F
-Metric, F-Contraction and Common Fixed-Point Theorems with Applications
Abstract
:1. Introduction
2. Basic Relevant Notions
- (F1)
- F is strictly increasing.
- (F2)
- for any sequence , we have
- (F3)
- there exists such that .
- (d1)
- for all .
- (d2)
- for all .
- (d3)
- for every , for each and for every with , we have .
- (i)
- is -convergent to a point if .
- (ii)
- is an -Cauchy sequence if .
- (iii)
- The space is -complete if every -Cauchy sequence is -convergent to a point .
- (i)
- B is -closed.
- (ii)
- For any sequence , we have
3. Fixed Points of Reich-Type F-Contractions in -Metric Spaces
4. Fixed Points of Reich-Type F-Contractions on -Closed Balls
- (a)
- is -closed,
- (b)
- , for and ,
- (c)
- There exist such that , where .
- (a)
- is -closed,
- (b)
- , for all ,
- (c)
- , for and ,
- (d)
- There exist such that , where .
- (a)
- is -closed,
- (b)
- , for all ,
- (c)
- , for and ,
- (d)
- There exist such that , where .
5. Fixed Points of Set-Valued Reich-Type F-Contractions in -Metric Spaces
6. Applications
- (C1)
- and are bounded.
- (C2)
- For and , define byClearly, if the functions and are bounded then S and T are well-defined.
- (C3)
- For and , we have
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Altun, I.; Minak, G.; Dağ, H. Multivalued F-contractions on complete metric spaces. J. Nonlinear Convex A 2015, 16, 659–666. [Google Scholar] [CrossRef]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debrecen 2000, 57, 31–37. [Google Scholar]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Univ. Ostrav. 1993, 1, 5–11. [Google Scholar]
- Fagin, R.; Kumar, R.; Sivakumar, D. Comparing top k lists. SIAM J. Discrete Math. 2003, 17, 134–160. [Google Scholar] [CrossRef]
- Gähler, V.S. 2-metrische Räume und ihre topologische struktur. Math. Nachr. 1963, 2, 115–118. [Google Scholar] [CrossRef]
- Hussain, A.; Kanwal, T. Existence and uniqueness for a neutral differential problem with unbounded delay via fixed point results. Trans. A Razmadze Math. Inst. 2018, 172, 481–490. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. A generalized metric space and related fixed point theorems. Fixed Point Theory Appl. 2015, 2015, 61. [Google Scholar] [CrossRef] [Green Version]
- Khamsi, M.A.; Hussain, N. KKM mappings in metric type spaces. Nonlinear Anal. 2010, 7, 3123–3129. [Google Scholar] [CrossRef]
- Klim, D.; Wardowski, D. Fixed points of dynamic processes of set-valued F-contractions and application to functional equations. Fixed Point Theory Appl. 2015, 2015, 22. [Google Scholar] [CrossRef] [Green Version]
- Mustafa, Z.; Sims, B. A new approach to generalized metric spaces. J. Nonlinear Convex A 2006, 7, 289–297. [Google Scholar]
- Reich, S. Some remarks concerning contraction mappings. Can. Math. Bull. 1971, 14, 121–124. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. On a new generalization of metric spaces. J. Fixed Point Theory Appl. 2018, 20, 128. [Google Scholar] [CrossRef] [Green Version]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef] [Green Version]
- Nazam, M.; Park, C.; Hussain, A.; Arshad, M.; Lee, J.R. Fixed point theorems for F-contractions on closed ball in partial metric spaces. J. Comput. Anal. Appl. 2019, 27, 759–769. [Google Scholar]
- Ali, M.U.; Kamran, T. Multivalued F-contractions and related fixed point theorems with an application. Filomat 2016, 30, 3779–3793. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.U.; Kamran, T.; Postolache, M. Solution of Volterra integral inclusion in b-metric spaces via new fixed point theorem. Nonlinear Anal. Model. Contr. 2017, 22, 17–30. [Google Scholar] [CrossRef]
- Batra, R.; Vashistha, S. Fixed points of an F-contraction on metric spaces with a graph. Int. J. Comput. Math. 2014, 91, 2483–2490. [Google Scholar] [CrossRef]
- Cosentino, M.; Vetro, P. Fixed point results for F-contractive mappings of Hardy-Rogers-Type. Filomat 2014, 28, 715–722. [Google Scholar] [CrossRef]
- Durmaz, G.; Minak, G.; Altun, I. Fixed points of ordered F-contractions. Hacet. J. Math. Stat. 2016, 45, 15–21. [Google Scholar] [CrossRef]
- Nazam, M.; Arshad, M.; Postolache, M. Coincidence and common fixed point theorems for four mappings satisfying (αs,F)-contraction. Nonlinear Anal. Model. Contr. 2018, 23, 664–690. [Google Scholar] [CrossRef]
- Kamran, T.; Postolache, M.; Ali, M.U.; Kiran, Q. Feng and Liu type F-contraction in b-metric spaces with application to integral equations. J. Math. Anal. 2016, 5, 18–27. [Google Scholar]
- Suzuki, T. Fixed point theorems for single- and set-valued F-contractions in b-metric spaces. J. Fixed Point Theory Appl. 2018, 20, 35. [Google Scholar] [CrossRef]
- Reich, S. Kannan’s fixed point theorem. Boll. Un. Mat. Ital. 1971, 4, 1–11. [Google Scholar]
- Reich, S. Fixed points of contractive functions. Boll. Un. Mat. Ital. 1972, 5, 26–42. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asif, A.; Nazam, M.; Arshad, M.; Kim, S.O.
Asif A, Nazam M, Arshad M, Kim SO.
Asif, Awais, Muhammad Nazam, Muhammad Arshad, and Sang Og Kim.
2019. "
Asif, A., Nazam, M., Arshad, M., & Kim, S. O.
(2019).