A Numerical Algorithm for the Solutions of ABC Singular Lane–Emden Type Models Arising in Astrophysics Using Reproducing Kernel Discretization Method
Abstract
1. Prolegomena and Presentation
2. Concrete Structure of the RKDM
3. Solutions Shape of FLETM
Algorithm 1. Steps of the orthonormal Gram–Schmidt process: |
Step 1: For and , do the following: Output: The orthogonalization coefficients . Step 2: For set Output: System of orthonormal functions . |
- Ifand, then
- Ifand, then
- Ifand, 3 then
- Wheneverthe analytic solution of (15) fulfills:
- The-term numerical solution of Equation (15) fulfills:
Algorithm 2. Steps of RKDM for numerical approximations model of FLETM in ABC derivative: |
Step I: Fix in and do Phases 1 and 2: Phase 1: Set in the index . Phase 2: Set in the index . Output: the orthogonal function system . Step II: For the indices and do Algorithm 1. Output: the orthogonalization coefficients . Step III: Set in the indices . Output: the orthonormal function system . Step IV: Set and with the indices do Phases 1, 2, and 3: Phase 1: Set . Phase 2: Set . Phase 3: Set . Output: The -term numerical approximation of . |
4. Convergence Analysis
5. Model Experiments and Computational Results
5.1. Certain Examples
5.2. Results and Discussions
6. Conclusions and Outline
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
FLETM | fractional Lane–Emden type model |
ABC | Atangana–Baleanu–Caputo |
RKDM | reproducing kernel discretization method |
CIC | constraint initial condition |
References
- Herrmann, R. Fractional Calculus: An Introduction for Physicists; World Scientific: Singapore, 2014. [Google Scholar]
- Tarasov, V.E. Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media; Springer: Heidelberg, Germany, 2011. [Google Scholar]
- West, B.J. Fractional Calculus View of Complexity: Tomorrow’s Science; Taylor & Francis: Oxfordshire, UK, 2015. [Google Scholar]
- Kilbas, A.; Srivastava, H.; Trujillo, J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- West, B.J. Natures Patterns and the Fractional Calculus; De Gruyter: Berlin, Germany, 2017. [Google Scholar]
- Abu Arqub, O.; El-Ajou, A.; Momani, S. Constructing and predicting solitary pattern solutions for nonlinear time-fractional dispersive partial differential equations. J. Comput. Phys. 2015, 293, 385–399. [Google Scholar] [CrossRef]
- El-Ajou, A.; Abu Arqub, O.; Momani, S. Approximate analytical solution of the nonlinear fractional KdV-Burgers equation: A new iterative algorithm. J. Comput. Phys. 2015, 293, 81–95. [Google Scholar] [CrossRef]
- El-Ajou, A.; Abu Arqub, O.; Momani, S.; Baleanu, D.; Alsaedi, A. A novel expansion iterative method for solving linear partial differential equations of fractional order. Appl. Math. Comput. 2015, 257, 119–133. [Google Scholar] [CrossRef]
- Ray, S.S. New exact solutions of nonlinear fractional acoustic wave equations in ultrasound. Comput. Math. Appl. 2016, 71, 859–868. [Google Scholar]
- Ray, S.S.; Sahoo, S. Analytical approximate solutions of Riesz fractional diffusion equation and Riesz fractional advection-dispersion equation involving nonlocal space fractional derivatives. Math. Method. Appl. Sci. 2015, 38, 2840–2849. [Google Scholar] [CrossRef]
- Ghanbari, B.; Osman, M.S.; Baleanu, D. Generalized exponential rational function method for extended Zakharov–Kuzetsov equation with conformable derivative. Mod. Phys. Lett. A 2019, 34, 1950155. [Google Scholar] [CrossRef]
- Zhuang, P.; Liu, F.; Anh, V.; Turner, I. Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 2009, 47, 1760–1781. [Google Scholar] [CrossRef]
