendix A
Positive Polarity (+) | |||||||
---|---|---|---|---|---|---|---|
E | Ra (µm) | MRR (mm3/min) | EW (%) | E | Ra (µm) | MRR (mm3/min) | EW (%) |
1 | 1.39 | 0.1778 | 35.81 | 33 | 1.17 | 0.2650 | 42.84 |
2 | 3.34 | 3.0897 | 10.66 | 34 | 3.15 | 4.2338 | 15.45 |
3 | 3.66 | 5.0825 | 11.69 | 35 | 3.78 | 7.7099 | 9.61 |
4 | 4.22 | 7.4984 | 11.68 | 36 | 4.18 | 11.5649 | 9.31 |
5 | 1.57 | 0.1331 | 20.74 | 37 | 1.46 | 0.1792 | 14.94 |
6 | 4.20 | 3.7383 | 9.14 | 38 | 4.52 | 4.8556 | 10.68 |
7 | 4.70 | 6.3535 | 8.58 | 39 | 5.12 | 9.1444 | 7.93 |
8 | 4.71 | 6.6319 | 11.26 | 40 | 5.62 | 14.5645 | 6.77 |
9 | 2.01 | 0.0846 | 0.44 | 41 | 1.47 | 0.1332 | 41.45 |
10 | 5.01 | 3.3606 | 4.32 | 42 | 4.83 | 4.6985 | 8.08 |
11 | 5.84 | 6.4197 | 6.76 | 43 | 5.31 | 8.5279 | 6.41 |
12 | 6.57 | 9.8827 | 3.92 | 44 | 6.35 | 13.6608 | 3.21 |
13 | 2.73 | 0.0884 | 3.02 | 45 | 3.11 | 0.0852 | 16.31 |
14 | 5.01 | 2.8219 | 3.21 | 46 | 5.19 | 3.9846 | 0.43 |
15 | 6.18 | 6.7786 | 0.84 | 47 | 5.96 | 7.3741 | 0.30 |
16 | 7.41 | 10.0405 | 0.81 | 48 | 6.80 | 13.8606 | 2.32 |
17 | 1.34 | 0.2297 | 37.33 | 49 | 1.33 | 0.2907 | 42.54 |
18 | 3.12 | 3.6482 | 16.26 | 50 | 3.17 | 5.1434 | 15.52 |
19 | 3.72 | 6.3632 | 11.44 | 51 | 3.85 | 9.0528 | 12.44 |
20 | 4.24 | 9.9951 | 9.80 | 52 | 4.21 | 13.1599 | 7.44 |
21 | 1.88 | 0.1520 | 18.76 | 53 | 1.37 | 0.1808 | 17.86 |
22 | 4.28 | 4.0843 | 8.58 | 54 | 4.36 | 5.7782 | 11.63 |
23 | 5.37 | 7.2087 | 8.92 | 55 | 4.94 | 10.4558 | 8.42 |
24 | 5.57 | 11.9972 | 5.72 | 56 | 5.41 | 15.6323 | 5.04 |
25 | 1.75 | 0.1169 | 4.80 | 57 | 1.62 | 0.1328 | 5.19 |
26 | 4.79 | 4.2463 | 6.15 | 58 | 4.69 | 5.3637 | 5.90 |
27 | 5.81 | 7.6840 | 6.31 | 59 | 5.21 | 9.8216 | 3.60 |
28 | 6.56 | 12.2552 | 6.47 | 60 | 6.23 | 19.1347 | 4.39 |
29 | 2.91 | 0.1056 | 9.32 | 61 | 1.90 | 0.1031 | 2.05 |
30 | 4.95 | 3.3520 | 2.52 | 62 | 5.10 | 3.9857 | 5.15 |
31 | 6.65 | 6.9094 | 1.13 | 63 | 6.33 | 8.4132 | 1.30 |
32 | 6.78 | 12.7827 | 1.63 | 64 | 7.08 | 15.3894 | 0.37 |
Negative Polarity (−) | |||||||
---|---|---|---|---|---|---|---|
E | Ra (µm) | MRR (mm3/min) | EW (%) | E | Ra (µm) | MRR (mm3/min) | EW (%) |
1 | 1.57 | 0.4961 | 96.67 | 33 | 1.70 | 0.6719 | 107.46 |
2 | 3.59 | 4.7944 | 28.23 | 34 | 3.66 | 7.9205 | 29.72 |
3 | 4.29 | 6.6012 | 25.90 | 35 | 4.26 | 12.5716 | 25.79 |
4 | 4.76 | 10.4203 | 21.09 | 36 | 5.23 | 18.9419 | 21.67 |
5 | 1.31 | 0.3048 | 158.27 | 37 | 1.31 | 0.4777 | 154.88 |
6 | 5.43 | 7.4086 | 25.33 | 38 | 4.56 | 9.5215 | 27.75 |
7 | 5.84 | 10.3921 | 22.60 | 39 | 5.52 | 15.1031 | 21.94 |
8 | 6.77 | 14.3346 | 19.05 | 40 | 7.10 | 19.9893 | 19.59 |
9 | 1.39 | 0.3060 | 181.88 | 41 | 1.36 | 0.3882 | 221.58 |
10 | 5.47 | 7.7107 | 19.97 | 42 | 5.49 | 11.3645 | 26.01 |
11 | 6.90 | 11.5521 | 20.97 | 43 | 6.49 | 16.7606 | 21.72 |
12 | 7.44 | 17.7658 | 18.06 | 44 | 7.76 | 23.8823 | 18.76 |
13 | 1.58 | 0.3257 | 197.44 | 45 | 1.33 | 0.2949 | 263.67 |
14 | 6.24 | 9.9400 | 20.35 | 46 | 5.90 | 12.3596 | 24.44 |
15 | 7.36 | 16.1073 | 19.36 | 47 | 7.23 | 19.5421 | 297.77 |
16 | 8.04 | 20.0082 | 16.99 | 48 | 8.33 | 23.8906 | 16.04 |
17 | 1.62 | 0.5149 | 104.63 | 49 | 1.29 | 0.3546 | 245.89 |
18 | 3.82 | 6.2876 | 30.88 | 50 | 3.80 | 11.8064 | 29.33 |
