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Abstract: The purpose of this paper is to consider various results in the context of Gb-metric spaces
that have been recently published after the paper (Aghajani, A.; Abbas, M.; Roshan, J.R. Common
fixed point of generalized weak contractive mappings in partially ordered Gb-metric spaces. Filomat
2014, 28, 1087–1101). Our new results improve, complement, unify, enrich and generalize already
well known results on Gb-metric spaces. Moreover, some coupled and tripled coincidence point
results have been provided.
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1. Introduction and Preliminaries

In the last few decades, fixed point theory has been one of the most significant research fields
in nonlinear functional analysis. It has wide applications in many disciplines such as studying the
existence of solutions for nonlinear equations (algebraic, differential and integral), a system of linear
(nonlinear) equations and convergence of many computational methods, in economics, sports, medical
sciences, etc. In 1922, Banach [1] proved that each contraction map in a complete metric space has a
unique fixed point. It is worth mentioninng that this Banach contraction principle has been generalized
in two directions, by acting on the contraction (expansive) condition, or changing the topology of
the space. Among these generalizations are partial metric spaces [2], b-metric spaces [3,4], partial
b-metric spaces [5], G-metric spaces [6], Gp-metric spaces [7] and Gb-metric spaces [8]. The topological
concepts of these spaces are different, thus the approach of existence of fixed points is different. Many
researchers tried to generalize new contractive mappings to demonstrate the existence of fixed point
results (for examples, see [9–19]).

Partial metric spaces were introduced by Matthews [2] in 1986 as follows:
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Definition 1. Let X be a nonempty set. A partial metric (or a p-metric) is a function p : X × X →
[0,+∞) satisfying

(p1) x = y if and only if p (x, x) = p (x, y) = p (y, y) ;
(p2) p (x, x) ≤ p (x, y) , for all x, y ∈ X;
(p3) p (x, y) = p (y, x) , for all x, y ∈ X; and
(p4) p (x, z) ≤ p (x, y) + p (y, z)− p (y, y) , for all x, y, z ∈ X.

The pair (X, p) is called a partial metric space.
It is clear that each metric space is a partial metric space. However, the converse is not true, in

general. For example, if X = [0, ∞) and p (x, y) = max {x, y} . In this case, p is a p−metric, but it is not
a metric on X. Many authors obtained variant fixed point results in partial metric spaces for different
contractive conditions (see [20–23]).

In 1989, Bakhtin [3] and, in 1993, Czerwik [4] introduced a new distance on a non-empty set,
which is called a b-metric. A b-metric space is an attempt to generalize the metric space.

Definition 2. Let X be a non-empty set and s ≥ 1 a given real number. A function d : X2 → [0, ∞) is called a
b-metric on X if, for all x, y, z ∈ X, the following conditions hold:

(b1) d (x, y) = 0 if and only if x = y;
(b2) d (x, y) = d (y, x) ; and
(b3) d (x, z) ≤ s (d (x, y) + d (y, z)) .

The pair (X, d) is called a b-metric space. The real number s ≥ 1 is called the coefficient of (X, d) .
We stress that any metric space is a b-metric space with coefficient s = 1. Generally, a b-metric space is
not a metric space. Let X = R be the set of real numbers, then the mapping d : X× X → [0, ∞) defined
by d (x, y) = (x− y)2 is a b-metric, but (X, d) is not a metric space. For some fixed point results on
b-metric spaces, see [10,24,25].

In 2014, Shukla [5] introduced the notion of a partial b-metric space.

Definition 3. Let X be a nonempty set and s ≥ 1 be a given real number. A function pb : X× X → [0, ∞) is
called a partial b-metric if for all x, y, z ∈ X, the following conditions are satisfied:

(pb1) x = y if and only if pb (x, x) = pb (x, y) = pb (y, y) ;
(pb2) pb (x, x) ≤ pb (x, y) ;
(pb3) pb (x, y) = pb (y, x) ; and
(pb4) pb (x, y) ≤ s [pb (x, z) + pb (z, y)]− pb (z, z) .

The pair (X, pb) is called a partial b-metric space. The number s ≥ 1 is called the coefficient
of (X, pb) .

The following example shows that a partial b-metric on X does not need to be a partial metric or a
b-metric on X (see also [5]).

Example 1. Let X = [0, ∞). Define the function pb : X × X → [0, ∞) by pb (x, y) = [max (x, y)]2 +
|x− y|2 for all x, y ∈ X. Then, (X, pb) is a partial b-metric space on X with the coefficient s = 2 > 1. However,
pb is neither a b-metric nor a partial metric on X.

Mustafa and Sims [6] generalized the concept of metric spaces by introducing new class of spaces,
so-called G-metric spaces. Based on this new concept, Mustafa et al. [26] obtained some fixed point
results for mappings satisfying different contractive conditions. Abbas and Rhoades [27] initiated the
study of common fixed point theorems in G−metric spaces. Since then, many authors obtained fixed
and common fixed point results in the setup of G-metric spaces (e.g., see [19,28–55]) .
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Definition 4 ([6]). Let X be a nonempty set. A generalized metric or a G-metric is a function G : X3 → [0, ∞)

satisfying the following properties:

(G1) for all x, y, z ∈ X, x = y = z if and only if G (x, y, z) = 0;
(G2) 0 < G (x, x, y) , for all x, y ∈ X with x 6= y;
(G3) G (x, x, y) ≤ G (x, y, z) , for all x, y, z ∈ X with z 6= y;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . , (symmetry in all three variables); and
(G5) G (x, y, z) ≤ G (x, a, a) + G (a, y, z) , for all x, y, z, a ∈ X (rectangle inequality).

The pair (X, G) is called a G-metric space.

Example 2 ([6]). Let X = R. Then, G-metric G be defined by G(x, y, z) = 1
3 (|x− y|+ |y− z|+ |x− z|),

for all x, y, z ∈ R.

Definition 5. A G-metric G is said to be symmetric if G(x, x, y) = G(x, y, y) for all x, y ∈ X.

In 2011, Ahmadi et al. [7] attempted to introduce a new generalization of both partial metric
spaces and G-metric spaces, by defining the notion of Gp-metric spaces in the following manner.