- Osman, M.S. New analytical study of water waves described by coupled fractional variant Boussinesq equation in fluid dynamics. Pramana 2019, 93, 26. [Google Scholar] [CrossRef]
- Liu, J.G.; Osman, M.S.; Zhu, W.H.; Zhou, L.; Ai, G.P. Different complex wave structures described by the Hirota equation with variable coefficients in inhomogeneous optical fibers. Appl. Phys. B 2019, 125, 175. [Google Scholar] [CrossRef]
- Osman, M.S.; Wazwaz, A.M. A general bilinear form to generate different wave structures of solitons for a (3+ 1) -dimensional Boiti-Leon-Manna-Pempinelli equation. Math. Method Appl. Sci. 2019, 42, 6277–6283. [Google Scholar] [CrossRef]
- Osman, M.S.; Lu, D.; Khater, M.M.A.; Attia, R.A.M. Complex wave structures for abundant solutions related to the complex Ginzburg–Landau model. Optik 2019, 192, 162927. [Google Scholar] [CrossRef]
- Ding, Y.; Osman, M.S.; Wazwaz, A.M. Abundant complex wave solutions for the nonautonomous Fokas–Lenells equation in presence of perturbation terms. Optik 2019, 181, 503–513. [Google Scholar] [CrossRef]
- Lu, D.; Tariq, K.U.; Osman, M.S.; Baleanu, D.; Younis, M.; Khatera, M.M.A. New analytical wave structures for the (3 + 1)-dimensional Kadomtsev-Petviashvili and the generalized Boussinesq models and their applications. Results Phys. 2019, 14, 102491. [Google Scholar] [CrossRef]
- Atangana, A.; Baleanu, D. New fractional derivatives with non-local and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef]
- Atangana, A.; Nieto, J.J. Numerical solution for the model of RLC circuit via the fractional derivative without singular kernel. Adv. Mech. Eng. 2015, 7, 1–7. [Google Scholar] [CrossRef]
- Maayah, B.; Yousef, F.; Abu Arqub, O.; Momani, S.; Alsaedi, A. Computing bifurcations behavior of mixed type singular time-fractional partial integrodifferential equations of Dirichlet functions types in Hilbert space with error analysis. Filomat 2019, 33, 3845–3853. [Google Scholar] [CrossRef]
- Atangana, A.; Gómez-Aguilar, J.F. Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 2018, 133, 1–22. [Google Scholar] [CrossRef]
- Abu Arqub, O.; Al-Smadi, M. Atangana-Baleanu fractional approach to the solutions of Bagley-Torvik and Painlevé equations in Hilbert space. Chaos Solitons Fractals 2018, 117, 161–167. [Google Scholar] [CrossRef]
- Abu Arqub, O.; Maayah, B. Modulation of reproducing kernel Hilbert space method for numerical solutions of Riccati and Bernoulli equations in the Atangana-Baleanu fractional sense. Chaos Solitons Fractals 2019, 125, 163–170. [Google Scholar] [CrossRef]
- Abu Arqub, O.; Maayah, B. Numerical solutions of integrodifferential equations of Fredholm operator type in the sense of the Atangana-Baleanu fractional operator. Chaos Solitons Fractals 2018, 117, 117–124. [Google Scholar] [CrossRef]
- Abu Arqub, O.; Maayah, B. Fitted fractional reproducing kernel algorithm for the numerical solutions of ABC-Fractional Volterra integro-differential equations. Chaos Solitons Fractals 2019, 126, 394–402. [Google Scholar] [CrossRef]
- Djida, J.D.; Atangana, A.; Area, I. Numerical computation of a fractional derivative with non-local and non-singular kernel. Math. Model. Nat. Phenom. 2017, 12, 4–13. [Google Scholar] [CrossRef]
- Atangana, A.; Gómez-Aguilar, J.F. Fractional derivatives with no-index law property: Application to chaos and statistic. Chaos Solitons Fractals 2018, 114, 516–535. [Google Scholar] [CrossRef]
- Atangana, A. On the new fractional derivative and application to nonlinear Fisher’s reaction-diffusion equation. Appl. Math. Comput. 2016, 273, 948–956. [Google Scholar] [CrossRef]
- Atangana, A.; Koca, I. On the new fractional derivative and application to Nonlinear Baggs and Freedman model. J. Nonlinear Sci. Appl. 2016, 9, 2467–2480. [Google Scholar] [CrossRef]