19 | 4.53 | 10.5888 | 25.27 | 51 | 4.33 | 18.7034 | 24.92 |
20 | 4.83 | 13.1696 | 22.11 | 52 | 5.24 | 30.3120 | 21.93 |
21 | 1.28 | 0.4136 | 158.90 | 53 | 1.33 | 0.3144 | 291.16 |
22 | 4.90 | 9.7806 | 24.26 | 54 | 5.06 | 12.7525 | 26.09 |
23 | 6.06 | 12.7843 | 22.21 | 55 | 5.86 | 19.7280 | 21.70 |
24 | 6.30 | 22.1590 | 21.45 | 56 | 6.50 | 30.4760 | 19.38 |
25 | 1.28 | 0.3693 | 181.61 | 57 | 1.30 | 0.3561 | 248.44 |
26 | 5.51 | 9.2448 | 23.96 | 58 | 5.35 | 12.7624 | 26.15 |
27 | 6.26 | 13.5873 | 20.01 | 59 | 6.27 | 21.7225 | 21.94 |
28 | 7.27 | 21.4791 | 17.64 | 60 | 6.99 | 24.9210 | 19.47 |
29 | 1.36 | 0.3159 | 224.40 | 61 | 1.39 | 0.2823 | 320.70 |
30 | 6.24 | 11.3532 | 23.00 | 62 | 6.16 | 13.5013 | 25.88 |
31 | 6.93 | 17.2709 | 21.05 | 63 | 7.52 | 23.2371 | 171.94 |
32 | 7.90 | 22.7672 | 16.83 | 64 | 7.83 | 30.4894 | 17.49 |
References
- Torres, A.; Luis, C.J.; Puertas, I. EDM machinability and surface roughness analysis of TiB2 using copper electrodes. J. Alloys Compd. 2017, 690, 337–347. [Google Scholar] [CrossRef]
- Salcedo, A.T.; Puertas, I.; Luis Pérez, C.J. Analytical Modelling of Energy Density and Optimization of the EDM Machining Parameters of Inconel 600. Metals 2017, 7, 166. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Sugeno, M. Fuzzy Systems, Modeling and Control; Springer-Science+Businees Media: New York, NY, USA, 1998. [Google Scholar]
- Takagi, T.; Sugeno, M. Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Trans. Syst. ManCybern. 1985, SMC-15, 116–132. [Google Scholar] [CrossRef]
- Luis, C.J.; Puertas, I. Methodology for developing technological tables used in EDM processes of conductive ceramics. J. Mater. Process. Technol. 2007, 189, 301–309. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Taniguchi, T.; Eciolaza, L.; Campos, V.; Palhares, R.; Sugeno, R.M. Fuzzy Control Systems: Past, Present and Future. IEEE Comput. Intell. Mag. 2019, 14, 56–68. [Google Scholar] [CrossRef]
- Mamdani, E.H. Application of fuzzy algorithms for control of simple dynamic plant. In Proceedings of the Institution of Electrical Engineers; Institution of Engineering and Technology (IET): Stevenage, UK, 1974; Volume 121, pp. 1585–1588. [Google Scholar]
- Mamdani, E.H. Application of Fuzzy Logic to Approximate Reasoning Using Linguistic Synthesis. IEEE Trans. Comput. 1976, C-26, 1182–1191. [Google Scholar] [CrossRef]
- Mouralova, K.; Hrabec, P.; Benes, L.; Otoupalik, J.; Bednar, J.; Prokes, T.; Matousek, R. Verification of Fuzzy Inference System for Cutting Speed while WEDM for the Abrasion-Resistant Steel Creusabro by Conventional Statistical Methods. Metals 2020, 10, 92. [Google Scholar] [CrossRef]
- Aamir, M.; Tu, S.; Tolouei-Rad, M.; Giasin, K.; Vafadar, A. Optimization and Modeling of Process Parameters in Multi-Hole Simultaneous Drilling Using Taguchi Method and Fuzzy Logic Approach. Materials 2020, 13, 680. [Google Scholar] [CrossRef]
- Alarifi, I.M.; Nguyen, H.M.; Naderi Bakhtiyari, A.; Asadi, A. Feasibility of ANFIS-PSO and ANFIS-GA Models in Predicting Thermophysical Properties of Al2O3-MWCNT/Oil Hybrid Nanofluid. Materials 2019, 12, 3628. [Google Scholar] [CrossRef]