Definition 6. Let X be a nonempty set. A mapping Gp : X3 → [0,+∞) is called a Gp-metric if the following
conditions are satisfied:

(Gp1) for x, y, z ∈ X, if Gp (x, y, z) = Gp (z, z, z) = Gp (y, y, y) = Gp (x, x, x) then x = y = z;
(Gp2) Gp (x, x, x) ≤ Gp (x, x, y) ≤ Gp (x, y, z) , for all x, y, z ∈ X;
(Gp3) Gp(x, y, z) = Gp(x, z, y) = Gp(y, z, x) = . . . , (symmetry in all three variables); and
(Gp4) Gp (x, y, z) ≤ Gp (x, a, a) + Gp (a, y, z)− Gp (a, a, a) , for all x, y, z, a ∈ X (rectangle inequality).

The pair
(
X, Gp

)
is called a Gp-metric space.

For more other details with some improvements, see [37].
On the other hand, combining the concepts of G-metrics and b-metrics, Aghajani et al. [8] initiated

the concept of Gb-metrics.

Definition 7 ([8]). Let X be a nonempty set and s ≥ 1 be a given real number. Suppose that Gb : X3 →
[0,+∞) satisfies

(Gb1) Gb(x, y, z) = 0 if x = y = z;
(Gb2) 0 < Gb(x, x, y) for all x, y ∈ X with x 6= y;
(Gb3) Gb(x, x, y) ≤ Gb(x, y, z) for all x, y, z ∈ X with y 6= z;
(Gb4) Gb(x, y, z) = Gb(x, z, y) = Gb(y, z, x) = . . . , (symmetry in all three variables); and
(Gb5) Gb(x, y, z) ≤ s(Gb(x, a, a) + Gb(a, y, z)) for all x, y, z, a ∈ X (triangle inequality).

Then, Gb is called a generalized b-metric and the pair (X, Gb) is called a generalized b-metric space or
Gb-metric space.

Example 3 ([8]). Let (X, G) be a G-metric space. Consider Gb(x, y, z) = (G(x, y, z))p , where p > 1 is a real
number. Then, Gb is a Gb-metric with s = 2p−1.

Each G-metric space is a Gb-metric space with s = 1. The following example shows that a
Gb-metric on X does not need to be a G-metric on X.

Example 4. The function defined by Gb(x, y, z) = 1
9 (|x− y|+ |y− z|+ |x− z|)2 is a Gb-metric on X = R

with s = 2, but it is not a G-metric on R. Indeed, by taking x = 3, y = 5, z = 7 and a = 7
2 , we have

Gb(3, 5, 7) = 64
9 , Gb

(
3, 7

2 , 7
2
)
= 1

9 . While, Gb
( 7

2 , 5, 7
)
= 49

9 , so Gb (3, 5, 7) = 64
9 > 50

9 = Gb
(
3, 7

2 , 7
2
)
+

Gb
( 7

2 , 5, 7
)
.
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The following properties are consequences of Definition 7.

Proposition 1 ([8]). Let (X, Gb) be a Gb-metric space, then for each x, y, z, a ∈ X, we have:

(1) if Gb(x, y, z) = 0, then x = y = z;
(2) Gb(x, y, z) ≤ s(Gb(x, x, y) + Gb(x, x, z);
(3) Gb(x, y, y) ≤ 2sGb(y, x, x); and
(4) Gb(x, y, z) ≤ s(Gb(x, a, z) + Gb(a, y, z)).

Proof.
(1) By (Gb3) and (Gb2), we get a contradiction. Indeed,

0 = Gb(x, y, z) ≥ Gb(x, x, y) > 0,

when x 6= y and y 6= z. In addition,

0 = Gb(x, y, z) = Gb(y, y, z) > 0,

when x = y and y 6= z.
(2) Properties (Gb4) and (Gb5) imply

Gb(x, y, z) = Gb(y, x, z) ≤ s(Gb(y, x, x) + Gb(x, x, z)) = s(Gb(x, x, y) + Gb(x, x, z)).

(3) By (Gb4) and (Gb5), it follows that

Gb(x, y, y) = Gb(y, x, y) ≤ s(Gb(y, x, x) + Gb(x, x, y)) = 2sGb(y, x, x).

(4) By (Gb4), (Gb5) and (Gb3), we get that

Gb(x, y, z) ≤ s(Gb(x, a, a) + Gb(a, y, z)) ≤ s(Gb(a, x, z) + Gb(a, y, z)),

when x 6= z.

Definition 8 ([8]). A Gb-metric Gb is said to be symmetric if Gb(x, x, y) = Gb(x, y, y) for all x, y ∈ X.

Remark 1. From Example 3, it follows that Gb = (G (x, y, z))p , p > 1 is symmetric if G (x, y, z) is symmetric.

Definition 9 ([8]). Let (X, Gb) be a Gb-metric space, then for x0 ∈ X, r > 0, the Gb-ball with center x0 and
radius r is

BGb(x0, r) = {y ∈ X : Gb(x0, y, y) < r}.

Aghajani et al. [8] proved that every Gb-metric space is topologically equivalent to a b-metric
space. This allows us to readily transport many concepts and results from b-metric spaces into
Gb-metric spaces.

Definition 10 ([8]). Let X be a Gb-metric space. A sequence {xn} in X is said to be

(1) Gb-Cauchy sequence if, for each ε > 0, there exists a positive integer n0 such that, for all m, n, l ≥ n0,
Gb(xn, xm, xl) < ε; and

(2) Gb-convergent to a point x ∈ X if, for each ε > 0, there exists a positive integer n0 such that, for all
m, n ≥ n0, Gb(xn, xm, x) < ε.

Using above definitions, we prove the following two significant propositions.



Mathematics 2019, 7, 617 5 of 19

Proposition 2. Let (X, Gb) be a Gb-metric space. Then, the following are equivalent:

(1) the sequence {xn} is Gb-Cauchy; and
(2) for any ε > 0, there exists n0 ∈ N such that Gb (xn, xm, xm) < ε, for all m, n ≥ n0.

Proof. (1)⇒ (2). In (1) of Definition 10, we take l = m.
(2)⇒ (1). Let ε > 0 and ε1 = ε

2s . By (2), there exists n0 ∈ N such that Gb(xn, xm, xm) < ε1, for all
m, n ≥ n0. By (Gb5),

Gb(xn, xm, xl) ≤ s(Gb(xn, xm, xm) + Gb(xm, xm, xl)) < 2sε1 ≤ ε,

for all m, n, l ≥ n0.

