Next Article in Journal
Bi-Slant Submanifolds of Para Hermitian Manifolds
Next Article in Special Issue
Three-Step Projective Methods for Solving the Split Feasibility Problems
Previous Article in Journal
Production-Inventory System for Deteriorating Items with Machine Breakdown, Inspection, and Partial Backordering
Previous Article in Special Issue
Fixed Point Results for Multivalued Prešić Type Weakly Contractive Mappings
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On Fixed Point Results in Gb-Metric Spaces

by
Hassen Aydi
1,2,*,
Dušan Rakić
3,
Asadolah Aghajani
4,
Tatjana Došenović
3,
Mohd Salmi Md Noorani
5 and
Haitham Qawaqneh
5
1
Department of Mathematics, College of Education in Jubail, Imam Abdulrahman Bin Faisal University, P.O. Box 12020, Industrial Jubail 31961, Saudi Arabia
2
China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
3
Faculty of Technology, University of Novi Sad, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia
4
School of Mathematics, University of Science and Technology, Narmak, Tehran 16846-13114, Iran
5
School of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Selangor Darul Ehsan 43600, Malaysia
*
Author to whom correspondence should be addressed.
Mathematics 2019, 7(7), 617; https://doi.org/10.3390/math7070617
Submission received: 12 January 2019 / Revised: 17 February 2019 / Accepted: 26 February 2019 / Published: 11 July 2019
(This article belongs to the Special Issue Fixed Point, Optimization, and Applications)

Abstract

:
The purpose of this paper is to consider various results in the context of G b -metric spaces that have been recently published after the paper (Aghajani, A.; Abbas, M.; Roshan, J.R. Common fixed point of generalized weak contractive mappings in partially ordered G b -metric spaces. Filomat 2014, 28, 1087–1101). Our new results improve, complement, unify, enrich and generalize already well known results on G b -metric spaces. Moreover, some coupled and tripled coincidence point results have been provided.
MSC:
Primary 47H10; Secondary 54H25