- Wang, C.-N.; Nguyen, V.T.; Chyou, J.-T.; Lin, T.-F.; Nguyen, T.N. Fuzzy Multicriteria Decision-Making Model (MCDM) for Raw Materials Supplier Selection in Plastics Industry. Mathematics 2019, 7, 981. [Google Scholar] [CrossRef]
- Kang, H.; Cho, H.-C.; Choi, S.-H.; Heo, I.; Kim, H.-Y.; Kim, K.S. Estimation of Heating Temperature for Fire-Damaged Concrete Structures Using Adaptive Neuro-Fuzzy Inference System. Materials 2019, 12, 3964. [Google Scholar] [CrossRef] [PubMed]
- Tayyab, M.; Sarkar, B.; Yahya, B.N. Imperfect Multi-Stage Lean Manufacturing System with Rework under Fuzzy Demand. Mathematics 2019, 7, 13. [Google Scholar] [CrossRef]
- Faisal, N.; Kumar, K. Optimization of Machine Process Parameters in EDM for EN 31 Using Evolutionary Optimization Techniques. Technologies 2018, 6, 54. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Wang, Y.-C.; Chen, T.-C.T.; Lin, H.-F. Evaluating the Suitability of a Smart Technology Application for Fall Detection Using a Fuzzy Collaborative Intelligence Approach. Mathematics 2019, 7, 1097. [Google Scholar] [CrossRef]
- Cavallaro, F. A Takagi-Sugeno Fuzzy Inference System for Developing a Sustainability Index of Biomass. Sustainability 2015, 7, 12359–12371. [Google Scholar] [CrossRef]
- Versaci, M. Fuzzy approach and Eddy currents NDT/NDE devices in industrial applications. Electron. Lett. 2016, 52, 943–945. [Google Scholar] [CrossRef]
- Versaci, M.; Calcagno, S.; Cacciola, M.; Morabito, F.C.; Palamara, I.; Pellicanò, D. Chapter 7: Innovative Fuzzy Techniques for Characterizing Defects in Ultrasonic Nondestructive Evaluation. In Ultrasonic Nondestructive Evaluation Systems, Industrial Application Issues; Burrascano, P., Callegari, S., Montisci, A., Ricci, M., Versaci, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 200–232. [Google Scholar]
- Sun, X.; Jia, X. A Fault Diagnosis Method of Industrial Robot Rolling Bearing Based on Data Driven and Random Intuitive Fuzzy Decision. IEEE Access 2019, 7, 148764–148770. [Google Scholar] [CrossRef]
- Postorino, M.N.; Versaci, M. A Geometric Fuzzy-Based Approach for Airport Clustering. Adv. Fuzzy Syst. 2014, 2014, 201243. [Google Scholar] [CrossRef]
- Cheng, L.; Liu, W.; Hou, Z.G.; Huang, T.; Yu, J.; Tan, M. An Adaptive Takagi–Sugeno Fuzzy Model-Based Predictive Controller for Piezoelectric Actuators. IEEE Trans. Ind. Electron. 2017, 64, 3048–3058. [Google Scholar] [CrossRef]
- Bagua, H.; Guemana, M.; Hafaifa, A. Gas Turbine Monitoring using Fuzzy Control approaches: Comparison between Fuzzy Type 1 and 2. In Proceedings of the 2018 International Conference on Applied Smart Systems (ICASS’2018), Médéa, Algeria, 24–25 November 2018. [Google Scholar]
- Goswamia, R.; Joshib, D. Performance Review of Fuzzy Logic Based Controllers Employed in Brushless DC Motor. Procedia Comput. Sci. 2018, 132, 623–631. [Google Scholar] [CrossRef]
- Liu, X.; Gao, Z.; Chen, M.Z. Takagi–Sugeno Fuzzy Model Based Fault Estimation and Signal Compensation with Application to Wind Turbines. IEEE Trans. Ind. Electron. 2017, 64, 5678–5689. [Google Scholar]
- Lin, Y.Y.; Chang, J.Y.; Lin, C.T. A TSK-Type-Based Self-Evolving Compensatory Interval Type-2 Fuzzy Neural Network (TSCIT2FNN) and Its Applications. IEEE Trans. Ind. Electron. 2014, 61, 447–459. [Google Scholar] [CrossRef]