Proposition 3. Let (X, Gb) be a Gb-metric space. Then, the following are equivalent:

(i) {xn} is Gb-convergent to x;
(ii) Gb (xn, xn, x)→ 0 as n→ +∞; and
(iii) Gb (xn, x, x)→ 0 as n→ +∞.

Proof. (i)⇒ (ii). In (ii) of Definition 10, we take m = n.
(ii)⇒ (iii). Let ε > 0 and ε1 = ε

2s . By (ii), there exists n0 ∈ N such that Gb(xn, xn, x) < ε1, for all
n ≥ n0. Then, by (3) of Proposition 1, we have

Gb(xn, x, x) ≤ 2sGb(x, xn, xn) < 2sε1 ≤ ε,

for all m, n ≥ n0.
(iii)⇒ (i). Let ε > 0 and ε1 = ε

2s . By (iii), there exists n0 ∈ N such that Gb(xn, x, x) < ε1, for all
n ≥ n0. By (Gb5), we get

Gb(xn, xm, x) ≤ s(Gb(xn, x, x) + Gb(x, xm, x)) < 2sε1 ≤ ε,

for all m, n ≥ n0.

Definition 11 ([8]). A Gb-metric space X is called Gb-complete if every Gb-Cauchy sequence is Gb-convergent
in X.

Proposition 4 ([8]). Let (X, Gb) be a Gb-metric space. Then, the function given as dGb(x, y) = Gb(x, y, y) +
Gb(x, x, y), defines a b−metric on X. We call it a b-metric induced by the Gb-metric Gb.

Proof. Let us prove that conditions of Definition 2 are fulfilled for dGb(x, y).
(b1) If dGb(x, y) = 0 then Gb(x, x, y) = 0 and by (1) of Proposition 1, it follows that x = y.
If x = y, then (by (Gb1)) Gb(x, x, y) = Gb(x, y, y) = 0 and dGb(x, y) = 0.
(b2) Property (Gb4) implies that

dGb(x, y) = Gb(x, y, y) + Gb(x, x, y) = Gb(y, x, x) + Gb(y, y, x) = dGb(y, x).

(b3) By (Gb5), it follows that

dGb(x, z) = Gb(x, z, z) + Gb(x, x, z) ≤ s(Gb(x, y, y) + Gb(y, z, z)) + s(Gb(z, y, y)+

Gb(y, x, x))

s(Gb(x, y, y) + Gb(x, x, y)) + s(Gb(y, z, z) + Gb(y, y, z)) = s(dGb(x, y) + dGb(y, z)).
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Theorem 1 ([8], Theorem 2.1). Let (X,�) be a partially ordered set. Suppose that there exists a symmetric
Gb-metric on X such that (X, G) is a complete Gb-metric space. In addition, let f , g, h, S, T, R : X → X satisfy
the following

ψ(2s4G( f x, gy, hz)) ≤ ψ(Ms(x, y, z))− ϕ(Ms(x, y, z)) (1)

for all comparable elements x, y, z ∈ X, where ϕ, ψ : [0, ∞) → [0, ∞) are such that ψ is continuous,
nondecreasing and ϕ is lower semi-continuous with ψ(t) = ϕ(t) = 0 if and only if t = 0, and

Ms(x, y, z) = max{G(Rx, Ty, Sz), G(Rx, Ty, gy), G(Ty, Sz, hz), G(Sz, Rx, f x),

G( f x, Rx, gy) + G( f x, Sz, hz) + G(gy, Ty, hz)
3s

}.

If f , g and h are dominated, then S, T and R are also dominating with f X ⊆ TX, gX ⊆ SX and hX ⊆ RX,
and for a nonincreasing sequence {xn} such that yn � xn for each n and yn → u, then u � xn and

(a) one of f X, gX or hX is a closed subset of X; and
(b) the pairs ( f , R), (g, T) and (h, S) are weakly compatible. Then, f , g, h, S, T and R have a common fixed

point in X. Moreover, the set of common fixed points of f , g, h, S, T and R is well ordered if and only if
f , g, h, S, T and R have one and only one common fixed point.

Theorem 2 ([42]). Let (X, G) be a complete symmetric Gb-metric space with parameter s ≥ 1 and let the
mappings S, T, R : X2 → X satisfy

G(S(x, y), T(u, v), R(a, b)) ≤ a1
G(x, u, a) + G(y, v, b)

2
(2)

+a2
G(S(x, y), T(u, v), R(a, b))G(x, u, a)

1 + G(x, u, a) + G(y, v, b)
+ a3

G(S(x, y), T(u, v), R(a, b))G(y, v, b)
1 + G(x, u, a) + G(y, v, b)

+a4
G(x, x, S(x, y))G(x, u, a)
1 + G(x, u, a) + G(y, v, b)

+ a5
G(x, x, S(x, y))G(y, v, b)

1 + G(x, u, a) + G(y, v, b)

+a6
G(u, u, T(u, v))G(x, u, a)
1 + G(x, u, a) + G(y, v, b)

+ a7
G(u, u, T(u, v))G(y, v, b)
1 + G(x, u, a) + G(y, v, b)

+a8
G(a, a, R(a, b))G(x, u, a)

1 + G(x, u, a) + G(y, v, b)
+ a9

G(a, a, R(a, b))G(y, v, b)
1 + G(x, u, a) + G(y, v, b)

,

for all x, y, u, v, a, b ∈ X and a1, . . . , a9 ≥ 0 such that a1 + a2 + a3 + 2(a4 + a5) + a6 + a7 + a8 + a9 < 1.
Then, S, T and R have a unique common coupled fixed point in X.

Lemma 1 ([56]). Every sequence {xn}n∈N of elements in a b-metric space (X, d) with a real coefficient
s ≥ 1, satisfying

d(xn+1, xn) ≤ γd(xn, xn−1),

for every n ∈ N, where γ ∈ [0, 1), is Cauchy.

2. Main Results

Using Lemma 1, we have the following result.