1. Introduction and Preliminaries

In the last few decades, fixed point theory has been one of the most significant research fields in nonlinear functional analysis. It has wide applications in many disciplines such as studying the existence of solutions for nonlinear equations (algebraic, differential and integral), a system of linear (nonlinear) equations and convergence of many computational methods, in economics, sports, medical sciences, etc. In 1922, Banach [1] proved that each contraction map in a complete metric space has a unique fixed point. It is worth mentioninng that this Banach contraction principle has been generalized in two directions, by acting on the contraction (expansive) condition, or changing the topology of the space. Among these generalizations are partial metric spaces [2], b-metric spaces [3,4], partial b-metric spaces [5], G-metric spaces [6], G p -metric spaces [7] and G b -metric spaces [8]. The topological concepts of these spaces are different, thus the approach of existence of fixed points is different. Many researchers tried to generalize new contractive mappings to demonstrate the existence of fixed point results (for examples, see [9,10,11,12,13,14,15,16,17,18,19]).
Partial metric spaces were introduced by Matthews [2] in 1986 as follows:
Definition 1.
Let X be a nonempty set. A partial metric (or a p-metric) is a function p : X × X [ 0 , + ) satisfying
(p1) 
x = y if and only if p x , x = p x , y = p y , y ;
(p2) 
p x , x p x , y , for all x , y X ;
(p3) 
p x , y = p y , x , for all x , y X ; and
(p4) 
p x , z p x , y + p y , z p y , y , for all x , y , z X .
The pair X , p is called a partial metric space.
It is clear that each metric space is a partial metric space. However, the converse is not true, in general. For example, if X = [ 0 , ) and p x , y = max x , y . In this case, p is a p -metric, but it is not a metric on X . Many authors obtained variant fixed point results in partial metric spaces for different contractive conditions (see [20,21,22,23]).
In 1989, Bakhtin [3] and, in 1993, Czerwik [4] introduced a new distance on a non-empty set, which is called a b-metric. A b-metric space is an attempt to generalize the metric space.
Definition 2.
Let X be a non-empty set and s 1 a given real number. A function d : X 2 [ 0 , ) is called a b-metric on X if, for all x , y , z X , the following conditions hold:
(b1) 
d x , y = 0 if and only if x = y ;
(b2) 
d x , y = d y , x ; and
(b3) 
d x , z s d x , y + d y , z .
The pair X , d is called a b-metric space. The real number s 1 is called the coefficient of X , d . We stress that any metric space is a b-metric space with coefficient s = 1 . Generally, a b-metric space is not a metric space. Let X = R be the set of real numbers, then the mapping d : X × X [ 0 , ) defined by d x , y = x y 2 is a b-metric, but X , d is not a metric space. For some fixed point results on b-metric spaces, see [10,24,25].
In 2014, Shukla [5] introduced the notion of a partial b-metric space.
Definition 3.
Let X be a nonempty set and s 1 be a given real number. A function p b : X × X [ 0 , ) is called a partial b-metric if for all x , y , z X , the following conditions are satisfied:
(pb1) 
x = y if and only if p b x , x = p b x , y = p b y , y ;
(pb2) 
p b x , x p b x , y ;
(pb3) 
p b x , y = p b y , x ; and
(pb4) 
p b x , y s p b x , z + p b z , y p b z , z .
The pair X , p b is called a partial b-metric space. The number s 1 is called the coefficient of X , p b .
The following example shows that a partial b-metric on X does not need to be a partial metric or a b-metric on X (see also [5]).
Example 1.
Let X = [ 0 , ) . Define the function p b : X × X [ 0 , ) by p b x , y = max x , y 2 + x y 2 for all x , y X . Then, X , p b is a partial b-metric space on X with the coefficient s = 2 > 1 . However, p b is neither a b-metric nor a partial metric on X .
Mustafa and Sims [6] generalized the concept of metric spaces by introducing new class of spaces, so-called G-metric spaces. Based on this new concept, Mustafa et al. [26] obtained some fixed point results for mappings satisfying different contractive conditions. Abbas and Rhoades [27] initiated the study of common fixed point theorems in G -metric spaces. Since then, many authors obtained fixed and common fixed point results in the setup of G-metric spaces (e.g., see [19,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55]).
Definition 4 
([6]). Let X be a nonempty set. A generalized metric or a G-metric is a function G : X 3 [ 0 , ) satisfying the following properties:
(G1) 
for all x , y , z X , x = y = z if and only if G x , y , z = 0 ;
(G2) 
0 < G x , x , y , for all x , y X with x y ;
(G3) 
G x , x , y G x , y , z , for all x , y , z X with z y ;
(G4) 
G ( x , y , z ) = G ( x , z , y ) = G ( y , z , x ) = , ( symmetry in all three variables ) ; and
(G5) 
G x , y , z G x , a , a + G a , y , z , for all x , y , z , a X (rectangle inequality).
The pair X , G is called a G-metric space.
Example 2 
([6]). Let X = R . Then, G-metric G be defined by G ( x , y , z ) = 1 3 ( | x y | + | y z | + | x z | ) , for all x , y , z R .
Definition 5.
A G-metric G is said to be symmetric if G ( x , x , y ) = G ( x , y , y ) for all x , y X .
In 2011, Ahmadi et al. [7] attempted to introduce a new generalization of both partial metric spaces and G-metric spaces, by defining the notion of G p -metric spaces in the following manner.
Definition 6.
Let X be a nonempty set. A mapping G p : X 3 [ 0 , + ) is called a G p -metric if the following conditions are satisfied:
(G p 1) 
for x , y , z X , if G p x , y , z = G p z , z , z = G p y , y , y = G p x , x , x then x = y = z ;
(G p 2) 
G p x , x , x G p x , x , y G p x , y , z , for all x , y , z X ;
(G p 3) 
G p ( x , y , z ) = G p ( x , z , y ) = G p ( y , z , x ) = , ( symmetry in all three variables ) ; and
(G p 4) 
G p x , y , z G p x , a , a + G p a , y , z G p a , a , a , for all x , y , z , a X (rectangle inequality).
The pair X , G p is called a G p -metric space.
For more other details with some improvements, see [37].
On the other hand, combining the concepts of G-metrics and b-metrics, Aghajani et al. [8] initiated the concept of G b -metrics.
Definition 7 
([8]). Let X be a nonempty set and s 1 be a given real number. Suppose that G b : X 3 [ 0 , + ) satisfies
(G b 1) 
G b ( x , y , z ) = 0 if x = y = z ;
(G b 2) 
0 < G b ( x , x , y ) for all x , y X with x y ;
(G b 3) 
G b ( x , x , y ) G b ( x , y , z ) for all x , y , z X with y z ;
(G b 4) 
G b ( x , y , z ) = G b ( x , z , y ) = G b ( y , z , x ) = , ( symmetry in all three variables ) ; and
(G b 5) 
G b ( x , y , z ) s ( G b ( x , a , a ) + G b ( a , y , z ) ) for all x , y , z , a X (triangle inequality).
Then, G b is called a generalized b-metric and the pair ( X , G b ) is called a generalized b-metric space or G b -metric space.
Example 3 
([8]). Let ( X , G ) be a G-metric space. Consider G b ( x , y , z ) = G ( x , y , z ) p , where p > 1 is a real number. Then, G b is a G b -metric with s = 2 p 1 .
Each G-metric space is a G b -metric space with s = 1 . The following example shows that a G b -metric on X does not need to be a G-metric on X.
Example 4.
The function defined by G b ( x , y , z ) = 1 9 ( | x y | + | y z | + | x z | ) 2 is a G b -metric on X = R with s = 2 , but it is not a G-metric on R . Indeed, by taking x = 3 , y = 5 , z = 7 and a = 7 2 , we have G b ( 3 , 5 , 7 ) = 64 9 , G b 3 , 7 2 , 7 2 = 1 9 . While, G b 7 2 , 5 , 7 = 49 9 , so G b 3 , 5 , 7 = 64 9 > 50 9 = G b 3 , 7 2 , 7 2 + G b 7 2 , 5 , 7 .