- Biglarbegian, M.; Melek, W.W.; Mendel, J.M. Design of Novel Interval Type-2 Fuzzy Controllers for Modular and Reconfigurable Robots: Theory and Experiments. IEEE Trans. Ind. Electron. 2011, 58, 1371–1384. [Google Scholar] [CrossRef]
- Dereli, T.; Baykasoglu, A.; Altun, K.; Durmusoglu, A.; Burhan, T. Industrial applications of type-2 fuzzy sets and systems—A concise review. Comput. Ind. 2011, 62, 125–137. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 2020, 138, 106587. [Google Scholar] [CrossRef]
- Shabgard, M.R.; Badamchizadeh, M.A.; Ranjbary, G.; Amini, K. Fuzzy approach to select machining parameters in electrical discharge machining (EDM) and ultrasonic-assisted EDM processes. J. Manuf. Syst. 2013, 32, 32–39. [Google Scholar] [CrossRef]
- Sibalija, T.V. Particle swarm optimisation in designing parameters of manufacturing processes: A review (2008–2018). Appl. Soft Comput. 2019, 84, 105743. [Google Scholar] [CrossRef]
- Datta, S.; Biswal, B.B.; Mahapatra, S.S. Optimization of Electro-Discharge Machining Responses of Super Alloy Inconel 718: Use of Satisfaction Function Approach Combined with Taguchi Philosophy. Mater. Today Proc. 2018, 5 Pt 1, 4376–4383. [Google Scholar] [CrossRef]
- Babu, K.N.; Karthikeyan, R.; Punitha, A. An integrated ANN—PSO approach to optimize the material removal rate and surface roughness of wire cut EDM on INCONEL 750. Mater. Today Proc. 2019, 19 Pt 2, 501–505. [Google Scholar] [CrossRef]
- Al-Ghamdi, K.; Taylan, O. A comparative study on modelling material removal rate by ANFIS and polynomial methods in electrical discharge machining process. Comput. Ind. Eng. 2015, 79, 27–41. [Google Scholar] [CrossRef]
- Devarasiddappa, D.; George, J.; Chandrasekaran, M.; Teyi, N. Application of Artificial Intelligence Approach in Modeling Surface Quality of Aerospace Alloys in WEDM Process. Procedia Technol. 2016, 25, 1199–1208. [Google Scholar] [CrossRef]
- Maher, I.; Ling, L.H.; Ahmed, A.D.S.; Hamdi, M. Improve wire EDM performance at different machining parameters—ANFIS modelling. IFAC-PapersOnLine 2015, 48, 105–110. [Google Scholar] [CrossRef]
- Joshi, K.K.; Behera, R.K.; Kumar, R.; Mohapatra, S.K.; Patro, S.S. Machinability Assessment of Inconel 800HT and its prediction using a hybrid fuzzy controller in EDM. Mater. Today Proc. 2019, 18 Pt 7, 5270–5275. [Google Scholar] [CrossRef]
- Torres, A.; Puertas, I.; Luis, C.J. Modelling of surface finish, electrode wear and material removal rate in electrical discharge machining of hard-to-machine alloys. Precis. Eng. 2015, 40, 33–45. [Google Scholar] [CrossRef]
- Bhadauria, G.; Jha, S.K.; Roy, B.N.; Dhakry, N.S. Electrical-Discharge Machining of Tungsten Carbide (WC) and its composites (WC-Co)—A Review. Mater. Today Proc. 2018, 5 Pt 3, 24760–24769. [Google Scholar] [CrossRef]
- The MathWorks, Inc. Fuzzy Logic Toolbox™User’s Guide; The MathWorks, Inc.: Natick, MA, USA, 1999. [Google Scholar]
- UNE-EN ISO 4287:1999, Geometrical Product Specifications (GPS)-Surface Texture: Profile Method—Terms, Definitions and Surface Texture Parameters; AENOR: Madrid, Spain, 1999.