Lemma 2. Let (X, Gb) be a Gb-metric space (with a coefficient s ≥ 1) and {xn} be a sequence such that

Gb(xn, xn+1, xn+1) + Gb(xn, xn, xn+1) ≤ λ(Gb(xn−1, xn, xn) + Gb(xn−1, xn−1, xn)), (3)

for all n ∈ N, where λ ∈ [0, 1) is a Lipschitz type constant. Then, {xn} is Gb-Cauchy.
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Proof. The condition in Equation (3), together with Proposition 4, implies that

dGb(xn+1, xn) ≤ λdGb(xn, xn−1), (4)

for every n ∈ N. By Lemma 1, it follows that {xn}n∈N is a Cauchy sequence in the b-metric space
(X, dGb). Since (X, dGb) and (X, Gb) are topologically equivalent, we have that {xn}n∈N is also Cauchy
in (X, Gb).

In the sequel, we improve and generalize some already announced results (see ([57], Lemma 3.1.
and Theorem 3.21.)). Namely, we have the following result.

Lemma 3. Let {xn} be a sequence in a Gb-metric space (X, Gb, s ≥ 1) such that

Gb (xn+1, xn+2, xn+2) ≤ λGb (xn, xn+1, xn+1) , (5)

where λ ∈ [0, 1) and n = 1, 2, . . . . Then, {xn} is a Gb-Cauchy sequence.

Proof. The case that s = 1 is standard. Otherwise, take s > 1. If λ ∈ [0, 1
s ), the proof is the same as

in [57] (pp. 663, 664). Therefore, let λ ∈ [ 1
s , 1). Firstly, define the self mapping T on X as Txn = xn+1 for

n = 1, 2, . . . and Tx = z if x /∈ {xn}+∞
n=1 where z ∈ X is an arbitrary point. Now, Equation (5) becomes

Gb (Txn, Txn+1, Txn+1) ≤ λGb (xn, xn+1, xn+1) , n = 1, 2, . . . . (6)

Further, we have that λn → 0 as n→ ∞. Then, there is n0 ∈ N such that λn0 < 1
s , that is,

Gb (Tn0 xn, Tn0 xn+1, Tn0 xn+1) ≤ λn0 Gb (xn, xn+1, xn+1) . (7)

Thus, in the case λ ∈ [0, 1
s ), Equation (7) shows that{

Tn0+nx1
}+∞

n=1 :=
{

xn0+1, xn0+2, . . . , xn0+n, . . .
}

is a Gb-Cauchy sequence.
Since

{xn}+∞
n=1 = {x1, x2, . . . , xn0} ∪

{
xn0+1, xn0+2, . . . , xn0+n, . . .

}
,

we get that the sequence {xn} is Gb-Cauchy.

Remark 2. The previous lemma generalizes ([57], Lemma 3.1.) and it can be compared with ([56], Lemma 2.2.).
In addition, it is true if we replace Equation (5) by

Gb (xn+1, xn+1, xn+2) ≤ λGb (xn, xn, xn+1) , n ∈ N, λ ∈ [0, 1). (8)

In ([58], Theorem 3.3.) and ([23], Theorem 12.2.), the analog of Banach contraction principle, which
is,

d( f x, f y) ≤ λd(x, y), x, y ∈ X, 0 < λ <
1
s

,

is used to prove the following fixed point theorems in Gb-metric spaces.
In the following result, we extend ([58], Theorem 3.3.) and ([23], Theorem 12.2.) by considering

λ ∈ [0, 1) instead of λ ∈ [0, 1
s ).

Theorem 3. Let (X, Gb, s ≥ 1) be a Gb-complete Gb-metric space. Suppose the mapping T : X → X satisfies

Gb (Tx, Ty, Tz) ≤ λGb (x, y, z) , (9)
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for all x, y, z ∈ X, where λ ∈ [0, 1) is a given constant. Then, T has a unique fixed point (say u) in X and, for
x ∈ X, the Picard sequence {Tnx}+∞

n=1 converges to u.

Proof. The condition in Equation (9) immediately implies

Gb (Tx, Tx, Tz) ≤ λGb (x, x, z)

and
Gb (Tx, Tz, Tz) ≤ λGb (x, z, z) .

A summation of the two last inequalities yields that

dGb (Tx, Tz) ≤ λdGb (x, z) ,

for all x, z ∈ X.
The result further follows according to ([23], Theorem 12.2.).

Remark 3. The relation in Equation (9) is in fact the Banach contraction principle in the context of Gb-metric
spaces.

(Ref. [11], Corollary 2.8.) treated a Boyd–Wong type result in complete b−rectangular metric
spaces with coefficient s > 1. The following condition was used:

sd( f x, f y) ≤ φ(d(x, y)), x, y ∈ X,

where φ : [0, ∞) → [0, ∞) is upper semi-continuous from the right, φ(0) = 0 and φ(t) < t for each
t > 0. The related result in Gb-metric spaces is

Theorem 4. Let (X, Gb) be a Gb-complete Gb-metric space with coefficient s > 1 and f : X → X. If

sGb( f x, f y, f z) ≤ φ(Gb(x, y, z)) (10)

for every x, y, z ∈ X, where φ is described above, then there exists a unique fixed point of f .

Proof. Since φ(t) < t and s > 1, the condition in Equation (9) directly follows from Equation (10).

The Meir–Keeler type theorem in complete b−rectangular metric spaces with coefficient s > 1 is
studied in ([59], Theorem 2.1.). It is assumed that, for each ε > 0, there exists δ > 0 such that

ε ≤ d(x, y) < ε + δ implies sd( f x, f y) < ε.

The related Meir–Keeler result in Gb-metric spaces is

Theorem 5. Let (X, Gb) be a Gb-complete Gb-metric space and f : X → X. If

ε ≤ Gb(x, y, z) < ε + δ implies sGb( f x, f y, f z) < ε, (11)

for all x, y ∈ X and s > 1, then there exists a unique fixed point of f .