The following properties are consequences of Definition 7.
Proposition 1 
([8]). Let ( X , G b ) be a G b -metric space, then for each x , y , z , a X , we have:
(1) 
if G b ( x , y , z ) = 0 , then x = y = z ;
(2) 
G b ( x , y , z ) s ( G b ( x , x , y ) + G b ( x , x , z ) ;
(3) 
G b ( x , y , y ) 2 s G b ( y , x , x ) ; and
(4) 
G b ( x , y , z ) s ( G b ( x , a , z ) + G b ( a , y , z ) ) .
Proof. 
(1)
By (G b 3) and (G b 2), we get a contradiction. Indeed,
0 = G b ( x , y , z ) G b ( x , x , y ) > 0 ,
when x y and y z . In addition,
0 = G b ( x , y , z ) = G b ( y , y , z ) > 0 ,
when x = y and y z .
(2)
Properties (G b 4) and (G b 5) imply
G b ( x , y , z ) = G b ( y , x , z ) s ( G b ( y , x , x ) + G b ( x , x , z ) ) = s ( G b ( x , x , y ) + G b ( x , x , z ) ) .
(3)
By (G b 4) and (G b 5), it follows that
G b ( x , y , y ) = G b ( y , x , y ) s ( G b ( y , x , x ) + G b ( x , x , y ) ) = 2 s G b ( y , x , x ) .
(4)
By (G b 4), (G b 5) and (G b 3), we get that
G b ( x , y , z ) s ( G b ( x , a , a ) + G b ( a , y , z ) ) s ( G b ( a , x , z ) + G b ( a , y , z ) ) ,
when x z .  ☐
Definition 8 
([8]). A G b -metric G b is said to be symmetric if G b ( x , x , y ) = G b ( x , y , y ) for all x , y X .
Remark 1.
From Example 3, it follows that G b = G x , y , z p , p > 1 is symmetric if G x , y , z is symmetric.
Definition 9 
([8]). Let ( X , G b ) be a G b -metric space, then for x 0 X , r > 0 , the G b -ball with center x 0 and radius r is
B G b ( x 0 , r ) = { y X : G b ( x 0 , y , y ) < r } .
Aghajani et al. [8] proved that every G b -metric space is topologically equivalent to a b-metric space. This allows us to readily transport many concepts and results from b-metric spaces into G b -metric spaces.
Definition 10 
([8]). Let X be a G b -metric space. A sequence { x n } in X is said to be
(1) 
G b -Cauchy sequence if, for each ε > 0 , there exists a positive integer n 0 such that, for all m , n , l n 0 , G b ( x n , x m , x l ) < ε ; a n d
(2) 
G b -convergent to a point x X if, for each ε > 0 , there exists a positive integer n 0 such that, for all m , n n 0 , G b ( x n , x m , x ) < ε .
Using above definitions, we prove the following two significant propositions.
Proposition 2.
Let X , G b be a G b -metric space. Then, the following are equivalent:
(1) 
the sequence x n is G b -Cauchy; and
(2) 
for any ε > 0 , there exists n 0 N such that G b x n , x m , x m < ε , for all m , n n 0 .
Proof. 
(1) ⇒ (2). In (1) of Definition 10, we take l = m .
(2) ⇒ (1). Let ε > 0 and ε 1 = ε 2 s . By (2), there exists n 0 N such that G b ( x n , x m , x m ) < ε 1 , for all m , n n 0 . By ( G b 5 ) ,
G b ( x n , x m , x l ) s ( G b ( x n , x m , x m ) + G b ( x m , x m , x l ) ) < 2 s ε 1 ε ,
for all m , n , l n 0 .  ☐
Proposition 3.
Let X , G b be a G b -metric space. Then, the following are equivalent:
(i) 
x n is G b -convergent to x ;
(ii) 
G b x n , x n , x 0 as n + ; and
(iii) 
G b x n , x , x 0 as n + .
Proof. 
(i) ⇒ (ii). In (ii) of Definition 10, we take m = n .
(ii) ⇒ (iii). Let ε > 0 and ε 1 = ε 2 s . By (ii), there exists n 0 N such that G b ( x n , x n , x ) < ε 1 , for all n n 0 . Then, by (3) of Proposition 1, we have
G b ( x n , x , x ) 2 s G b ( x , x n , x n ) < 2 s ε 1 ε ,
for all m , n n 0 .
(iii) ⇒ (i). Let ε > 0 and ε 1 = ε 2 s . By (iii), there exists n 0 N such that G b ( x n , x , x ) < ε 1 , for all n n 0 . By ( G b 5 ) , we get
G b ( x n , x m , x ) s ( G b ( x n , x , x ) + G b ( x , x m , x ) ) < 2 s ε 1 ε ,
for all m , n n 0 .  ☐
Definition 11 
([8]). A G b -metric space X is called G b -complete if every G b -Cauchy sequence is G b -convergent in X .
Proposition 4 
([8]). Let ( X , G b ) be a G b -metric space. Then, the function given as d G b ( x , y ) = G b ( x , y , y ) + G b ( x , x , y ) , defines a b -metric on X. We call it a b-metric induced by the G b -metric G b .
Proof. 
Let us prove that conditions of Definition 2 are fulfilled for d G b ( x , y ) .
(b1) If d G b ( x , y ) = 0 then G b ( x , x , y ) = 0 and by (1) of Proposition 1, it follows that x = y .
If x = y , then (by ( G b 1 ) ) G b ( x , x , y ) = G b ( x , y , y ) = 0 and d G b ( x , y ) = 0 .
(b2) Property ( G b 4 ) implies that
d G b ( x , y ) = G b ( x , y , y ) + G b ( x , x , y ) = G b ( y , x , x ) + G b ( y , y , x ) = d G b ( y , x ) .
(b3) By ( G b 5 ) , it follows that
d G b ( x , z ) = G b ( x , z , z ) + G b ( x , x , z ) s ( G b ( x , y , y ) + G b ( y , z , z ) ) + s ( G b ( z , y , y ) + G b ( y , x , x ) )
s ( G b ( x , y , y ) + G b ( x , x , y ) ) + s ( G b ( y , z , z ) + G b ( y , y , z ) ) = s ( d G b ( x , y ) + d G b ( y , z ) ) .
Theorem 1 
([8], Theorem 2.1). Let ( X , ) be a partially ordered set. Suppose that there exists a symmetric G b -metric on X such that ( X , G ) is a complete G b -metric space. In addition, let f , g , h , S , T , R : X X satisfy the following
ψ ( 2 s 4 G ( f x , g y , h z ) ) ψ ( M s ( x , y , z ) ) φ ( M s ( x , y , z ) )
for all comparable elements x , y , z X , where φ , ψ : [ 0 , ) [ 0 , ) are such that ψ is continuous, nondecreasing and φ is lower semi-continuous with ψ ( t ) = φ ( t ) = 0 if and only if t = 0 , and
M s ( x , y , z ) = max { G ( R x , T y , S z ) , G ( R x , T y , g y ) , G ( T y , S z , h z ) , G ( S z , R x , f x ) ,
G ( f x , R x , g y ) + G ( f x , S z , h z ) + G ( g y , T y , h z ) 3 s } .
If f , g and h are dominated, then S , T and R are also dominating with f X T X , g X S X and h X R X , and for a nonincreasing sequence { x n } such that y n x n for each n and y n u , then u x n and
(a) 
one of f X , g X or h X is a closed subset of X ; and
(b) 
the pairs ( f , R ) , ( g , T ) and ( h , S ) are weakly compatible. Then, f , g , h , S , T and R have a common fixed point in X . Moreover, the set of common fixed points of f , g , h , S , T and R is well ordered if and only if f , g , h , S , T and R have one and only one common fixed point.
Theorem 2 
([42]). Let ( X , G ) be a complete symmetric G b -metric space with parameter s 1 and let the mappings S , T , R : X 2 X satisfy
G ( S ( x , y ) , T ( u , v ) , R ( a , b ) ) a 1 G ( x , u , a ) + G ( y , v , b ) 2
+ a 2 G ( S ( x , y ) , T ( u , v ) , R ( a , b ) ) G ( x , u , a ) 1 + G ( x , u , a ) + G ( y , v , b ) + a 3 G ( S ( x , y ) , T ( u , v ) , R ( a , b ) ) G ( y , v , b ) 1 + G ( x , u , a ) + G ( y , v , b )
+ a 4 G ( x , x , S ( x , y ) ) G ( x , u , a ) 1 + G ( x , u , a ) + G ( y , v , b ) + a 5 G ( x , x , S ( x , y ) ) G ( y , v , b ) 1 + G ( x , u , a ) + G ( y , v , b )
+ a 6 G ( u , u , T ( u , v ) ) G ( x , u , a ) 1 + G ( x , u , a ) + G ( y , v , b ) + a 7 G ( u , u , T ( u , v ) ) G ( y , v , b ) 1 + G ( x , u , a ) + G ( y , v , b )
+ a 8 G ( a , a , R ( a , b ) ) G ( x , u , a ) 1 + G ( x , u , a ) + G ( y , v , b ) + a 9 G ( a , a , R ( a , b ) ) G ( y , v , b ) 1 + G ( x , u , a ) + G ( y , v , b ) ,
for all x , y , u , v , a , b X and a 1 , , a 9 0 such that a 1 + a 2 + a 3 + 2 ( a 4 + a 5 ) + a 6 + a 7 + a 8 + a 9 < 1 . Then, S , T and R have a unique common coupled fixed point in X .
Lemma 1 
([56]). Every sequence { x n } n N of elements in a b-metric space ( X , d ) with a real coefficient s 1 , satisfying
d ( x n + 1 , x n ) γ d ( x n , x n 1 ) ,
for every n N , where γ [ 0 , 1 ) , is Cauchy.

