Conformal Interactions of Osculating Curves on Regular Surfaces in Euclidean 3-Space
Abstract
1. Introduction
2. Preliminaries
3. Osculating Curves with Respect to the Conformal Transformation
- (a)
- is a geodesic curve on and satisfies .
- (b)
- is an asymptotic curve on and satisfies .
- (c)
- is neither geodesic nor asymptotic curve on such that .
- (a)
- is an asymptotic curve on and satisfies .
- (b)
- is not an asymptotic curve on and satisfies .
- (a)
- If exhibits a geodesic character on , then
- (b)
- If shows an asymptotic character on , then
- (c)
- If neither shows a geodesic character nor an asymptotic character on , then
- (a)
- If exhibits an asymptotic character on , then
- (b)
- If does not exhibits an asymptotic curve on , then
- (a)
- If exhibits a geodesic character on , then
- (b)
- If exhibits an asymptotic character on , then
- (c)
- If neither shows a geodesic character nor an asymptotic character on , then
- (a)
- If exhibits an asymptotic character on , then .
- (b)
- If does not exhibits an asymptotic curve on , then ,
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carmo, M.P.D. Differential Geometry of Curves & Surfaces; Dover Publications: Mineola, NY, USA, 2016. [Google Scholar]
- Li, Y.; Eren, K.; Ersoy, S.; Savic, A. Modified Sweeping Surfaces in Euclidean 3-Space. Axioms 2024, 13, 800. [Google Scholar] [CrossRef]
- Zhu, M.; Yang, H.; Li, Y.; Abdel-Baky, R.A.; AL-Jedani, A.; Khalifa, M. Directional developable surfaces and their singularities in Euclidean 3-space. Filomat 2024, 38, 11333–11347. [Google Scholar]
- Takahashi, T. Curves always lie in the plane spanned by Darboux frame. Rend. Circ. Mat. Palermo 2021, 70, 1083–1098. [Google Scholar] [CrossRef]
- Yayli, Y.; Gok, I.; Hacisalihoglu, H.H. Extended rectifying curves as new kind of modified Darboux vectors. TWMS J. Pure. Appl. Math. 2018, 9, 18–31. [Google Scholar]
- Althibany, N. Generating generalized cylinder with geodesic base curve according to Darboux frame. J. New Theory 2021, 37, 99–107. [Google Scholar] [CrossRef]
- Darboux, G.; Picard, É.; Koenigs, G.; Cosserat, E. Leçons sur la Théorie Générale des Surfaces et les Applications Géométriques du Calcul Infinitésimal; Gauthier-Villars: Paris, France, 1993. [Google Scholar]
- Düldül, M.; Düldül, B.U.; Kuruoğlu, N.; Özdamar, E. Extension of the Darboux frame into Euclidean 4-space and its invariants. Turk. J. Math. 2017, 41, 1628–1639. [Google Scholar] [CrossRef]
- Isah, M.A.; Isah, I.; Hassan, T.L.; Usman, M. Some characterization of osculating curves according to Darboux frame in three-dimensional Euclidean space. Int. J. Adv. Acad. Res. 2021, 7, 47–56. [Google Scholar]
- Zhu, Y.; Li, Y.; Eren, K.; Ersoy, S. Sweeping Surfaces of Polynomial Curves in Euclidean 3-space. An. St. Univ. Ovidius Constanta 2025, 33, 293–311. [Google Scholar]
- Gür Mazlum, S.; Şenyurt, S.; Grilli, L. The dual expression of parallel equidistant ruled surfaces in Euclidean 3-space. Symmetry 2022, 14, 1062. [Google Scholar] [CrossRef]
- Gür Mazlum, S.; Şenyurt, S.; Grilli, L. The invariants of dual parallel equidistant ruled surfaces. Symmetry 2023, 15, 206. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Ghosh, P.R. Rectifying and osculating curves on a smooth surface. Indian J. Pure Appl. Math. 2020, 51, 67–75. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Lone, M.S.; Ghosh, P.R. Conformal image of an osculating curve on a smooth immersed surface. J. Geom. Phys. 2020, 151, 103625. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Kim, Y.H.; Ghosh, P.R. Some characterizations of rectifying and osculating curves on a smooth immersed surface. J. Geom. Phys. 2022, 171, 104387. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Lone, M.S.; Ghosh, P.R. Normal curves on a smooth immersed surface. Indian J. Pure Appl. Math. 2020, 51, 1343–1355. [Google Scholar] [CrossRef]
- Ilarslan, K.; Nešović, E. Timelike and null normal curves in Minkowski space E13. Indian J. Pure Appl. Math. 2004, 35, 881–888. [Google Scholar]
- Nešović, E.; Öztürk, U.; Koç, Ö. On non-null relatively normal-slant helices in Minkowski 3-space. Filomat 2022, 36, 2051–2062. [Google Scholar] [CrossRef]
- Chen, B.Y.; Dillen, F. Rectifying curve as centrode and extremal curve. Bull. Inst. Math. Acad. Sinica 2005, 33, 77–90. [Google Scholar]
- Deshmukh, S.; Chen, B.Y.; Alshammari, S.H. On rectifying curves in Euclidean 3-space. Turk. J. Math. 2018, 42, 609–620. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Ghosh, P.R. Rectifying curves on a smooth surface immersed in the Euclidean space. Indian J. Pure Appl. Math. 2019, 50, 883–890. [Google Scholar] [CrossRef]