Proof. By Equation (11), we have

sGb( f x, f y, f z) < ε ≤ Gb(x, y, z), x, y, z ∈ X,

and the condition in Equation (9) is fulfilled.
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(Ref. [11], Corollary 2.2.) was a Geraghty type result in complete b-metric spaces with coefficient
s > 1. It was supposed that the function f : X → X satisfies the following condition:

d( f x, f y) ≤ β(d(x, y))d(x, y),

for all x, y ∈ X, where β : [0, ∞)→ [0, 1
s ) is such that

lim
n→∞

β(tn) =
1
s

implies lim
n→∞

tn = 0. (12)

The related Geraghty type result in Gb-metric spaces is

Theorem 6. Let (X, Gb) be a Gb-complete Gb-metric space with coefficient s > 1 and f : X → X. Given
β : [0, ∞)→ [0, 1

s ) satisfying Equation (12). If

Gb( f x, f y, f z) ≤ β(Gb(x, y, z))Gb(x, y, z), (13)

for all x, y, z ∈ X, then there exists a unique fixed point of f .

Proof. Using β(t) < 1
s and Equation (13), we get the condition in Equation (9), that is,

Gb( f x, f y, f z) ≤ 1
s

Gb(x, y, z), x, y, z ∈ X.

The following theorem is a Hardy–Rogers type result in the context of Gb-metric spaces. In a
b-metric space, this type of contraction is studied in ([19], Theorem 2.7) as follows:

d( f x, gy) ≤ 1
s4 (a1d(Sx, Ty) + a2d( f x, Ty) + a3d(Sx, gy) + a4d( f x, Sx) + a5d(gy, Ty)),

where a1 + αa2 + βa3 + a4 + a5 < 1 and α + β = 2.
The related Hardy–Rogers type fixed point result in Gb-metric spaces is

Theorem 7. Let (X, Gb) be a Gb-complete Gb-metric space with coefficient s ≥ 1 and f : X → X. Let
x, y, z ∈ X be such that

Gb( f x, f y, f z) ≤ a1Gb(x, y, z) + a2Gb(x, f x, f x) + a3Gb(y, f y, f y) + a4Gb(z, f z, f z)
+a5Gb(x, f y, f y) + a6Gb(y, f z, f z) + a7Gb(z, f x, f x),

(14)

where a1 + a2 + a3 + a4 + 2sa5 + a6 + a7 < 1, s(a3 + a4 + a5 + a6) < 1. Then, there exists a unique fixed
point of f .

Proof. For an arbitrary x0 ∈ X, define a sequence {xn} in X by xn = f xn−1 = f nx0 for all n ≥ 1. Let
x = xn−1 and y = z = xn. By Equation (14), for n ∈ N,

Gb(xn, xn+1, xn+1) ≤ a1Gb(xn−1, xn, xn) + a2Gb(xn−1, xn, xn) + a3Gb(xn, xn+1, xn+1)

+a4Gb(xn, xn+1, xn+1) + a5Gb(xn−1, xn+1, xn+1) + a6Gb(xn, xn+1, xn+1) + a7Gb(xn, xn, xn)

≤ (a1 + a2)Gb(xn−1, xn, xn) + (a3 + a4 + a6)Gb(xn, xn+1, xn+1)

+sa5(Gb(xn−1, xn, xn) + Gb(xn, xn+1, xn+1)).
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Now, we have

Gb(xn, xn+1, xn+1) ≤
a1 + a2 + sa5

1− a3 − a4 − sa5 − a6
Gb(xn−1, xn, xn), n ∈ N. (15)

The condition in Equation (5) is satisfied if a1 + a2 + a3 + a4 + 2sa5 + a6 < 1.
Thus, {xn} is Gb-convergent to some x ∈ X. Note that

Gb(x, f x, f x) ≤ s(Gb(x, xn, xn) + Gb(xn, f x, f x)), n ∈ N.

By Equation (14), for n ∈ N,

Gb(xn, f x, f x) ≤ a1Gb(xn−1, x, x) + a2Gb(xn−1, xn, xn) + a3Gb(x, f x, f x) + a4Gb(x, f x, f x)

+sa5(Gb(xn−1, xn, xn) + Gb(xn, f x, f x)) + a6Gb(x, f x, f x) + a7Gb(x, xn, xn).

Taking n→ ∞ in the last relations, we get

Gb(xn, f x, f x) ≤ a3 + a4 + a6

1− sa5
Gb(x, f x, f x)

and
(1− s

a3 + a4 + a6

1− sa5
)Gb(x, f x, f x) ≤ 0.

By condition s(a3 + a4 + a5 + a6) < 1, it follows that f x = x.
Let z ∈ X such that f z = z. By Equation (14),

Gb( f x, f z, f x) ≤ a1Gb(x, z, x) + a2Gb(x, f x, f x) + a3Gb(z, f z, f z) + a4Gb(x, f x, f x) + a5Gb(x, f z, f z)

+sa5(Gb(z, x, x) + Gb(x, x, z)) + a6Gb(z, f x, f x) + a7Gb(x, f x, f x).

Now,
(1− a1 − 2sa5 − a6)Gb(x, x, z) ≤ 0

and by assumption of theorem, it follows that Gb(x, x, z) = 0, i.e., x = z.

In ([60], Theorem 2.4), a Kannan type contraction in rectangular b-metric space with s > 1, is
studied. Here,

d( f x, f y) ≤ α(d(x, f x) + d(y, f y)),

for all x, y ∈ X and α ∈ [0, 1
s+1 ]. The same condition as α ∈ [0, 1

2 ) is used in ([61], Theorem 2), where a
fixed point result in complete b-metric spaces is presented.

The Chatterjea type contraction defined as

d(Tx, Ty) ≤ λ(d(x, Ty) + d(y, Tx)), x, y ∈ X, sλ ∈ [0,
1
2
],

is treated in ([61], Theorem 3) and a fixed point result in complete b-metric spaces is presented.
A fixed point theorem of Reich type contraction:

d( f x, f y) ≤ ad(x, f x) + bd(y, dy) + cd(x, y), x, y ∈ X, a + s(b + c) < 1,

in complete b-metric spaces (with s > 1) was studied in ([62], Theorem 3.2).
The related Kannnan, Chatterjea and Reich type fixed point result in Gb-metric spaces are just

corollaries of Theorem 7.



