On Fixed Point Results in Gb-Metric Spaces
Abstract
:1. Introduction and Preliminaries
- (p1)
- if and only if
- (p2)
- for all
- (p3)
- for all and
- (p4)
- for all
- (b1)
- if and only if
- (b2)
- and
- (b3)
- (pb1)
- if and only if
- (pb2)
- (pb3)
- and
- (pb4)
- (G1)
- for all if and only if
- (G2)
- for all with
- (G3)
- for all with
- (G4)
- and
- (G5)
- for all (rectangle inequality).
- (G1)
- for if then
- (G2)
- for all
- (G3)
- ; and
- (G4)
- for all (rectangle inequality).
- (G1)
- if
- (G2)
- for all with
- (G3)
- for all with
- (G4)
- and
- (G5)
- for all (triangle inequality).
- (1)
- if , then ;
- (2)
- ;
- (3)
- ; and
- (4)
- (1)
- By (G3) and (G2), we get a contradiction. Indeed,
- (2)
- Properties (G4) and (G5) imply
- (3)
- By (G4) and (G5), it follows that
- (4)
- By (G4), (G5) and (G3), we get that
- (1)
- -Cauchy sequence if, for each there exists a positive integer such that, for all
- (2)
- -convergent to a point if, for each there exists a positive integer such that, for all
- (1)
- the sequence is G-Cauchy; and
- (2)
- for any there exists such that for all
- (i)
- is -convergent to
- (ii)
- as and
- (iii)
- as
- (a)
- one of or is a closed subset of and
- (b)
- the pairs and are weakly compatible. Then, and R have a common fixed point in Moreover, the set of common fixed points of and R is well ordered if and only if and R have one and only one common fixed point.
2. Main Results
3. Coupled and Tripled Coincidence Point Results
4. Conclusions and Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux equations integrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Matthews, S.G. Metric Domains for Completeness Trechnical Report 76. Ph.D. Thesis, Department of Computer Science, University of Warwick, Coventry, UK, 1986. [Google Scholar]
- Bakhtin, I.A. The contraction mapping principle in almost metric space. Funct. Anal. 1989, 30, 26–37. [Google Scholar]
- Czerwik, C. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Shukla, S. Partial b-metric spaces and fixed point theorems. Mediterr. J. Math. 2014, 11, 703–711. [Google Scholar] [CrossRef]
- Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex Anal. 2006, 7, 289–297. [Google Scholar]
- Zand, M.R.A.; Nezhad, A.D. A generalization of partial metric spaces. J. Contemp. Appl. Math. 2011, 1, 86–93. [Google Scholar]
- Aghajani, A.; Abbas, M.; Roshan, J.R. Common fixed point of generallized weak contractive mappings in partially ordered Gb-metric spaces. Filomat 2014, 28, 1087–1101. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Mlaiki, N.; Aydi, H.; Souayah, N. Double Controlled Metric Type Spaces and Some Fixed Point Results. Mathematics 2018, 6, 320. [Google Scholar] [CrossRef]
- Aydi, H.; Bota, M.F.; Karapinar, E.; Mitrović, S. A fixed point theorem for set-valued quasicontractions in b-metric spaces. Fixed Point Theory Appl. 2012, 2012, 88. [Google Scholar] [CrossRef]
- Ding, H.S.; Imdad, M.; Radenović, S.; Vujaković, J. On some fixed point results in b-metric, rectangular and b-rectangular metric spaces. Arab. J. Math. Sci. 2016, 22, 151–164. [Google Scholar]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Alsamir, H. Common fixed points for pairs of triangular (α)-admissible mappings. J. Nonlinear Sci. Appl. 2017, 10, 6192–6204. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Abodayeh, K.; Alsamir, H. Fixed point for mappings under contractive condition based on simulation functions and cyclic (α,β)-admissibility. J. Math. Anal. 2018, 9, 38–51. [Google Scholar]