2. Main Results

Using Lemma 1, we have the following result.
Lemma 2.
Let ( X , G b ) be a G b -metric space (with a coefficient s 1 ) and { x n } be a sequence such that
G b ( x n , x n + 1 , x n + 1 ) + G b ( x n , x n , x n + 1 ) λ ( G b ( x n 1 , x n , x n ) + G b ( x n 1 , x n 1 , x n ) ) ,
for all n N , where λ [ 0 , 1 ) is a Lipschitz type constant. Then, { x n } is G b -Cauchy.
Proof. 
The condition in Equation (3), together with Proposition 4, implies that
d G b ( x n + 1 , x n ) λ d G b ( x n , x n 1 ) ,
for every n N . By Lemma 1, it follows that { x n } n N is a Cauchy sequence in the b-metric space ( X , d G b ) . Since ( X , d G b ) and ( X , G b ) are topologically equivalent, we have that { x n } n N is also Cauchy in ( X , G b ) .  ☐
In the sequel, we improve and generalize some already announced results (see ([57], Lemma 3.1. and Theorem 3.21.)). Namely, we have the following result.
Lemma 3.
Let x n be a sequence in a G b -metric space X , G b , s 1 such that
G b x n + 1 , x n + 2 , x n + 2 λ G b x n , x n + 1 , x n + 1 ,
where λ [ 0 , 1 ) and n = 1 , 2 , . Then, x n is a G b -Cauchy sequence.
Proof. 
The case that s = 1 is standard. Otherwise, take s > 1 . If λ [ 0 , 1 s ) , the proof is the same as in [57] (pp. 663, 664). Therefore, let λ [ 1 s , 1 ) . Firstly, define the self mapping T on X as T x n = x n + 1 for n = 1 , 2 , and T x = z if x x n n = 1 + where z X is an arbitrary point. Now, Equation (5) becomes
G b T x n , T x n + 1 , T x n + 1 λ G b x n , x n + 1 , x n + 1 , n = 1 , 2 , .
Further, we have that λ n 0 as n . Then, there is n 0 N such that λ n 0 < 1 s , that is,
G b T n 0 x n , T n 0 x n + 1 , T n 0 x n + 1 λ n 0 G b x n , x n + 1 , x n + 1 .
Thus, in the case λ [ 0 , 1 s ) , Equation (7) shows that
T n 0 + n x 1 n = 1 + : = x n 0 + 1 , x n 0 + 2 , , x n 0 + n ,
is a G b -Cauchy sequence.
Since
x n n = 1 + = x 1 , x 2 , , x n 0 x n 0 + 1 , x n 0 + 2 , , x n 0 + n , ,
we get that the sequence x n is G b -Cauchy. ☐
Remark 2.
The previous lemma generalizes ([57], Lemma 3.1.) and it can be compared with ([56], Lemma 2.2.). In addition, it is true if we replace Equation (5) by
G b x n + 1 , x n + 1 , x n + 2 λ G b x n , x n , x n + 1 , n N , λ [ 0 , 1 ) .
In ([58], Theorem 3.3.) and ([23], Theorem 12.2.), the analog of Banach contraction principle, which is,
d ( f x , f y ) λ d ( x , y ) , x , y X , 0 < λ < 1 s ,
is used to prove the following fixed point theorems in G b -metric spaces.
In the following result, we extend ([58], Theorem 3.3.) and ([23], Theorem 12.2.) by considering λ [ 0 , 1 ) instead of λ [ 0 , 1 s ) .
Theorem 3.
Let X , G b , s 1 be a G b -complete G b -metric space. Suppose the mapping T : X X satisfies
G b T x , T y , T z λ G b x , y , z ,
for all x , y , z X , where λ [ 0 , 1 ) is a given constant. Then, T has a unique fixed point s a y u in X and, for x X , the Picard sequence T n x n = 1 + converges to u .
Proof. 
The condition in Equation (9) immediately implies
G b T x , T x , T z λ G b x , x , z
and
G b T x , T z , T z λ G b x , z , z .
A summation of the two last inequalities yields that
d G b T x , T z λ d G b x , z ,
for all x , z X .
The result further follows according to ([23], Theorem 12.2.). ☐
Remark 3.
The relation in Equation (9) is in fact the Banach contraction principle in the context of G b -metric spaces.
(Ref. [11], Corollary 2.8.) treated a Boyd–Wong type result in complete b -rectangular metric spaces with coefficient s > 1 . The following condition was used:
s d ( f x , f y ) ϕ ( d ( x , y ) ) , x , y X ,
where ϕ : [ 0 , ) [ 0 , ) is upper semi-continuous from the right, ϕ ( 0 ) = 0 and ϕ ( t ) < t for each t > 0 . The related result in G b -metric spaces is
Theorem 4.
Let ( X , G b ) be a G b -complete G b -metric space with coefficient s > 1 and f : X X . If
s G b ( f x , f y , f z ) ϕ ( G b ( x , y , z ) )
for every x , y , z X , where ϕ is described above, then there exists a unique fixed point of f .
Proof. 
Since ϕ ( t ) < t and s > 1 , the condition in Equation (9) directly follows from Equation (10). ☐
The Meir–Keeler type theorem in complete b -rectangular metric spaces with coefficient s > 1 is studied in ([59], Theorem 2.1.). It is assumed that, for each ε > 0 , there exists δ > 0 such that
ε d ( x , y ) < ε + δ i m p l i e s s d ( f x , f y ) < ε .
The related Meir–Keeler result in G b -metric spaces is
Theorem 5.
Let ( X , G b ) be a G b -complete G b -metric space and f : X X . If
ε G b ( x , y , z ) < ε + δ i m p l i e s s G b ( f x , f y , f z ) < ε ,
for all x , y X and s > 1 , then there exists a unique fixed point of f .
Proof. 
By Equation (11), we have
s G b ( f x , f y , f z ) < ε G b ( x , y , z ) , x , y , z X ,
and the condition in Equation (9) is fulfilled. ☐
(Ref. [11], Corollary 2.2.) was a Geraghty type result in complete b-metric spaces with coefficient s > 1 . It was supposed that the function f : X X satisfies the following condition:
d ( f x , f y ) β ( d ( x , y ) ) d ( x , y ) ,
for all x , y X , where β : [ 0 , ) [ 0 , 1 s ) is such that
lim n β ( t n ) = 1 s implies lim n t n = 0 .
The related Geraghty type result in G b -metric spaces is
Theorem 6.
Let ( X , G b ) be a G b -complete G b -metric space with coefficient s > 1 and f : X X . Given β : [ 0 , ) [ 0 , 1 s ) satisfying Equation (12). If
G b ( f x , f y , f z ) β ( G b ( x , y , z ) ) G b ( x , y , z ) ,
for all x , y , z X , then there exists a unique fixed point of f .
Proof. 
Using β ( t ) < 1 s and Equation (13), we get the condition in Equation (9), that is,
G b ( f x , f y , f z ) 1 s G b ( x , y , z ) , x , y , z X .
The following theorem is a Hardy–Rogers type result in the context of G b -metric spaces. In a b-metric space, this type of contraction is studied in ([19], Theorem 2.7) as follows:
d ( f x , g y ) 1 s 4 ( a 1 d ( S x , T y ) + a 2 d ( f x , T y ) + a 3 d ( S x , g y ) + a 4 d ( f x , S x ) + a 5 d ( g y , T y ) ) ,
where a 1 + α a 2 + β a 3 + a 4 + a 5 < 1 and α + β = 2 .
The related Hardy–Rogers type fixed point result in G b -metric spaces is
Theorem 7.
Let ( X , G b ) be a G b -complete G b -metric space with coefficient s 1 and f : X X . Let x , y , z X be such that
G b ( f x , f y , f z ) a 1 G b ( x , y , z ) + a 2 G b ( x , f x , f x ) + a 3 G b ( y , f y , f y ) + a 4 G b ( z , f z , f z ) + a 5 G b ( x , f y , f y ) + a 6 G b ( y , f z , f z ) + a 7 G b ( z , f x , f x ) ,
where a 1 + a 2 + a 3 + a 4 + 2 s a 5 + a 6 + a 7 < 1 , s ( a 3 + a 4 + a 5 + a 6 ) < 1 . Then, there exists a unique fixed point of f .
Proof. 
For an arbitrary x 0 X , define a sequence { x n } in X by x n = f x n 1 = f n x 0 for all n 1 . Let x = x n 1 and y = z = x n . By Equation (14), for n N ,
G b ( x n , x n + 1 , x n + 1 ) a 1 G b ( x n 1 , x n , x n ) + a 2 G b ( x n 1 , x n , x n ) + a 3 G b ( x n , x n + 1 , x n + 1 )
+ a 4 G b ( x n , x n + 1 , x n + 1 ) + a 5 G b ( x n 1 , x n + 1 , x n + 1 ) + a 6 G b ( x n , x n + 1 , x n + 1 ) + a 7 G b ( x n , x n , x n )
( a 1 + a 2 ) G b ( x n 1 , x n , x n ) + ( a 3 + a 4 + a 6 ) G b ( x n , x n + 1 , x n + 1 )
+ s a 5 ( G b ( x n 1 , x n , x n ) + G b ( x n , x n + 1 , x n + 1 ) ) .
Now, we have
G b ( x n , x n + 1 , x n + 1 ) a 1 + a 2 + s a 5 1 a 3 a 4 s a 5 a 6 G b ( x n 1 , x n , x n ) , n N .
The condition in Equation (5) is satisfied if a 1 + a 2 + a 3 + a 4 + 2 s a 5 + a 6 < 1 .
Thus, { x n } is G b -convergent to some x X . Note that
G b ( x , f x , f x ) s ( G b ( x , x n , x n ) + G b ( x n , f x , f x ) ) , n N .
By Equation (14), for n N ,
G b ( x n , f x , f x ) a 1 G b ( x n 1 , x , x ) + a 2 G b ( x n 1 , x n , x n ) + a 3 G b ( x , f x , f x ) + a 4 G b ( x , f x , f x )
+ s a 5 ( G b ( x n 1 , x n , x n ) + G b ( x n , f x , f x ) ) + a 6 G b ( x , f x , f x ) + a 7 G b ( x , x n , x n ) .
Taking n in the last relations, we get
G b ( x n , f x , f x ) a 3 + a 4 + a 6 1 s a 5 G b ( x , f x , f x )
and
( 1 s a 3 + a 4 + a 6 1 s a 5 ) G b ( x , f x , f x ) 0 .
By condition s ( a 3 + a 4 + a 5 + a 6 ) < 1 , it follows that f x = x .
Let z X such that f z = z . By Equation (14),
G b ( f x , f z , f x ) a 1 G b ( x , z , x ) + a 2 G b ( x , f x , f x ) + a 3 G b ( z , f z , f z ) + a 4 G b ( x , f x , f x ) + a 5 G b ( x , f z , f z )
+ s a 5 ( G b ( z , x , x ) + G b ( x , x , z ) ) + a 6 G b ( z , f x , f x ) + a 7 G b ( x , f x , f x ) .
Now,
( 1 a 1 2 s a 5 a 6 ) G b ( x , x , z ) 0
and by assumption of theorem, it follows that G b ( x , x , z ) = 0 , i.e., x = z .  ☐
In ([60], Theorem 2.4), a Kannan type contraction in rectangular b-metric space with s > 1 , is studied. Here,