Mathematics 2019, 7, 617 11 of 19

Corollary 1. Let (X, Gb, s ≥ 1) be a Gb-complete Gb-metric space and f : X → X. Suppose there exists
0 ≤ λ < 1

max{2s,3} such that

Gb( f x, f y, f z) ≤ λ(Gb(x, f x, f x) + Gb(y, f y, f y) + Gb(z, f z, f z)), (16)

for all x, y, z ∈ X. Then, there exists a unique fixed point of f .

Proof. The assertion follows if we take a1 = a5 = a6 = a7 = 0 and a2 = a3 = a4 = λ in Theorem 7.

Corollary 2. Let (X, Gb, s ≥ 1) be a Gb-complete Gb-metric space and f : X → X. Suppose there exists
0 ≤ λ < 1

2s+1 such that

Gb( f x, f y, f z) ≤ λ(Gb(x, f y, f y) + Gb(y, f z, f z) + Gb(z, f x, f x)), (17)

for all x, y, z ∈ X. Then, there exists a unique fixed point of f .

Proof. If we take a5 = a6 = a7 = λ and a1 = a2 = a3 = a4 = 0 in Theorem 7, we obtain the condition
in Equation (17) for 0 ≤ λ < 1

2s+2 . Moreover, the estimate in Equation (15) holds if 0 ≤ λ < 1
2s+1 .

Corollary 3. Let (X, Gb) be a Gb-complete Gb-metric space with coefficient s ≥ 1 and f : X → X. Let
x, y, z ∈ X be such that

Gb( f x, f y, f z) ≤ a1Gb(x, y, z) + a2Gb(x, f x, f x) + a3Gb(y, f y, f y) + a4Gb(z, f z, f z), (18)

where a1 + a2 + a3 + a4 < 1 and s(a2 + a3) < 1. Then, there exists a unique fixed point of f .

Proof. Take a1 = a2 = a3 = a4 = λ and a5 = a6 = a7 = 0 in Theorem 7.

The Ćirić type contraction (quasi-contraction) in b-metric spaces given as

d(Tx, Ty) ≤ q max{d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)}, x, y ∈ X,

where q ≤ 1
s2+s , was treated in ([10], Corollary 2.4). The related Ćirić type fixed point result in

Gb-metric spaces is

Theorem 8. Let (X, Gb) be a Gb-complete Gb-metric space with coefficient s ≥ 1 and f : X → X. If there
exists 0 ≤ λ < 1

2s such that

Gb( f x, f y, f z) ≤ λ max{Gb(x, y, z), Gb(x, f x, f x), Gb(y, f y, f y),

Gb(z, f z, f z), Gb(x, f y, f y), Gb(y, f z, f z), Gb(z, f x, f x)}, (19)

for all x, y, z ∈ X. Then, there exists a unique fixed point of f .

Proof. For x0 ∈ X, take xn = f xn−1 = f nx0. Putting x = xn−1 and y = z = xn in Equation (19), we
have

Gb(xn, xn+1, xn+1) ≤ λ max{Gb(xn−1, xn, xn), Gb(xn−1, xn, xn), Gb(xn, xn+1, xn+1),

Gb(xn, xn+1, xn+1), Gb(xn−1, xn+1, xn+1), Gb(xn, xn, xn)}

≤ λ max{Gb(xn−1, xn, xn), Gb(xn, xn+1, xn+1), s(Gb(xn−1, xn, xn) + Gb(xn, xn+1, xn+1))}

= s(Gb(xn−1, xn, xn) + Gb(xn, xn+1, xn+1)),
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that is,

Gb(xn, xn+1, xn+1) ≤
λs

1− λs
Gb(xn−1, xn, xn), n ∈ N.

Thus, the condition in Equation (5) holds if 0 ≤ λ < 1
2s and {xn} is Gb-Cauchy sequence (in the

Gb-complete Gb-metric space (X, Gb)).
Let x ∈ X be such that {xn} is Gb-convergent to x. By Equation (19), it follows that

Gb(xn, f x, f x) ≤ λ max{Gb(xn−1, x, x), Gb(xn−1, xn, xn), Gb(x, f x, f x), Gb(x, f x, f x),

s(Gb(xn−1, xn, xn) + Gb(xn, f x, f x)), Gb(x, f x, f x), Gb(x, xn, xn)}

= λ max{Gb(x, f x, f x), sGb(xn, f x, f x)}.

Letting n → ∞ implies that Gb(x, f x, f x) ≤ λsGb(x, f x, f x). Since sλ < 1, the above inequality
holds unless Gb(x, f x, f x) = 0, so x = f x.

For the uniqueness of the fixed point of f , let z ∈ X be such that f z = z. Using Equation (19), we
have

Gb( f x, f x, f z) ≤ λ max{Gb(x, x, z), Gb(x, f x, f x), Gb(x, f x, f x), Gb(z, f z, f z),

Gb(x, f x, f x), 2sGb(x, x, z), Gb(z, f x, f x)}.

Then,
(1− 2λs)Gb(x, x, z) ≤ 0.

Since λ < 1
2s , again the above holds unless Gb(x, x, z) = 0, thus we have that x = z.

In addition, we observe a Bianchini [63] type contraction:

d( f x, f y) ≤ λ max{d(x, f x), d(y, f y)}, 0 ≤ λ < 1.

The related Bianchini type fixed point result in Gb-metric spaces is a consequence of Theorem 8.

Corollary 4. Let (X, Gb) be a Gb-complete Gb-metric space with coefficient s ≥ 1, f : X → X. If there exists
0 ≤ λ < 1

s such that

Gb( f x, f y, f z) ≤ λ max{Gb(x, f x, f x), Gb(y, f y, f y), Gb(z, f z, f z)}, (20)

for all x, y, z ∈ X. Then, there exists a unique fixed point of f .

Proof. For x0 ∈ X, take xn = f xn−1 = f nx0. Note that the condition in Equation (20) implies the
condition in Equation (19). By Theorem 8, there is a unique fixed point of f in the case that 0 ≤ λ < 1

2s .
In the sequel, we will show that this last interval for λ could be expanded to [0, 1

s ).
Let x = xn−1 and y = z = xn. By Equation (20), we have

Gb(xn, xn+1, xn+1) ≤ λ max{Gb(xn−1, xn, xn), Gb(xn, xn+1, xn+1), Gb(xn, xn+1, xn+1)}, (21)

for all n ∈ N. If for some n, Gb(xn−1, xn, xn) ≤ Gb(xn, xn+1, xn+1), then by Equation (21), it follows that

(1− λ)Gb(xn, xn+1, xn+1) ≤ 0,

i.e., Gb(xn, xn+1, xn+1) = 0. Thus, Gb(xn−1, xn, xn) > Gb(xn, xn+1, xn+1), n ∈ N. The relation in
Equation (21) corresponds to the condition (5).