- Eren, K.; Ersoy, S. Characterizations of Tzitzeica curves using Bishop frames. Math. Meth. Appl. Sci. 2022, 45, 12046–12059. [Google Scholar] [CrossRef]
- Savić, A.; Eren, K.; Ersoy, S.; Baltić, V. Alternative View of Inextensible Flows of Curves and Ruled Surfaces via Alternative Frame. Mathematics 2024, 12, 2015. [Google Scholar] [CrossRef]
- Shaikh, A.A.; Ghosh, P.R. Curves on a smooth surface with position vectors lie in the tangent plane. Indian J. Pure Appl. Math. 2020, 51, 1097–1104. [Google Scholar] [CrossRef]
- Camci, C.; Kula, L.; Ilarslan, K. Characterizations of the position vector of a surface curve in Euclidean 3-space. An. St. Univ. Ovidius Constanta 2011, 19, 59–70. [Google Scholar]
- Chen, B.Y. When does the position vector of a space curve always lie in its rectifying plane? Am. Math. Mon. 2003, 110, 147–152. [Google Scholar] [CrossRef]
- Ilarslan, K.; Nesovic, E. Some characterizations of osculating curves in the Euclidean spaces. Demonstr. Math. 2008, 41, 931–939. [Google Scholar]
- Ilarslan, K.; Nesovic, E. Some characterizations of rectifying curves in the Euclidean space E4. Turk. J. Math. 2008, 32, 21–30. [Google Scholar]
- Ilarslan, K.; Kiliç, N.; Erdem, H.A. Osculating curves in 4-dimensional semi-Euclidean space with index 2. Open Math. 2017, 15, 562–567. [Google Scholar] [CrossRef]
- Lone, M.S. Geometric Invariants of Normal Curves under Conformal Transformation in E3. Tamkang J. Math. 2022, 53, 75–87. [Google Scholar]
- Kulahci, M.A.; Bektaş, M.; Bilici, A. On Classifications of Normal and Osculating Curves in 3-dimensional Sasakian Space. Math. Sci. Appl. E-Notes 2019, 7, 120–127. [Google Scholar] [CrossRef]
- Bozkurt, Z.; Gök, I.; Okuyucu, O.Z.; Ekmekci, F.N. Characterizations of rectifying, normal and osculating curves in three dimensional compact Lie groups. Life Sci. J. 2013, 10, 819–823. [Google Scholar]
- Pressley, A. Elementary Differential Geometry; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Li, Y.; Bin-Asfour, M.; Albalawi, K.S.; Guediri, M. Spacelike Hypersurfaces in de Sitter Space. Axioms 2025, 14, 155. [Google Scholar] [CrossRef]
- Li, Y.; Bouleryah, M.L.H.; Ali, A. On Convergence of Toeplitz Quantization of the Sphere. Mathematics 2024, 12, 3565. [Google Scholar] [CrossRef]
- Singh, K.; Sharma, S. Some Aspects of Fundamental Forms of Surfaces and Their Interpretation. J. Math. Anal. 2023, 14, 10–22. [Google Scholar] [CrossRef]
- He, M.; Goldgof, D.B.; Kambhamettu, C. Variation of Gaussian curvature under conformal mapping and its application. Comput. Math. Appl. 1993, 26, 63–74. [Google Scholar] [CrossRef]
- Dubinin, V.N.; Olesov, A.V. Application of conformal mappings to inequalities for polynomials. J. Math. Sci. 2004, 122, 3630–3640. [Google Scholar] [CrossRef]
- Zhou, Y.; Gao, L.; Li, H. Graded infill design within free-form surfaces by conformal mapping. Int. J. Mech. Sci. 2022, 224, 107307. [Google Scholar] [CrossRef]
- Li, Y.; Mallick, A.K.; Bhattacharyya, A.; Stankovic, M.S. A Conformal η-Ricci Soliton on a Four-Dimensional Lorentzian Para-Sasakian Manifold. Axioms 2024, 13, 753. [Google Scholar] [CrossRef]
- Li, Y.; Alshehri, N.; Ali, A. Riemannian invariants for warped product submanifolds in Qϵm × R and their applications. Open Math. 2024, 22, 20240063. [Google Scholar] [CrossRef]
- De, K.; De, U.; Gezer, A. Perfect fluid spacetimes and k-almost Yamabe solitons. Turk. J. Math. 2023, 47, 1236–1246. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Y.; Li, Y.; Badyal, P.; Singh, K.; Sharma, S. Conformal Interactions of Osculating Curves on Regular Surfaces in Euclidean 3-Space. Mathematics 2025, 13, 881. https://doi.org/10.3390/math13050881
Cheng Y, Li Y, Badyal P, Singh K, Sharma S. Conformal Interactions of Osculating Curves on Regular Surfaces in Euclidean 3-Space. Mathematics. 2025; 13(5):881. https://doi.org/10.3390/math13050881
Chicago/Turabian StyleCheng, Yingxin, Yanlin Li, Pushpinder Badyal, Kuljeet Singh, and Sandeep Sharma. 2025. "Conformal Interactions of Osculating Curves on Regular Surfaces in Euclidean 3-Space" Mathematics 13, no. 5: 881. https://doi.org/10.3390/math13050881
APA StyleCheng, Y., Li, Y., Badyal, P., Singh, K., & Sharma, S. (2025). Conformal Interactions of Osculating Curves on Regular Surfaces in Euclidean 3-Space. Mathematics, 13(5), 881. https://doi.org/10.3390/math13050881