d ( f x , f y ) α ( d ( x , f x ) + d ( y , f y ) ) ,
for all x , y X and α [ 0 , 1 s + 1 ] . The same condition as α [ 0 , 1 2 ) is used in ([61], Theorem 2), where a fixed point result in complete b-metric spaces is presented.
The Chatterjea type contraction defined as
d ( T x , T y ) λ ( d ( x , T y ) + d ( y , T x ) ) , x , y X , s λ [ 0 , 1 2 ] ,
is treated in ([61], Theorem 3) and a fixed point result in complete b-metric spaces is presented.
A fixed point theorem of Reich type contraction:
d ( f x , f y ) a d ( x , f x ) + b d ( y , d y ) + c d ( x , y ) , x , y X , a + s ( b + c ) < 1 ,
in complete b-metric spaces (with s > 1 ) was studied in ([62], Theorem 3.2).
The related Kannnan, Chatterjea and Reich type fixed point result in G b -metric spaces are just corollaries of Theorem 7.
Corollary 1.
Let ( X , G b , s 1 ) be a G b -complete G b -metric space and f : X X . Suppose there exists 0 λ < 1 max { 2 s , 3 } such that
G b ( f x , f y , f z ) λ ( G b ( x , f x , f x ) + G b ( y , f y , f y ) + G b ( z , f z , f z ) ) ,
for all x , y , z X . Then, there exists a unique fixed point of f .
Proof. 
The assertion follows if we take a 1 = a 5 = a 6 = a 7 = 0 and a 2 = a 3 = a 4 = λ in Theorem 7. ☐
Corollary 2.
Let ( X , G b , s 1 ) be a G b -complete G b -metric space and f : X X . Suppose there exists 0 λ < 1 2 s + 1 such that
G b ( f x , f y , f z ) λ ( G b ( x , f y , f y ) + G b ( y , f z , f z ) + G b ( z , f x , f x ) ) ,
for all x , y , z X . Then, there exists a unique fixed point of f .  ☐
Proof. 
If we take a 5 = a 6 = a 7 = λ and a 1 = a 2 = a 3 = a 4 = 0 in Theorem 7, we obtain the condition in Equation (17) for 0 λ < 1 2 s + 2 . Moreover, the estimate in Equation (15) holds if 0 λ < 1 2 s + 1 .  ☐
Corollary 3.
Let ( X , G b ) be a G b -complete G b -metric space with coefficient s 1 and f : X X . Let x , y , z X be such that
G b ( f x , f y , f z ) a 1 G b ( x , y , z ) + a 2 G b ( x , f x , f x ) + a 3 G b ( y , f y , f y ) + a 4 G b ( z , f z , f z ) ,
where a 1 + a 2 + a 3 + a 4 < 1 and s ( a 2 + a 3 ) < 1 . Then, there exists a unique fixed point of f .
Proof. 
Take a 1 = a 2 = a 3 = a 4 = λ and a 5 = a 6 = a 7 = 0 in Theorem 7. ☐
The Ćirić type contraction (quasi-contraction) in b-metric spaces given as
d ( T x , T y ) q max { d ( x , y ) , d ( x , T x ) , d ( y , T y ) , d ( x , T y ) , d ( y , T x ) } , x , y X ,
where q 1 s 2 + s , was treated in ([10], Corollary 2.4). The related Ćirić type fixed point result in G b -metric spaces is
Theorem 8.
Let ( X , G b ) be a G b -complete G b -metric space with coefficient s 1 and f : X X . If there exists 0 λ < 1 2 s such that
G b ( f x , f y , f z ) λ max { G b ( x , y , z ) , G b ( x , f x , f x ) , G b ( y , f y , f y ) ,
G b ( z , f z , f z ) , G b ( x , f y , f y ) , G b ( y , f z , f z ) , G b ( z , f x , f x ) } ,
for all x , y , z X . Then, there exists a unique fixed point of f .
Proof. 
For x 0 X , take x n = f x n 1 = f n x 0 . Putting x = x n 1 and y = z = x n in Equation (19), we have
G b ( x n , x n + 1 , x n + 1 ) λ max { G b ( x n 1 , x n , x n ) , G b ( x n 1 , x n , x n ) , G b ( x n , x n + 1 , x n + 1 ) ,
G b ( x n , x n + 1 , x n + 1 ) , G b ( x n 1 , x n + 1 , x n + 1 ) , G b ( x n , x n , x n ) }
λ max { G b ( x n 1 , x n , x n ) , G b ( x n , x n + 1 , x n + 1 ) , s ( G b ( x n 1 , x n , x n ) + G b ( x n , x n + 1 , x n + 1 ) ) }
= s ( G b ( x n 1 , x n , x n ) + G b ( x n , x n + 1 , x n + 1 ) ) ,
that is,
G b ( x n , x n + 1 , x n + 1 ) λ s 1 λ s G b ( x n 1 , x n , x n ) , n N .
Thus, the condition in Equation (5) holds if 0 λ < 1 2 s and { x n } is G b -Cauchy sequence (in the G b -complete G b -metric space ( X , G b ) ).
Let x X be such that { x n } is G b -convergent to x . By Equation (19), it follows that
G b ( x n , f x , f x ) λ max { G b ( x n 1 , x , x ) , G b ( x n 1 , x n , x n ) , G b ( x , f x , f x ) , G b ( x , f x , f x ) ,
s ( G b ( x n 1 , x n , x n ) + G b ( x n , f x , f x ) ) , G b ( x , f x , f x ) , G b ( x , x n , x n ) }
= λ max { G b ( x , f x , f x ) , s G b ( x n , f x , f x ) } .
Letting n implies that G b ( x , f x , f x ) λ s G b ( x , f x , f x ) . Since s λ < 1 , the above inequality holds unless G b ( x , f x , f x ) = 0 , so x = f x .
For the uniqueness of the fixed point of f, let z X be such that f z = z . Using Equation (19), we have
G b ( f x , f x , f z ) λ max { G b ( x , x , z ) , G b ( x , f x , f x ) , G b ( x , f x , f x ) , G b ( z , f z , f z ) ,
G b ( x , f x , f x ) , 2 s G b ( x , x , z ) , G b ( z , f x , f x ) } .
Then,
( 1 2 λ s ) G b ( x , x , z ) 0 .
Since λ < 1 2 s , again the above holds unless G b ( x , x , z ) = 0 , thus we have that x = z .  ☐
In addition, we observe a Bianchini [63] type contraction:
d ( f x , f y ) λ max { d ( x , f x ) , d ( y , f y ) } , 0 λ < 1 .
The related Bianchini type fixed point result in G b -metric spaces is a consequence of Theorem 8.
Corollary 4.
Let ( X , G b ) be a G b -complete G b -metric space with coefficient s 1 , f : X X . If there exists 0 λ < 1 s such that
G b ( f x , f y , f z ) λ max { G b ( x , f x , f x ) , G b ( y , f y , f y ) , G b ( z , f z , f z ) } ,
for all x , y , z X . Then, there exists a unique fixed point of f .
Proof. 
For x 0 X , take x n = f x n 1 = f n x 0 . Note that the condition in Equation (20) implies the condition in Equation (19). By Theorem 8, there is a unique fixed point of f in the case that 0 λ < 1 2 s . In the sequel, we will show that this last interval for λ could be expanded to [ 0 , 1 s ) .
Let x = x n 1 and y = z = x n . By Equation (20), we have
G b ( x n , x n + 1 , x n + 1 ) λ max { G b ( x n 1 , x n , x n ) , G b ( x n , x n + 1 , x n + 1 ) , G b ( x n , x n + 1 , x n + 1 ) } ,
for all n N . If for some n, G b ( x n 1 , x n , x n ) G b ( x n , x n + 1 , x n + 1 ) , then by Equation (21), it follows that
( 1 λ ) G b ( x n , x n + 1 , x n + 1 ) 0 ,
i.e., G b ( x n , x n + 1 , x n + 1 ) = 0 . Thus, G b ( x n 1 , x n , x n ) > G b ( x n , x n + 1 , x n + 1 ) , n N . The relation in Equation (21) corresponds to the condition (5).
Therefore, { x n } is G b -convergent to some x X . By the condition in Equation (20), for n N , it follows that
G b ( x , f x , f x ) s ( G b ( x , x n , x n ) + G b ( x n , f x , f x ) )
s G b ( x , x n , x n ) + s λ max { G b ( x n 1 , x n , x n ) , G b ( x , f x , f x ) , G b ( x , f x , f x ) } .
Since G b ( x , x n , x n ) 0 and G b ( x n 1 , x n , x n ) 0 as n , we obtain that
( 1 s λ ) G b ( x , f x , f x ) 0 .
This holds unless G b ( x , f x , f x ) = 0 , thus f x = x .
Let z X be another fixed point of f. Using Equation (20), we get
G b ( f x , f x , f z ) λ max { G b ( x , f x , f x ) , G b ( x , f x , f x ) , G b ( z , f z , f z ) } = 0
and thus x = z .  ☐
Further, some improvements of Theorem 1 are given, where instead of the condition in Equation (1), it is supposed that
2 s a G b f x , g y , h z M s x , y , z , s > 1 , a > log s 2 s 2 + s 2 ,
for all x , y , z X . Moreover, the assumption that G is a symmetric G b -metric is omitted.
Many parts of the proof of Theorem 1 are the same as in [8], thus only its modification is presented. In the first part of the proof, it is supposed that G 3 n G 3 n + 1 . By Equation (22), we have that
2 s a G 3 n + 1 = 2 s a G ( y 3 n + 1 , y 3 n + 2 , y 3 n + 3 ) M s ( x 3 n + 3 , x 3 n + 1 , x 3 n + 2 ) = G 3 n + 1
and so G 3 n + 1 = 0 , because of a , s > 1 . Using the same arguments, we get that G n = 0 , n N or { G n } is decreasing. Hence, lim n G n = 0 .
Now, we present a new proof that { y n } is a G b -Cauchy sequence. Since
2 s a G ( y 3 n + 1 , y 3 n + 1 , y 3 n + 2 ) 2 s a G ( y 3 n + 1 , y 3 n + 2 , y 3 n + 3 )
= 2 s a G 3 n + 1 G 3 n = G ( y 3 n , y 3 n + 1 , y 3 n + 2 )
s ( G ( y 3 n , y 3 n + 1 , y 3 n + 1 ) + G ( y 3 n + 1 , y 3 n + 1 , y 3 n + 2 ) )
s ( 2 s G ( y 3 n , y 3 n , y 3 n + 1 ) + G ( y 3 n + 1 , y 3 n + 1 , y 3 n + 2 ) ) , n N ,
we get
G ( y 3 n + 1 , y 3 n + 1 , y 3 n + 2 ) 2 s 2 2 s a s G ( y 3 n , y 3 n , y 3 n + 1 ) , n N .
If we take a > log s 2 s 2 + s 2 , the condition in Equation (8) is fulfilled and by Lemma 3, and it follows that { y n } is a G b -Cauchy sequence.
By the arguments presented in modified proof of Theorem 1, we can improve Condition (2.1) in ([52], Theorem 2.1) as follows.
Theorem 9.
Let ( X , G ) be a complete G b -metric space and let A , B , C : X X satisfy the following condition:
s a G ( A x , B y , C z ) M ( x , y , z ) , x , y , z X ,
where s > 1 , a > l o g s ( 2 s 2 + s ) and
M ( x , y , z ) = max { G ( x , y , z ) , G ( x , A x , B y ) , G ( y , B y , C z ) , G ( z , C z , A x ) } .