- Versaci, M.; Calcagno, S.; Cacciola, M.; Morabito, F.C.; Palamara, I.; Pellicanò, D. Chapter 6: Standard Soft Computing Techniques for Characterization of Defects in Nondestructive Evaluation. In Ultrasonic Nondestructive Evaluation Systems, Industrial Application Issues; Burrascano, P., Callegari, S., Montisci, A., Ricci, M., Versaci, M., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 175–199. [Google Scholar]
- Egaji, O.A.; Griffiths, A.; Hasan, M.S.; Yu, H.N. A comparison of Mamdani and Sugeno fuzzy based packet scheduler for MANET with a realistic wireless propagation model. Int. J. Autom. Comput. 2015, 12, 1–13. [Google Scholar] [CrossRef]
Design Factors | Levels and Values | |||||||
---|---|---|---|---|---|---|---|---|
Positive Polarity | Negative Polarity | |||||||
1 | 2 | 3 | 4 | 1 | 2 | 3 | 4 | |
Current intensity | 2 | 4 | 6 | 8 | 2 | 4 | 6 | 8 |
Pulse time | 25 | 50 | 75 | 100 | 25 | 50 | 75 | 100 |
Duty cycle | 0.3 | 0.4 | 0.5 | 0.6 | 0.3 | 0.4 | 0.5 | 0.6 |
Positive Polarity (+) | Negative Polarity (−) | ||||||
---|---|---|---|---|---|---|---|
E | Ra (µm) | MRR (mm3/min) | EW (%) | E | Ra (µm) | MRR (mm3/min) | EW (%) |
1 | 1.39 | 0.1778 | 35.81 | 1 | 1.57 | 0.4961 | 96.67 |
2 | 3.34 | 3.0897 | 10.66 | 2 | 3.59 | 4.7944 | 28.23 |
63 | 6.33 | 8.4132 | 1.30 | 63 | 7.52 | 23.2371 | 171.94 |
64 | 7.08 | 15.3894 | 0.37 | 64 | 7.83 | 30.4894 | 17.49 |
Positive Polarity (+) | Negative Polarity (−) | ||
---|---|---|---|
Class of Roughness | Intensity (A) | Duty Cycle (%) | EW | |||||
---|---|---|---|---|---|---|---|---|
Class of Roughness | Lower Value (μm) | Ra Value (μm) | Upper Value (μm) | Intensity (A) | Pulse Time (μs) | Duty Cycle (%) | EW Min (%) | MRR |
---|---|---|---|---|---|---|---|---|
Class of Roughness | Lower Value (μm) | Ra Value (μm) | Upper Value (μm) | Intensity (A) | Pulse Time (μs) | Duty Cycle (%) | MRR Max | EW (%) |
---|---|---|---|---|---|---|---|---|
. | ||||||||
. | . | . | ||||||
. |
Class of Roughness | Lower Value (μm) | Ra Value (μm) | Upper Value (μm) | Intensity (A) | Pulse Time (μs) | Duty Cycle (%) | EW Min (%) | MRR |
---|---|---|---|---|---|---|---|---|
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luis Pérez, C.J. Using a Fuzzy Inference System to Obtain Technological Tables for Electrical Discharge Machining Processes. Mathematics 2020, 8, 922. https://doi.org/10.3390/math8060922
Luis Pérez CJ. Using a Fuzzy Inference System to Obtain Technological Tables for Electrical Discharge Machining Processes. Mathematics. 2020; 8(6):922. https://doi.org/10.3390/math8060922
Chicago/Turabian StyleLuis Pérez, C. J. 2020. "Using a Fuzzy Inference System to Obtain Technological Tables for Electrical Discharge Machining Processes" Mathematics 8, no. 6: 922. https://doi.org/10.3390/math8060922
APA StyleLuis Pérez, C. J. (2020). Using a Fuzzy Inference System to Obtain Technological Tables for Electrical Discharge Machining Processes. Mathematics, 8(6), 922. https://doi.org/10.3390/math8060922