- Mlaiki, N.; Aydi, H.; Souayah, N.; Abdeljawad, T. Controlled metric type spaces and the related contraction principle. Mathematics 2018, 6, 194. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W. Fixed Point Results for Geraghty Type Generalized F-contraction for Weak alpha-admissible Mapping in Metric-like Spaces. Eur. J. Pure Appl. Math. 2018, 11, 702–716. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W. Common Fixed Point Theorems for Generalized Geraghty (α,ψ,ϕ)-Quasi Contraction Type Mapping in Partially Ordered Metric-like Spaces. Axioms 2018, 7, 74. [Google Scholar] [CrossRef]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W. Fixed Point Theorems for (α,k,θ)-Contractive Multi-Valued Mapping in b-Metric Space and Applications. Int. J. Math. Comput. Sci. 2018, 14, 263–283. [Google Scholar]
- Qawaqneh, H.; Noorani, M.S.M.; Shatanawi, W.; Aydi, H.; Alsamir, H. Fixed Point Results for Multi-Valued Contractions in b-Metric Spaces and an Application. Mathematics 2019, 7, 132. [Google Scholar] [CrossRef]
- Roshan, J.R.; Shobkolaei, N.; Sedghi, S.; Abbas, M. Common fixed point of four maps in b-metric spaces. Hacet. J. Math. Stat. 2014, 42, 613–624. [Google Scholar]
- Aydi, H.; Barakat, M.; Felhi, A.; Işik, H. On ϕ-contraction type couplings in partial metric spaces. J. Math. Anal. 2017, 8, 78–89. [Google Scholar]
- Ćirić, L.; Samet, B.; Aydi, H.; Vetro, C. Common fixed points of generalized contractions on partial metric spaces and an application. Appl. Math. Comput. 2011, 218, 2398–2406. [Google Scholar]
- Karapınar, E.; Agarwal, R.P.; Aydi, H. Interpolative Reich-Rus-Ćirić type contractions on partial metric spaces. Mathematics 2018, 6, 256. [Google Scholar] [CrossRef]
- Kirk, W.; Shahzad, N. Fixed Point Theory in Distance Spaces; Springer Internatyional Publishing: Cham, Switzerland, 2014. [Google Scholar]
- Aydi, H.; Banković, R.; Mitrović, I.; Nazam, M. Nemytzki-Edelstein-Meir-Keeler type results in b-metric spaces. Discret. Dyn. Nat. Soc. 2018, 2018, 4745764. [Google Scholar] [CrossRef]
- Karapınar, E.; Czerwik, S.; Aydi, H. (α,ψ)-Meir-Keeler contraction mappings in generalized b-metric spaces. J. Funct. Spaces 2018, 2018, 3264620. [Google Scholar] [CrossRef]
- Mustafa, Z.; Obiedat, H.; Awawden, F. Some common fixed point theorems for mapping on copmlete G-metric spaces. Fixed Point Theory Appl. 2008, 2018, 189870. [Google Scholar] [CrossRef]
- Abbas, M.; Rhoades, B.E. Common fixed point results for non-commuting mappings without continuity in generalized metric spaces. Appl. Math. Comput. 2009, 215, 262–269. [Google Scholar]
- Abbas, M.; Nazir, T.; Vetro, P. Common fixed point results for three maps in G-metric spaces. Filomat 2011, 25, 1–17. [Google Scholar] [CrossRef]
- Abbas, M.; Nazir, T.; Radenović, S. Some periodic point results in generalized metric spaces. Appl. Math. Comput. 2010, 217, 4094–4099. [Google Scholar] [CrossRef]
- Abbas, M.; Hussain, A.; Popović, B.; Radenović, S. Istratescu-Suzuki-Ćirić-type fixed points results in the framework of G-metric spaces. J. Nonlinear Sci. Appl. 2016, 9, 6077–6095. [Google Scholar] [CrossRef]
- Abbas, M.; Nazir, T.; Radenović, S. Common fixed point of generalized weakly contractive maps in partially ordered G-metric spaces. Appl. Math. Comput. 2012, 218, 9383–9395. [Google Scholar] [CrossRef]
- Abbas, M.; Nazir, T.; Radenović, S. Common fixed point of power contraction mappings satisfying (E.A) property in generalized metric spaces. Appl. Math. Comput. 2013, 219, 7663–7670. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Kadelburg, Z.; Radenović, S. On coupled fixed point results in asymmetric G-metric spaces. J. Inequal. Appl. 2013, 2013, 528. [Google Scholar] [CrossRef]