3. Coupled and Tripled Coincidence Point Results

Definition 12 
([64]). Let X be a non-empty set, F : X 2 X and g : X X . An element x , y X 2 is called a coupled coincidence point of F and g if
F x , y = g x a n d F y , x = g y ,
while g x , g y X 2 is called a coupled point of coincidence of mappings F and g . Moreover, x , y is called a coupled common fixed point of F and g if
F x , y = g x = x a n d F y , x = g y = y .
Remark 4.
Otherwise, x , y is a coupled coincidence point of F and g if and only if x , y is a coincidence point of the mappings T F : X 2 X 2 and T g : X 2 X 2 , which are defined by
T F x , y = F x , y , F y , x , T g x , y = g x , g y .
The following new result is useful in the context of G b -metric spaces and its proof is immediate.
Lemma 4.
Let X , G b be a symmetric G b -metric space. Define G b + : X 2 3 [ 0 , + ) and G b max : X 2 3 [ 0 , + ) by
G b + x , y , u , v , a , b = G b x , u , a + G b y , v , b
and
G b max x , y , u , v , a , b = max G b x , u , a , G b y , v , b .
Then, X 2 , G b + and X 2 , G b max are symmetric G b -metric spaces.
The following example shows that the previous lemma is not true if X , G b is not a symmetric G b -metric space.
Example 5.
Let X = a , b with a b . Define
G a , a , a = G b , b , b = 0 G a , a , b = 1 , G a , b , b = 2 ,
and extend G to X 3 by using the symmetry in the variables. X , G is an asymmetric G-metric space (indeed, G a , a , b G a , b , b ).
Now, using ([8], Example 1.2) with p = 3 and s = 2 3 1 = 4 , G 4 : X 3 [ 0 , ) is given as
G 4 a , a , a = G 4 b , b , b = 0 G 4 a , a , b = 1 3 = 1 , G 4 a , b , b = 2 3 = 8 .
Hence, X , G 4 is a G 4 -metric space (it is asymmetric).
It is easy to see that X 2 , G 4 + , i.e., X 2 , G 4 max is not a G b -metric space.
Now, we are ready to state and prove our first result.
Theorem 10.
Let X , G b be a complete G b -metric space, F : X 2 X and g : X X . Assume that there exists k 0 , 1 such that for all x , y , u , v , a , b X ,
G b T x , y , T u , v , T a , b k 2 G b g x , g u , g a + G b g y , g v , g b .
Then, F and g have a unique coupled coincidence point.
Proof. 
Putting u = a and v = b into Equation (24), we have
G b T x , y , T a , b , T a , b k 2 G b g x , g a , g a + G b g y , g b , g b .
Putting again u = x and v = y into Equation (24), we have
G b T x , y , T x , y , T a , b k 2 G b g x , g x , g a + G b g y , g y , g b .
Adding Equation (25) to Equation (26) and using Definition 1.17, we get
d G b T x , y , T a , b k 2 d G b g x , g a + d G b g y , g b .
Clearly, Equation (27) implies that
d G b T x , y , T a , b + d G b T y , x , T b , a k d G b g x , g a + d G b g y , g b ,
or equivalently
d G b + T F U , T F A k d G b + T g U , T g A
for all U = x , y and A = a , b .
Since Equation (28) corresponds to the Banach contraction condition in the context of b-metric spaces (see, for example, [23]), we obtain that the mappings T F and T g have a unique point of coincidence t , w X 2 , that is, T F t , w = T g t , w . We deduce that F t , w , F w , t = g t , g w , i.e., F t , w = g t and F w , t = g w .  ☐
At the end, we give a remark related to Theorem 2.
It is easy to see that contractive condition in Equation (2) can be relaxed, and Theorem 2 should be generalized as follows:
Theorem 11. 
Let ( X , G b ) be a complete G b -metric space with parameter s 1 and let S , T , R : X 2 X satisfy
G ( S ( x , y ) , T ( u , v ) , R ( a , b ) ) b 1 G ( x , u , a ) + G ( y , v , b ) 2 + b 2 G ( x , x , S ( x , y ) ) + b 3 G ( u , u , T ( u , v ) ) + b 4 G ( a , a , R ( a , b ) ) ,
for all x , y , u , v , a , b X and b 1 + b 2 + b 3 + b 4 < 1 4 s 2 . Then, S , T and R have a unique common coupled fixed point in X 2 .
By the usual method, for n N , we get
G b + ( ( x n + 1 , y n + 1 ) , ( x n + 2 , y n + 2 ) , ( x n + 3 , y n + 3 ) ) h G b + ( ( x n , y n ) , ( x n + 1 , y n + 1 ) , ( x n + 2 , y n + 2 ) ) ,
where h = b 1 + b 2 + b 3 + b 4 < 1 4 s 2 . The next step is to show that { x n } n N is a Cauchy sequence. Thus,
G b + ( ( x n + 1 , y n + 1 ) , ( x n + 2 , y n + 2 ) , ( x n + 2 , y n + 2 ) 2 h s 2 1 2 h s 2 G b + ( ( x n , y n ) , ( x n + 1 , y n + 1 ) , ( x n + 1 , y n + 1 ) ) .
Since h < 1 4 s 2 , it follows that 2 h s 2 1 2 h s 2 < 1 and using Lemma 3, we have that { x n } is a Cauchy sequence. Now, we show that ( x , y ) = ( S ( x , y ) , S ( y , x ) ) . Suppose the contrary. For n N , we have
G b + ( ( x , y ) , ( S ( x , y ) , S ( y , x ) ) , ( S ( x , y ) , S ( y , x ) ) ) s ( G b + ( ( x , y ) , ( x n + 1 , y n + 1 ) , ( x n + 1 , y n + 1 ) ) + G b + ( ( x n + 1 , y n + 1 ) , ( S ( x , y ) , S ( y , x ) ) , ( S ( x , y ) , S ( y , x ) ) ) ) s ( G b + ( ( x , y ) , ( x n , y n ) , ( x n , y n ) ) + b 1 G b + ( ( x n , y n ) , ( x , y ) , ( x , y ) ) + b 2 G b + ( ( x n , y n ) , ( x n , y n ) , ( x n + 1 , y n + 1 ) ) + b 3 G b + ( ( x , y ) , ( x , y ) , ( S ( x , y ) , S ( y , x ) ) ) + b 3 G b + ( ( x , y ) , ( x , y ) , ( S ( x , y ) , S ( y , x ) ) ) .
Letting n , we have
0 < G b + ( ( x , y ) , ( S ( x , y ) , S ( y , x ) ) , ( S ( x , y ) , S ( y , x ) ) ) ( b 3 + b 4 ) G b + ( ( x , y ) , ( x , y ) , ( S ( x , y ) , S ( y , x ) ) ) 2 s ( b 3 + b 4 ) G b + ( ( x , y ) , ( S ( x , y ) , S ( y , x ) ) , ( S ( x , y ) , S ( y , x ) ) ) < G b + ( ( x , y ) , ( S ( x , y ) , S ( y , x ) ) , ( S ( x , y ) , S ( y , x ) ) ) .
Since b 3 + b 4 < 1 2 s , we get a contradiction.
Definition 13 
([65,66]). Let X be a non-empty set, F : X 3 X and g : X X be two mappings. An element x , y , z X 3 is called a tripled coincidence point of F and g if
F x , y , z = g x , F y , x , y = g y a n d F z , y , x = g z ,
while g x , g y , g y X 3 is called a tripled point of coincidence of mappings F and g . Moreover, x , y , z is called a tripled fixed point of F and g if
F x , y , z = g x = x , F y , x , y = g y = y a n d F z , y , x = g z = z .
Remark 5. 
It is clear that x , y , z is a tripled coincidence point of F and g if and only if x , y , z is a coincidence point for the mappings T F : X 3 X 3 and T g : X 3 X 3 , which are defined by
T F x , y , z = F x , y , z , F y , x , y , F z , y , x a n d T g x , y , z = g x , g y , g z .
Similar to Theorem 10, we state the following triple fixed point theorem relating to the Banach contraction mapping theorem in G b -metric spaces. We omit its proof.
Theorem 12. 
Let ( X , G b ) be a complete G b -metric space, T : X 3 X and g : X X . Assume that there exists k ( 0 , 1 ) such that for all x , y , z , u , v , w , a , b , c X , we have
G b ( T ( x , y , z ) , T ( u , v , w ) , T ( a , b , c ) ) k 3 ( G b ( g x , g y , g z ) + G b ( g u , g v , g w ) + G b ( g a , g b , g c ) ) ,
Then, T and g have a unique tripled coincidence point.