Therefore, {xn} is Gb-convergent to some x ∈ X. By the condition in Equation (20), for n ∈ N, it
follows that

Gb(x, f x, f x) ≤ s(Gb(x, xn, xn) + Gb(xn, f x, f x))
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≤ sGb(x, xn, xn) + sλ max{Gb(xn−1, xn, xn), Gb(x, f x, f x), Gb(x, f x, f x)}.

Since Gb(x, xn, xn)→ 0 and Gb(xn−1, xn, xn)→ 0 as n→ ∞, we obtain that

(1− sλ)Gb(x, f x, f x) ≤ 0.

This holds unless Gb(x, f x, f x) = 0, thus f x = x.
Let z ∈ X be another fixed point of f . Using Equation (20), we get

Gb( f x, f x, f z) ≤ λ max{Gb(x, f x, f x), Gb(x, f x, f x), Gb(z, f z, f z)} = 0

and thus x = z.

Further, some improvements of Theorem 1 are given, where instead of the condition in
Equation (1), it is supposed that

2saGb ( f x, gy, hz) ≤ Ms (x, y, z) , s > 1, a > logs
2s2 + s

2
, (22)

for all x, y, z ∈ X. Moreover, the assumption that G is a symmetric Gb-metric is omitted.
Many parts of the proof of Theorem 1 are the same as in [8], thus only its modification is presented.

In the first part of the proof, it is supposed that G3n ≤ G3n+1. By Equation (22), we have that

2saG3n+1 = 2saG(y3n+1, y3n+2, y3n+3) ≤ Ms(x3n+3, x3n+1, x3n+2) = G3n+1

and so G3n+1 = 0, because of a, s > 1. Using the same arguments, we get that Gn = 0, n ∈ N or {Gn}
is decreasing. Hence, lim

n→∞
Gn = 0.

Now, we present a new proof that {yn} is a Gb-Cauchy sequence. Since

2saG(y3n+1, y3n+1, y3n+2) ≤ 2saG(y3n+1, y3n+2, y3n+3)

= 2saG3n+1 ≤ G3n = G(y3n, y3n+1, y3n+2)

≤ s(G(y3n, y3n+1, y3n+1) + G(y3n+1, y3n+1, y3n+2))

≤ s(2sG(y3n, y3n, y3n+1) + G(y3n+1, y3n+1, y3n+2)), n ∈ N,

we get

G(y3n+1, y3n+1, y3n+2) ≤
2s2

2sa − s
G(y3n, y3n, y3n+1), n ∈ N. (23)

If we take a > logs
2s2+s

2 , the condition in Equation (8) is fulfilled and by Lemma 3, and it follows
that {yn} is a Gb−Cauchy sequence.

By the arguments presented in modified proof of Theorem 1, we can improve Condition (2.1)
in ([52], Theorem 2.1) as follows.

Theorem 9. Let (X, G) be a complete Gb-metric space and let A, B, C : X → X satisfy the following condition:

saG(Ax, By, Cz) ≤ M(x, y, z), x, y, z ∈ X,

where s > 1, a > logs(2s2 + s) and

M(x, y, z) = max{G(x, y, z), G(x, Ax, By), G(y, By, Cz), G(z, Cz, Ax)}.
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3. Coupled and Tripled Coincidence Point Results

Definition 12 ([64]). Let X be a non-empty set, F : X2 → X and g : X → X. An element (x, y) ∈ X2 is
called a coupled coincidence point of F and g if

F (x, y) = gx and F (y, x) = gy,

while (gx, gy) ∈ X2 is called a coupled point of coincidence of mappings F and g. Moreover, (x, y) is called a
coupled common fixed point of F and g if

F (x, y) = gx = x and F (y, x) = gy = y.

Remark 4. Otherwise, (x, y) is a coupled coincidence point of F and g if and only if (x, y) is a coincidence
point of the mappings TF : X2 → X2 and Tg : X2 → X2, which are defined by

TF (x, y) = (F (x, y) , F (y, x)) , Tg (x, y) = (gx, gy) .

The following new result is useful in the context of Gb-metric spaces and its proof is immediate.

Lemma 4. Let (X, Gb) be a symmetric Gb-metric space. Define Gb+ :
(
X2)3 → [0,+∞) and Gb max :(

X2)3 → [0,+∞) by
Gb+ ((x, y) , (u, v) , (a, b)) = Gb (x, u, a) + Gb (y, v, b)

and
Gb max ((x, y) , (u, v) , (a, b)) = max {Gb (x, u, a) , Gb (y, v, b)} .

Then,
(
X2, Gb+

)
and

(
X2, Gb max

)
are symmetric Gb-metric spaces.

The following example shows that the previous lemma is not true if (X, Gb) is not a symmetric
Gb-metric space.

Example 5. Let X = {a, b} with a 6= b. Define

G (a, a, a) = G (b, b, b) = 0

G (a, a, b) = 1, G (a, b, b) = 2,

and extend G to X3 by using the symmetry in the variables. (X, G) is an asymmetric G-metric space (indeed,
G (a, a, b) 6= G (a, b, b)).

Now, using ([8], Example 1.2) with p = 3 and s = 23−1 = 4, G4 : X3 → [0, ∞) is given as

G4 (a, a, a) = G4 (b, b, b) = 0

G4 (a, a, b) = 13 = 1, G4 (a, b, b) = 23 = 8.

Hence, (X, G4) is a G4-metric space (it is asymmetric).
It is easy to see that

(
X2, G4+

)
, i.e.,

(
X2, G4 max

)
is not a Gb-metric space.

Now, we are ready to state and prove our first result.

Theorem 10. Let (X, Gb) be a complete Gb-metric space, F : X2 → X and g : X → X. Assume that there
exists k ∈ (0, 1) such that for all x, y, u, v, a, b ∈ X,

Gb (T (x, y) , T (u, v) , T (a, b)) ≤ k
2
(Gb (gx, gu, ga) + Gb (gy, gv, gb)) . (24)
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Then, F and g have a unique coupled coincidence point.