- Algahtani, O. Comparing the Atangana-Baleanu and Caputo-Fabrizio derivative with fractional order: Allen Cahn model. Chaos Solitons Fractals 2016, 89, 552–559. [Google Scholar] [CrossRef]
- Akgül, A.; Inc, M.; Karatas, E.; Baleanu, D. Numerical solutions of fractional differential equations of Lane-Emden type by an accurate technique. Adv. Differ. Equ. 2015, 2015, 220. [Google Scholar] [CrossRef]
- Singh, O.P.; Pandey, R.K.; Singh, V.K. An analytic algorithm of Lane–Emden type equations arising in astrophysics using modified Homotopy analysis method. Comput. Phys. Commun. 2009, 180, 1116–1124. [Google Scholar] [CrossRef]
- Kıymaz, O.; Mirasyedioğlu, Ş. A new symbolic computational approach to singular initial value problems in the second-order ordinary differential equation. Appl. Math. Comput. 2005, 171, 1218–1225. [Google Scholar]
- Iqbal, S.; Javed, A. Application of optimal homotopy asymptotic method for the analytic solution of singular Lane–Emden type equation. Appl. Math. Comput. 2011, 217, 7753–7761. [Google Scholar] [CrossRef]
- Pandey, R.K.; Kumar, N. Solution of Lane–Emden type equations using Bernstein operational matrix of differentiation. New Astron. 2012, 17, 303–308. [Google Scholar] [CrossRef]
- Cui, M.; Lin, Y. Nonlinear Numerical Analysis in the Reproducing Kernel Space; Nova Science: Hauppauge, NY, USA, 2009. [Google Scholar]
- Berlinet, A.; Agnan, C.T. Reproducing Kernel Hilbert Space in Probability and Statistic; Kluwer Academic Publishers: New York, NY, USA, 2004. [Google Scholar]
- Daniel, A. Reproducing Kernel Spaces and Applications; Springer: Basel, Switzerland, 2003. [Google Scholar]
- Abu Arqub, O.; Al-Smadi, M.; Momani, S.; Hayat, T. Numerical solutions of fuzzy differential equations using reproducing kernel Hilbert space method. Soft Comput. 2016, 20, 3283–3302. [Google Scholar] [CrossRef]
- Abu Arqub, O.; Al-Smadi, M.; Momani, S.; Hayat, T. Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems. Soft Comput. 2017, 21, 7191–7206. [Google Scholar] [CrossRef]
- Abu Arqub, O. Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm-Volterra integrodifferential equations. Neural Comput. Appl. 2017, 28, 1591–1610. [Google Scholar] [CrossRef]
- Abu Arqub, O. Fitted reproducing kernel Hilbert space method for the solutions of some certain classes of time-fractional partial differential equations subject to initial and Neumann boundary conditions. Comput. Math. Appl. 2017, 73, 1243–1261. [Google Scholar] [CrossRef]
- Abu Arqub, O. Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm. Int. J. Numer. Meth. Heat 2018, 28, 828–856. [Google Scholar] [CrossRef]
- Abu Arqub, O. The reproducing kernel algorithm for handling differential algebraic systems of ordinary differential equations. Math. Meth. Appl. Sci. 2016, 39, 4549–4562. [Google Scholar] [CrossRef]
- Abu Arqub, O.; Al-Smadi, M.; Shawagfeh, N. Solving Fredholm integro-differential equations using reproducing kernel Hilbert space method. Appl. Math. Comput. 2013, 219, 8938–8948. [Google Scholar] [CrossRef]
- Abu Arqub, O.; Al-Smadi, M. Numerical algorithm for solving two-point, second-order periodic boundary value problems for mixed integro-differential equations. Appl. Math. Comput. 2014, 243, 911–922. [Google Scholar] [CrossRef]
- Abu Arqub, O. Approximate solutions of DASs with nonclassical boundary conditions using novel reproducing kernel algorithm. Fundam. Inform. 2016, 146, 231–254. [Google Scholar] [CrossRef]
- Abu Arqub, O.; Al-Smadi, M. Numerical algorithm for solving time-fractional partial integrodifferential equations subject to initial and Dirichlet boundary conditions. Numer. Meth. Part. Differ. Equ. 2018, 34, 1577–1597. [Google Scholar] [CrossRef]