4. Conclusions and Perspectives

We considered various fixed point results in the context of G b -metric spaces. Taking inspiration from [67,68], it would be interesting to investigate convex contraction mapping theorems in the class of G b -metric spaces.

Author Contributions

All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

Funding

This research received no external funding.

Acknowledgments

We wish to thank the projects MNTRRS-174009, III44006 and PSNTR project no. 142-451-2489. That enabled this research. The fifth and sixth authors would like to acknowledge the grant: UKM Grant DIP-2017-011 and FRGS/1/2017/STG06/UKM/01/1. for financial support. The authors also thank the reviewers for careful reading of the paper and for helpful comments, allowing us to improve it.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux equations integrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
  2. Matthews, S.G. Metric Domains for Completeness Trechnical Report 76. Ph.D. Thesis, Department of Computer Science, University of Warwick, Coventry, UK, 1986. [Google Scholar]
  3. Bakhtin, I.A. The contraction mapping principle in almost metric space. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
  4. Czerwik, C. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
  5. Shukla, S. Partial b-metric spaces and fixed point theorems. Mediterr. J. Math. 2014, 11, 703–711. [Google Scholar] [CrossRef]
  6. Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
  7. Zand, M.R.A.; Nezhad, A.D. A generalization of partial metric spaces. J. Contemp. Appl. Math. 2011, 1, 86–93. [Google Scholar]
  8. Aghajani, A.; Abbas, M.; Roshan, J.R. Common fixed point of generallized weak contractive mappings in partially ordered Gb-metric spaces. Filomat 2014, 28, 1087–1101. [Google Scholar] [CrossRef]
  9. Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double Controlled Metric Type Spaces and Some Fixed Point Results. Mathematics 2018, 6, 320. [Google Scholar] [CrossRef]
  10. Aydi, H.; Bota, M.F.; Karapinar, E.; Mitrović, S. A fixed point theorem for set-valued quasicontractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef]
  11. Ding, H.S.; Imdad, M.; Radenović, S.; Vujaković, J. On some fixed point results in b-metric, rectangular and b-rectangular metric spaces. Arab. J. Math. Sci. 2016, 22, 151–164. [Google Scholar]
  12. Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Alsamir, H. Common fixed points for pairs of triangular (α)-admissible mappings. J. Nonlinear Sci. Appl. 2017, 10, 6192–6204. [Google Scholar] [CrossRef]
  13. Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Abodayeh, K.; Alsamir, H. Fixed point for mappings under contractive condition based on simulation functions and cyclic (α,β)-admissibility. J. Math. Anal. 2018, 9, 38–51. [Google Scholar]
  14. Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef]
  15. Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W. Fixed Point Results for Geraghty Type Generalized F-contraction for Weak alpha-admissible Mapping in Metric-like Spaces. Eur. J. Pure Appl. Math. 2018, 11, 702–716. [Google Scholar] [CrossRef]
  16. Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W. Common Fixed Point Theorems for Generalized Geraghty (α,ψ,ϕ)-Quasi Contraction Type Mapping in Partially Ordered Metric-like Spaces. Axioms 2018, 7, 74. [Google Scholar] [CrossRef]
  17. Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W. Fixed Point Theorems for (α,k,θ)-Contractive Multi-Valued Mapping in b-Metric Space and Applications. Int. J. Math. Comput. Sci. 2018, 14, 263–283. [Google Scholar]
  18. Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Aydi, H.; Alsamir, H. Fixed Point Results for Multi-Valued Contractions in b-Metric Spaces and an Application. Mathematics 2019, 7, 132. [Google Scholar] [CrossRef]
  19. Roshan, J.R.; Shobkolaei, N.; Sedghi, S.; Abbas, M. Common fixed point of four maps in b-metric spaces. Hacet. J. Math. Stat. 2014, 42, 613–624. [Google Scholar]
  20. Aydi, H.; Barakat, M.; Felhi, A.; Işik, H. On ϕ-contraction type couplings in partial metric spaces. J. Math. Anal. 2017, 8, 78–89. [Google Scholar]
  21. Ćirić, L.; Samet, B.; Aydi, H.; Vetro, C. Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 2011, 218, 2398–2406. [Google Scholar]
  22. Karapınar, E.; Agarwal, R.P.; Aydi, H. Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces. Mathematics 2018, 6, 256. [Google Scholar] [CrossRef]
  23. Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer Internatyional Publishing: Cham, Switzerland, 2014. [Google Scholar]
  24. Aydi, H.; Banković, R.; Mitrović, I.; Nazam, M. Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces. Discret. Dyn. Nat. Soc. 2018, 2018, 4745764. [Google Scholar] [CrossRef]
  25. Karapınar, E.; Czerwik, S.; Aydi, H. (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 2018, 3264620. [Google Scholar] [CrossRef]
  26. Mustafa, Z.; Obiedat, H.; Awawden, F. Some common fixed point theorems for mapping on copmlete G-metric spaces. Fixed Point Theory Appl. 2008, 2018, 189870. [Google Scholar] [CrossRef]
  27. Abbas, M.; Rhoades, B.E. Common fixed point results for non-commuting mappings without continuity in generalized metric spaces. Appl. Math. Comput. 2009, 215, 262–269. [Google Scholar]
  28. Abbas, M.; Nazir, T.; Vetro, P. Common fixed point results for three maps in G-metric spaces. Filomat 2011, 25, 1–17. [Google Scholar] [CrossRef]
  29. Abbas, M.; Nazir, T.; Radenović, S. Some periodic point results in generalized metric spaces. Appl. Math. Comput. 2010, 217, 4094–4099. [Google Scholar] [CrossRef]
  30. Abbas, M.; Hussain, A.; Popović, B.; Radenović, S. Istratescu-Suzuki-Ćirić-type fixed points results in the framework of G-metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 6077–6095. [Google Scholar] [CrossRef]
  31. Abbas, M.; Nazir, T.; Radenović, S. Common fixed point of generalized weakly contractive maps in partially ordered G-metric spaces. Appl. Math. Comput. 2012, 218, 9383–9395. [Google Scholar] [CrossRef]
  32. Abbas, M.; Nazir, T.; Radenović, S. Common fixed point of power contraction mappings satisfying (E.A) property in generalized metric spaces. Appl. Math. Comput. 2013, 219, 7663–7670. [Google Scholar] [CrossRef]
  33. Agarwal, R.P.; Kadelburg, Z.; Radenović, S. On coupled fixed point results in asymmetric G-metric spaces. J. Inequal. Appl. 2013, 2013, 528. [Google Scholar] [CrossRef]
  34. An, T.V.; Dung, N.V.; Kadelburg, Z.; Radenović, S. Various generalizations of metric spaces and fixed point theorems. RACSAM 2015, 109, 175. [Google Scholar] [CrossRef]
  35. Ansari, A.H.; Vetro, P.; Radenović, S. Existence of fixed point for GP(Λ,Θ)-contractive mapping in GP-metric spaces. Filomat 2017, 31, 2211–2218. [Google Scholar] [CrossRef]