Proof. Putting u = a and v = b into Equation (24), we have

Gb (T (x, y) , T (a, b) , T (a, b)) ≤ k
2
(Gb (gx, ga, ga) + Gb (gy, gb, gb) .) (25)

Putting again u = x and v = y into Equation (24), we have

Gb (T (x, y) , T (x, y) , T (a, b)) ≤ k
2
(Gb (gx, gx, ga) + Gb (gy, gy, gb)) . (26)

Adding Equation (25) to Equation (26) and using Definition 1.17, we get

dGb (T (x, y) , T (a, b)) ≤ k
2
(
dGb (gx, ga) + dGb (gy, gb)

)
. (27)

Clearly, Equation (27) implies that

dGb (T (x, y) , T (a, b)) + dGb (T (y, x) , T (b, a)) ≤ k
(
dGb (gx, ga) + dGb (gy, gb)

)
,

or equivalently
dGb+ (TF (U) , TF (A)) ≤ kdGb+

(
Tg (U) , Tg (A)

)
(28)

for all U = (x, y) and A = (a, b).
Since Equation (28) corresponds to the Banach contraction condition in the context of b-metric

spaces (see, for example, [23]), we obtain that the mappings TF and Tg have a unique point
of coincidence (t, w) ∈ X2, that is, TF (t, w) = Tg (t, w). We deduce that (F (t, w) , F (w, t)) =

(g (t) , g (w)) , i.e., F (t, w) = g (t) and F (w, t) = g (w) .

At the end, we give a remark related to Theorem 2.
It is easy to see that contractive condition in Equation (2) can be relaxed, and Theorem 2 should

be generalized as follows:

Theorem 11. Let (X, Gb) be a complete Gb-metric space with parameter s ≥ 1 and let S, T, R : X2 → X satisfy

G(S(x, y), T(u, v), R(a, b)) ≤ b1
G(x, u, a) + G(y, v, b)

2
+ b2G(x, x, S(x, y))

+ b3G(u, u, T(u, v)) + b4G(a, a, R(a, b)),

for all x, y, u, v, a, b ∈ X and b1 + b2 + b3 + b4 < 1
4s2 . Then, S, T and R have a unique common coupled fixed

point in X2.

By the usual method, for n ∈ N, we get

Gb+((xn+1, yn+1), (xn+2, yn+2), (xn+3, yn+3)) ≤ hGb+((xn, yn), (xn+1, yn+1), (xn+2, yn+2)),

where h = b1 + b2 + b3 + b4 < 1
4s2 . The next step is to show that {xn}n∈N is a Cauchy sequence. Thus,

Gb+((xn+1, yn+1), (xn+2, yn+2), (xn+2, yn+2) ≤
2hs2

1− 2hs2 Gb+((xn, yn), (xn+1, yn+1), (xn+1, yn+1)).
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Since h < 1
4s2 , it follows that 2hs2

1−2hs2 < 1 and using Lemma 3, we have that {xn} is a Cauchy
sequence. Now, we show that (x, y) = (S(x, y), S(y, x)). Suppose the contrary. For n ∈ N, we have

Gb+((x, y), (S(x, y), S(y, x)), (S(x, y), S(y, x)))

≤ s(Gb+((x, y), (xn+1, yn+1), (xn+1, yn+1)) + Gb+((xn+1, yn+1), (S(x, y), S(y, x)), (S(x, y), S(y, x))))

≤ s(Gb+((x, y), (xn, yn), (xn, yn)) + b1Gb+((xn, yn), (x, y), (x, y))

+ b2Gb+((xn, yn), (xn, yn), (xn+1, yn+1)) + b3Gb+((x, y), (x, y), (S(x, y), S(y, x)))

+ b3Gb+((x, y), (x, y), (S(x, y), S(y, x))).

Letting n→ ∞, we have

0 < Gb+((x, y), (S(x, y), S(y, x)), (S(x, y), S(y, x))) ≤ (b3 + b4)Gb+((x, y), (x, y), (S(x, y), S(y, x)))

≤ 2s(b3 + b4)Gb+((x, y), (S(x, y), S(y, x)), (S(x, y), S(y, x)))

< Gb+((x, y), (S(x, y), S(y, x)), (S(x, y), S(y, x))).

Since b3 + b4 < 1
2s , we get a contradiction.

Definition 13 ([65,66]). Let X be a non-empty set, F : X3 → X and g : X → X be two mappings. An element
(x, y, z) ∈ X3 is called a tripled coincidence point of F and g if

F (x, y, z) = gx, F (y, x, y) = gy and F (z, y, x) = gz,

while (gx, gy, gy) ∈ X3 is called a tripled point of coincidence of mappings F and g. Moreover, (x, y, z) is called
a tripled fixed point of F and g if

F (x, y, z) = gx = x, F (y, x, y) = gy = y and F (z, y, x) = gz = z.

Remark 5. It is clear that (x, y, z) is a tripled coincidence point of F and g if and only if (x, y, z) is a coincidence
point for the mappings TF : X3 → X3 and Tg : X3 → X3, which are defined by

TF (x, y, z) = (F (x, y, z) , F (y, x, y) , F (z, y, x)) and Tg (x, y, z) = (gx, gy, gz) .

Similar to Theorem 10, we state the following triple fixed point theorem relating to the Banach
contraction mapping theorem in Gb-metric spaces. We omit its proof.

Theorem 12. Let (X, Gb) be a complete Gb-metric space, T : X3 → X and g : X → X. Assume that there
exists k ∈ (0, 1) such that for all x, y, z, u, v, w, a, b, c ∈ X, we have

Gb(T(x, y, z), T(u, v, w), T(a, b, c)) ≤ k
3
(Gb(gx, gy, gz) + Gb(gu, gv, gw) + Gb(ga, gb, gc)),

Then, T and g have a unique tripled coincidence point.

4. Conclusions and Perspectives

We considered various fixed point results in the context of Gb−metric spaces. Taking inspiration
from [67,68], it would be interesting to investigate convex contraction mapping theorems in the class
of Gb−metric spaces.
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