- An, T.V.; Dung, N.V.; Kadelburg, Z.; Radenović, S. Various generalizations of metric spaces and fixed point theorems. RACSAM 2015, 109, 175. [Google Scholar] [CrossRef]
- Ansari, A.H.; Vetro, P.; Radenović, S. Existence of fixed point for GP(Λ,Θ)-contractive mapping in GP-metric spaces. Filomat 2017, 31, 2211–2218. [Google Scholar] [CrossRef]
- Aydi, H.; Damjanović, B.; Samet, B.; Shatanawi, W. Coupled fixed point theorems for nonlinear contractions in partially ordered G-metric spaces. Math. Comput. Model. 2011, 54, 2443–2450. [Google Scholar] [CrossRef]
- Gajić, L.; Kadelburg, Z.; Radenović, S. Gp-metric spaces-symmetric and asymmetric. Sci. Publ. State Univ. Novi Pazar Ser. A Appl. Math. Inform. Mech. 2017, 9, 37–46. [Google Scholar] [CrossRef]
- Gajić, L.; Stojaković, M. On fixed point results for Matkowski type mappings in G-metric spaces. Filomat 2015, 29, 2301–2309. [Google Scholar] [CrossRef]
- Jaradat, M.M.M.; Mustafa, Z.; Khan, S.U.; Arshad, M.; Ahmad, J. Some fixed point results on G-metric and Gb-metric spaces. Demonstr. Math. 2017, 207, 190–207. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. Remarks on G-metric spaces and fixed point theorems. Fixed Point Theory Appl. 2012, 2012, 210. [Google Scholar] [CrossRef]
- Kadelburg, Z.; Nashine, H.K.; Radenović, S. Common coupled fixed point results in partially ordered G-metric spaces. Bull. Math. Anal. Appl. 2012, 4, 51–63. [Google Scholar]
- Khomdram, B.; Rohen, Y.; Singh, T.C. Couplede fixed point theorems in Gb-metric space satisfying some rational contractive conditions. SpringerPlus 2016, 5, 1261. [Google Scholar] [CrossRef]
- Kumar, J.; Vashistha, S. Coupled fixed point theorems in complex valued Gb-metric spaces. Adv. Fixed Point Theory 2016, 6, 341–351. [Google Scholar]
- Long, W.; Abbas, M.; Nazir, T.; Radenović, S. Common fixed point for two pairs of mappings satisfying (E.A) property in generalized metric spaces. Abstr. Appl. Anal. 2012, 2012, 394830. [Google Scholar] [CrossRef]
- Mustafa, Z.; Aydi, H.; Karapinar, E. On common fixed points in G-metric spaces using (E.A) property. Comput. Math. Appl. 2012, 6, 1944–1956. [Google Scholar] [CrossRef]
- Mustafa, Z.; Roshan, J.R.; Parvaneh, V. Coupled coincidence point results for ψ,φ-weakly contractive mappings in partially ordered Gb-metric spaces. Fixed Point Theory Appl. 2013, 2013, 206. [Google Scholar] [CrossRef]
- Mustafa, Z.; Roshan, J.R.; Parvaneh, V. Existence of tripled coincidence point in ordered Gb-metric spaces and applications to a system of integral equations. J. Inequal. Appl. 2013, 2013, 453. [Google Scholar] [CrossRef]
- Mustafa, Z.; Jaradat, M.M.M.; Aydi, H.; Alrhayyel, A. Some common fixed points of six mappings on Gb-metric spaces using (E.A) property. Eur. J. Pure Appl. Math. 2018, 11, 90–109. [Google Scholar] [CrossRef]
- Nashine, H.K.; Kadelburg, Z.; Radenović, S. Coincidence and fixed point results under generalized weakly contractive condition in partially ordered G-metric spaces. Filomat 2013, 27, 1333–1343. [Google Scholar] [CrossRef]
- Radenović, S. Remarks on some recent coupled coincidence point results in symmetric G-metric spaces. J. Oper. 2013, 2013, 290525. [Google Scholar] [CrossRef]
- Radenović, S.; Pantelić, S.; Salimi, P.; Vujaković, J. A note on some tripled coincidence point results in G-metric spaces. Int. J. Math. Sci. Eng. Appl. (IJMSEA) 2012, 6, 23–38. [Google Scholar]
- Roshan, J.R.; Shobkolaei, N.; Sedghi, S.; Parvaneh, V.; Radenović, S. Common fixed point theorems for three maps in discontinuous Gb-metric spaces. Acta Math. Sci. Engl. Ser. 2014, 34, 1643–1654. [Google Scholar] [CrossRef]