- Abu Arqub, O. Solutions of time-fractional Tricomi and Keldysh equations of Dirichlet functions types in Hilbert space. Numer. Meth. Part. Differ. Equ. 2018, 34, 1759–1780. [Google Scholar] [CrossRef]
- Abu Arqub, O. Numerical solutions of systems of first-order, two-point BVPs based on the reproducing kernel algorithm. Calcolo 2018, 55, 1–28. [Google Scholar] [CrossRef]
- Abu Arqub, O.; Odibat, Z.; Al-Smadi, M. Numerical solutions of time-fractional partial integrodifferential equations of Robin functions types in Hilbert space with error bounds and error estimates. Nonlinear Dyn. 2018, 94, 1819–1834. [Google Scholar] [CrossRef]
- Abu Arqub, O.; Al-Smadi, M. An adaptive numerical approach for the solutions of fractional advection–diffusion and dispersion equations in singular case under Riesz’s derivative operator. Physica A 2020, 540, 123257. [Google Scholar] [CrossRef]
- Abu Arqub, O. Numerical algorithm for the solutions of fractional order systems of Dirichlet function types with comparative analysis. Fundam. Inform. 2019, 166, 111–137. [Google Scholar] [CrossRef]
- Al-Smadi, M.; Abu Arqub, O. Computational algorithm for solving fredholm time-fractional partial integrodifferential equations of dirichlet functions type with error estimates. Appl. Math. Comput. 2019, 342, 280–294. [Google Scholar] [CrossRef]
- Abu Arqub, O.; Shawagfeh, N. Application of reproducing kernel algorithm for solving Dirichlet time-fractional diffusion-Gordon types equations in porous media. J. Porous Media 2019, 22, 411–434. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, Z. A collocation method based on reproducing kernel for a modified anomalous sub-diffusion equation. Numer. Meth. Part. Differ. Equ. 2014, 30, 289–300. [Google Scholar] [CrossRef]
- Geng, F.Z.; Qian, S.P.; Li, S. A numerical method for singularly perturbed turning point problems with an interior layer. J. Comput. Appl. Math. 2014, 255, 97–105. [Google Scholar] [CrossRef]
- Lin, Y.; Cui, M.; Yang, L. Representation of the exact solution for a kind of nonlinear partial differential equations. Appl. Math. Lett. 2006, 19, 808–813. [Google Scholar] [CrossRef]
- Parashar, B.P. Differential and Integral Equations, 2nd ed.; CBS Publishers: Delhi, India, 2008. [Google Scholar]
6.04130 | ||||
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arqub, O.A.; Osman, M.S.; Abdel-Aty, A.-H.; Mohamed, A.-B.A.; Momani, S. A Numerical Algorithm for the Solutions of ABC Singular Lane–Emden Type Models Arising in Astrophysics Using Reproducing Kernel Discretization Method. Mathematics 2020, 8, 923. https://doi.org/10.3390/math8060923
Arqub OA, Osman MS, Abdel-Aty A-H, Mohamed A-BA, Momani S. A Numerical Algorithm for the Solutions of ABC Singular Lane–Emden Type Models Arising in Astrophysics Using Reproducing Kernel Discretization Method. Mathematics. 2020; 8(6):923. https://doi.org/10.3390/math8060923
Chicago/Turabian StyleArqub, Omar Abu, Mohamed S. Osman, Abdel-Haleem Abdel-Aty, Abdel-Baset A. Mohamed, and Shaher Momani. 2020. "A Numerical Algorithm for the Solutions of ABC Singular Lane–Emden Type Models Arising in Astrophysics Using Reproducing Kernel Discretization Method" Mathematics 8, no. 6: 923. https://doi.org/10.3390/math8060923
APA StyleArqub, O. A., Osman, M. S., Abdel-Aty, A.-H., Mohamed, A.-B. A., & Momani, S. (2020). A Numerical Algorithm for the Solutions of ABC Singular Lane–Emden Type Models Arising in Astrophysics Using Reproducing Kernel Discretization Method. Mathematics, 8(6), 923. https://doi.org/10.3390/math8060923