Fixed Point Results for Multivalued Prešić Type Weakly Contractive Mappings
Abstract
:1. Introduction and Preliminaries
- (i)
- f has at most one fixed point .
- (ii)
- For arbitrary points , the sequence defined by Equation (1) converges to .
2. Main Results
3. Stability of Prešić Type Multivalued Fixed Point Problems
4. Global Attractivity Results
5. Results and Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Banach, B. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed point. Proc. Am. Math. Soc. 1973, 38, 111–118. [Google Scholar] [CrossRef]
- Boyd, D.W.; Wong, J.S.W. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Rhoades, B.E. Some theorems on weakly contractive maps. Nonlinear Anal. 2001, 47, 2683–2693. [Google Scholar] [CrossRef]
- Dutta, P.N.; Choudhury, B.S. A generalization of contraction principle in metric spaces. Fixed Point Theory Appl. 2008, 2008, 406368. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Metiya, N.; Bandyopadhyay, C. Fixed points of multivalued α-admissible mappings and stability of fixed point sets in metric spaces. Rend. Circ. Mat. Palermo 2015, 64, 43–55. [Google Scholar] [CrossRef]
- Latif, A.; Beg, I. Geometric fixed points for single and multivalued mappings. Demonstr. Math. 1997, 30, 791–800. [Google Scholar] [CrossRef]
- Prešić, S.B. Sur une classe d’inéquations aux différences finies et sur la convergence de certaines suites. Publ. Inst. Math. 1965, 5, 75–78. [Google Scholar]
- Ćirić, L.B.; Prešić, S.B. On Prešić type generalization of the Banach contraction mapping principle. Acta Math. Univ. Comen. 2007, 76, 143–147. [Google Scholar]
- Abbas, M.; Illic, D.; Nazir, T. Iterative approximation of fixed points of generalized weak Prešić type k-step iterative method for a class of operators. Filomat 2015, 29, 713–724. [Google Scholar] [CrossRef]
- Chen, Y.Z. A Prešić type contractive condition and its applications. Nonlinar Anal. 2009, 71, 2012–2017. [Google Scholar] [CrossRef]
- Pǎcurar, M. A multi-step iterative method for approximating fixed points of Prešić-Kannan operators. Acta Math. Univ. Comen. 2010, 79, 77–88. [Google Scholar]
- Berinde, V.; Pǎcurar, M. An iterative method for approximating fixed points of Prešić nonexpansive mappings. Rev. Anal. Numer. Theor. Approx. 2009, 38, 144–153. [Google Scholar]
- Berinde, V.; Pǎcurar, M. Two elementary applications of some Prešić type fixed point theorems. Creat. Math. Inform. 2011, 20, 32–42. [Google Scholar]
- Khan, M.S.; Berzig, M.; Samet, B. Some convergence results for iterative sequences of Prešić type and applications. Adv. Differ. Equ. 2012, 2012, 38. [Google Scholar] [CrossRef]
- Pǎcurar, M. Approximating common fixed points of Prešić-Kannantypeoperators by a multi-step iterative method. An. Stiint. Univ. Ovidius Constanţa Ser. Mat. 2009, 17, 153–168. [Google Scholar]
- Shukla, S. Prešić type results in 2-Banach spaces. Afr. Mat. 2014, 25, 1043–1051. [Google Scholar] [CrossRef]
- Shukla, S.; Sen, R. Set-valued Prešić -Reich type mappings in metric spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Ser. A Math. 2014, 108, 431–440. [Google Scholar]
- Shukla, S.; Sen, R.; Radenović, S. Set-valued Prešić type contraction in metric spaces. Annals of the Alexandru Ioan Cuza University-Mathematics 2014. [Google Scholar] [CrossRef]
- Shukla, S.; Radojević, S.; Veljković, Z.A.; Radenović, S. Some coincidence and common fixed point theorems for ordered Prešić -Reich type contractions. J. Inequal. Appl. 2013, 2013, 520. [Google Scholar] [CrossRef]
- Alecsa, C.D. Some fixed point results regarding convex contractions of Prešić type. J. Fixed Point Theory Appl. 2018, 20, 1–19. [Google Scholar] [CrossRef]
- Ali, M.U.; Farheen, M.; Kamran, T.; Maniu, G. Prešić type nonself operators and related best proximity results. Mathematics 2019, 7, 394. [Google Scholar] [CrossRef]
- Babu, A.S.; Došenovic, T.; Ali, M.D.M.; Radenovic, S.; Rao, K.P.R. Some Prešić type results in b-Dislocated metric spaces. Construct. Math. Anal. 2019, 2, 40–48. [Google Scholar]
- Rao, K.P.R.; Sadik, S.K.; Manro, S. Presic type fixed point theorem for four maps in metric spaces. J. Math. 2016, 2016, 2121906. [Google Scholar] [CrossRef]
- Nadler, S.B., Jr. Multivalued contraction mapping. Pac. J. Math. 1969, 30, 475–488. [Google Scholar] [CrossRef]
- Nussbaum, R. Hilbert’s projective metric and iterated nonlinear maps. Mem. Am. Math. Soc. 1988, 75, 1–137. [Google Scholar] [CrossRef]
- Thompson, A. On certain contraction mappings in a partially ordered vector space. Proc. Am. Math. Soc. 1963, 14, 438–443. [Google Scholar]
- Abbas, M.; Berzig, M.; Nazir, T.; Karapınar, E. Iterative approximation of fixed points for Prešić type F-contraction operators. UPB Sci. Bull. Ser. A 2016, 8, 147–160. [Google Scholar]
- Luong, N.V.; Thuan, N.X. Some fixed point theorems of Prešić-Ciric type. Acta Univ. Apul. 2012, 30, 237–249. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latif, A.; Nazir, T.; Abbas, M. Fixed Point Results for Multivalued Prešić Type Weakly Contractive Mappings. Mathematics 2019, 7, 601. https://doi.org/10.3390/math7070601
Latif A, Nazir T, Abbas M. Fixed Point Results for Multivalued Prešić Type Weakly Contractive Mappings. Mathematics. 2019; 7(7):601. https://doi.org/10.3390/math7070601
Chicago/Turabian StyleLatif, Abdul, Talat Nazir, and Mujahid Abbas. 2019. "Fixed Point Results for Multivalued Prešić Type Weakly Contractive Mappings" Mathematics 7, no. 7: 601. https://doi.org/10.3390/math7070601
APA StyleLatif, A., Nazir, T., & Abbas, M. (2019). Fixed Point Results for Multivalued Prešić Type Weakly Contractive Mappings. Mathematics, 7(7), 601. https://doi.org/10.3390/math7070601