- Sedghi, S.; Shobkolaei, N.; Roshan, J.R.; Shatanawi, W. Coupled fixed point theorems in Gb-metric spaces. Matematički Vesnik 2014, 66, 190–201. [Google Scholar]
- Shatanawi, W.; Chauhan, S.; Postolache, M.; Abbas, M.; Radenović, S. Common fixed points for contractive mappings of integral type in G-metric spaces. J. Adv. Math. Stud. 2013, 6, 53–72. [Google Scholar]
- Tahat, N.; Aydi, H.; Karapinar, E.; Shatanawi, W. Common fixed points for single-valued and multi-valued maps satisfying a generalized contraction in G-metric spaces. Fixed Point Theory Appl. 2012, 2012, 48. [Google Scholar] [CrossRef] [Green Version]
- Miculescu, R.; Mihail, A. New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. 2017, 19, 2153–2163. [Google Scholar] [CrossRef]
- Ughade, M.; Daheriya, R.D. Fixed point and common fixed point results for contraction mappings in Gb-cone metric spaces. Gazi Univ. J. Sci. (GUJSci) 2015, 28, 659–673. [Google Scholar]
- Jovanović, M.; Kadelburg, Z.; Radenović, S. Common Fixed Point Results in Metric-Type Spaces. Fixed Point Theory Appl. 2010, 2010, 978121. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, P.; Citaković, N. Meir-Keeler theorem in b-rectangular metric spaces. J. Nonlinear Sci. Appl. 2017, 10, 1786–1790. [Google Scholar] [CrossRef]
- George, R.; Radenović, S.; Reshma, K.P.; Shukla, S. Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013. [Google Scholar] [CrossRef]
- Kir, M.; Kiziltunc, H. On Some Well Known Fixed Point Theorems in b-Metric Spaces. Turk. J. Anal. Number Theory 2013, 1, 13–16. [Google Scholar] [CrossRef]
- Mishra, P.K.; Sachdeva, S.; Banerjee, S.K. Some fixed point theorems in b-metric space. Turk. J. Anal. Number Theory 2014, 2, 19–122. [Google Scholar] [CrossRef]
- Bianchini, R.M.T. Su un problema di S. Reich riguardante la teoria dei punti fissi. Boll. UMI 1972, 5, 103–106. [Google Scholar]
- Berinde, V. Generalized coupled fixzed point theorems for mixed monotone mappings in partially ordered metric spaces. Nonlinear Anal. 2011, 74, 7347–7355. [Google Scholar] [CrossRef]
- Aydi, H.; Abbas, M.; Sintunavarat, W.; Kumam, P. Tripled fixed point of W-compatible mappings in abstract metric spaces. Fixed Point Theory Appl. 2012, 2012, 134. [Google Scholar] [CrossRef] [Green Version]
- Aydi, H.; Karapinar, E.; Radenović, S. Tripled coincidence fixed point results for Boyd-Wong and Matkowski type contractions, Revista de la Real Academia de Ciencias Exactas. Fisicas Nat. Ser. A Math. 2013, 107, 339–353. [Google Scholar]
- Ampadu, C.B. Some fixed point theory results for convex contraction mapping of order 2. JP J. Fixed Point Theory Appl. 2017, 12, 81–130. [Google Scholar] [CrossRef]
- Istratescu, V.I. Some fixed point theorems for convex contraction mappings and convex non-expansive mapping (I). Lib. Math. 1981, 1, 151–163. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aydi, H.; Rakić, D.; Aghajani, A.; Došenović, T.; Noorani, M.S.M.; Qawaqneh, H. On Fixed Point Results in Gb-Metric Spaces. Mathematics 2019, 7, 617. https://doi.org/10.3390/math7070617
Aydi H, Rakić D, Aghajani A, Došenović T, Noorani MSM, Qawaqneh H. On Fixed Point Results in Gb-Metric Spaces. Mathematics. 2019; 7(7):617. https://doi.org/10.3390/math7070617
Chicago/Turabian StyleAydi, Hassen, Dušan Rakić, Asadolah Aghajani, Tatjana Došenović, Mohd Salmi Md Noorani, and Haitham Qawaqneh. 2019. "On Fixed Point Results in Gb-Metric Spaces" Mathematics 7, no. 7: 617. https://doi.org/10.3390/math7070617
APA StyleAydi, H., Rakić, D., Aghajani, A., Došenović, T., Noorani, M. S. M., & Qawaqneh, H. (2019). On Fixed Point Results in Gb-Metric Spaces. Mathematics, 7(7), 617. https://doi.org/10.3390/math7070617