  36. Aydi, H.; Damjanović, B.; Samet, B.; Shatanawi, W. Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces. Math. Comput. Model. 2011, 54, 2443–2450. [Google Scholar] [CrossRef]
  37. Gajić, L.; Kadelburg, Z.; Radenović, S. Gp-metric spaces-symmetric and asymmetric. Sci. Publ. State Univ. Novi Pazar Ser. A Appl. Math. Inform. Mech. 2017, 9, 37–46. [Google Scholar] [CrossRef]
  38. Gajić, L.; Stojaković, M. On fixed point results for Matkowski type mappings in G-metric spaces. Filomat 2015, 29, 2301–2309. [Google Scholar] [CrossRef]
  39. Jaradat, M.M.M.; Mustafa, Z.; Khan, S.U.; Arshad, M.; Ahmad, J. Some fixed point results on G-metric and Gb-metric spaces. Demonstr. Math. 2017, 207, 190–207. [Google Scholar] [CrossRef]
  40. Jleli, M.; Samet, B. Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, 2012, 210. [Google Scholar] [CrossRef]
  41. Kadelburg, Z.; Nashine, H.K.; Radenović, S. Common coupled fixed point results in partially ordered G-metric spaces. Bull. Math. Anal. Appl. 2012, 4, 51–63. [Google Scholar]
  42. Khomdram, B.; Rohen, Y.; Singh, T.C. Couplede fixed point theorems in Gb-metric space satisfying some rational contractive conditions. SpringerPlus 2016, 5, 1261. [Google Scholar] [CrossRef]
  43. Kumar, J.; Vashistha, S. Coupled fixed point theorems in complex valued Gb-metric spaces. Adv. Fixed Point Theory 2016, 6, 341–351. [Google Scholar]
  44. Long, W.; Abbas, M.; Nazir, T.; Radenović, S. Common fixed point for two pairs of mappings satisfying (E.A) property in generalized metric spaces. Abstr. Appl. Anal. 2012, 2012, 394830. [Google Scholar] [CrossRef]
  45. Mustafa, Z.; Aydi, H.; Karapinar, E. On common fixed points in G-metric spaces using (E.A) property. Comput. Math. Appl. 2012, 6, 1944–1956. [Google Scholar] [CrossRef]
  46. Mustafa, Z.; Roshan, J.R.; Parvaneh, V. Coupled coincidence point results for ψ,φ-weakly contractive mappings in partially ordered Gb-metric spaces. Fixed Point Theory Appl. 2013, 2013, 206. [Google Scholar] [CrossRef]
  47. Mustafa, Z.; Roshan, J.R.; Parvaneh, V. Existence of tripled coincidence point in ordered Gb-metric spaces and applications to a system of integral equations. J. Inequal. Appl. 2013, 2013, 453. [Google Scholar] [CrossRef]
  48. Mustafa, Z.; Jaradat, M.M.M.; Aydi, H.; Alrhayyel, A. Some common fixed points of six mappings on Gb-metric spaces using (E.A) property. Eur. J. Pure Appl. Math. 2018, 11, 90–109. [Google Scholar] [CrossRef]
  49. Nashine, H.K.; Kadelburg, Z.; Radenović, S. Coincidence and fixed point results under generalized weakly contractive condition in partially ordered G-metric spaces. Filomat 2013, 27, 1333–1343. [Google Scholar] [CrossRef]
  50. Radenović, S. Remarks on some recent coupled coincidence point results in symmetric G-metric spaces. J. Oper. 2013, 2013, 290525. [Google Scholar] [CrossRef]
  51. Radenović, S.; Pantelić, S.; Salimi, P.; Vujaković, J. A note on some tripled coincidence point results in G-metric spaces. Int. J. Math. Sci. Eng. Appl. (IJMSEA) 2012, 6, 23–38. [Google Scholar]
  52. Roshan, J.R.; Shobkolaei, N.; Sedghi, S.; Parvaneh, V.; Radenović, S. Common fixed point theorems for three maps in discontinuous Gb-metric spaces. Acta Math. Sci. Engl. Ser. 2014, 34, 1643–1654. [Google Scholar] [CrossRef]
  53. Sedghi, S.; Shobkolaei, N.; Roshan, J.R.; Shatanawi, W. Coupled fixed point theorems in Gb-metric spaces. Matematički Vesnik 2014, 66, 190–201. [Google Scholar]
  54. Shatanawi, W.; Chauhan, S.; Postolache, M.; Abbas, M.; Radenović, S. Common fixed points for contractive mappings of integral type in G-metric spaces. J. Adv. Math. Stud. 2013, 6, 53–72. [Google Scholar]
  55. Tahat, N.; Aydi, H.; Karapinar, E.; Shatanawi, W. Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces. Fixed Point Theory Appl. 2012, 2012, 48. [Google Scholar] [CrossRef] [Green Version]
  56. Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
  57. Ughade, M.; Daheriya, R.D. Fixed point and common fixed point results for contraction mappings in Gb-cone metric spaces. Gazi Univ. J. Sci. (GUJSci) 2015, 28, 659–673. [Google Scholar]
  58. Jovanović, M.; Kadelburg, Z.; Radenović, S. Common Fixed Point Results in Metric-Type Spaces. Fixed Point Theory Appl. 2010, 2010, 978121. [Google Scholar] [CrossRef]
  59. Zheng, D.; Wang, P.; Citaković, N. Meir-Keeler theorem in b-rectangular metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 1786–1790. [Google Scholar] [CrossRef]
  60. George, R.; Radenović, S.; Reshma, K.P.; Shukla, S. Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]
  61. Kir, M.; Kiziltunc, H. On Some Well Known Fixed Point Theorems in b-Metric Spaces. Turk. J. Anal. Number Theory 2013, 1, 13–16. [Google Scholar] [CrossRef]
  62. Mishra, P.K.; Sachdeva, S.; Banerjee, S.K. Some fixed point theorems in b-metric space. Turk. J. Anal. Number Theory 2014, 2, 19–122. [Google Scholar] [CrossRef]
  63. Bianchini, R.M.T. Su un problema di S. Reich riguardante la teoria dei punti fissi. Boll. UMI 1972, 5, 103–106. [Google Scholar]
  64. Berinde, V. Generalized coupled fixzed point theorems for mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74, 7347–7355. [Google Scholar] [CrossRef]
  65. Aydi, H.; Abbas, M.; Sintunavarat, W.; Kumam, P. Tripled fixed point of W-compatible mappings in abstract metric spaces. Fixed Point Theory Appl. 2012, 2012, 134. [Google Scholar] [CrossRef] [Green Version]
  66. Aydi, H.; Karapinar, E.; Radenović, S. Tripled coincidence fixed point results for Boyd-Wong and Matkowski type contractions, Revista de la Real Academia de Ciencias Exactas. Fisicas Nat. Ser. A Math. 2013, 107, 339–353. [Google Scholar]
  67. Ampadu, C.B. Some fixed point theory results for convex contraction mapping of order 2. JP J. Fixed Point Theory Appl. 2017, 12, 81–130. [Google Scholar] [CrossRef]
  68. Istratescu, V.I. Some fixed point theorems for convex contraction mappings and convex non-expansive mapping (I). Lib. Math. 1981, 1, 151–163. [Google Scholar]

Share and Cite

MDPI and ACS Style

Aydi, H.; Rakić, D.; Aghajani, A.; Došenović, T.; Noorani, M.S.M.; Qawaqneh, H. On Fixed Point Results in Gb-Metric Spaces. Mathematics 2019, 7, 617. https://doi.org/10.3390/math7070617

AMA Style

Aydi H, Rakić D, Aghajani A, Došenović T, Noorani MSM, Qawaqneh H. On Fixed Point Results in Gb-Metric Spaces. Mathematics. 2019; 7(7):617. https://doi.org/10.3390/math7070617

Chicago/Turabian Style

Aydi, Hassen, Dušan Rakić, Asadolah Aghajani, Tatjana Došenović, Mohd Salmi Md Noorani, and Haitham Qawaqneh. 2019. "On Fixed Point Results in Gb-Metric Spaces" Mathematics 7, no. 7: 617. https://doi.org/10.3390/math7070617

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop