Characterization of Ricci Solitons and Harmonic Vector Fields on the Lie Group Nil4
Abstract
:1. Introduction
2. Ricci Solitons on
- 1.
- By Theorem 1, the vector fields are not Ricci solitons.
- 2.
- A straightforward calculation shows that the Ricci soliton vector field given in Theorem 1 is a non-gradient Ricci soliton, i.e., there exists no smooth function f in such that ξ is on .
- 3.
3. Harmonic Vector Fields on
- 1.
- If , then X is a harmonic section if and only if ;
- 2.
- If , then X is a harmonic section if and only if for some .
- 1.
- , or
- 2.
- ,
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- O’Neil, B. Semi-Riemannian Geometry; Academic Press: New York, NY, USA, 1983. [Google Scholar]
- Hamilton, R. The Ricci flow on surfaces. Contemp. Math. 1988, 71, 237–262. [Google Scholar]
- Hamilton, R. The Harnack estimate for the Ricci flow. J. Differ. Geom. 1993, 37, 225–243. [Google Scholar] [CrossRef]
- Djellali, N.; Hasni, A.; Mohammed Cherif, A.; Belkhelfa, M. Classification of Codazzi and note on minimal hypersurfaces in Nil4. Int. Electron. J. Geom. 2023, 16, 707–714. [Google Scholar]
- Calvaruso, G.; De Leo, B. Curvature properties of four-dimensional generalized symmetric spaces. J. Geom. 2008, 90, 30–46. [Google Scholar]
- Filipkiewicz, R. Four Dimensional Geometries. Ph.D. Thesis, University of Warwick, Coventry, UK, 1983. [Google Scholar]
- Baird, P.; Wood, J.C. Harmonic Morphisms Between Riemannain Manifolds; Clarendon Press Oxford: Oxford, UK, 2003. [Google Scholar]
- Eells, J.; Sampson, J.H. Harmonic mappings of Riemannian manifolds. Am. J. Math. 1964, 86, 109–160. [Google Scholar]
- Gudmundsson, S.; Kappos, E. On the Geometry of Tangent Bundles. Expo. Math. 2002, 20, 1–41. [Google Scholar] [CrossRef]
- Gil-Medrano, O. Relationship between volume and energy of vector fields. Differ. Geom. Appl. 2001, 15, 137–152. [Google Scholar] [CrossRef]
- Onda, K. Lorentz Ricci Solitons on 3-dimensional Lie groups. Geom. Dedicata 2010, 147, 313–322. [Google Scholar] [CrossRef]
- Mohammed Cherif, A. On the nonexistence of harmonic and bi-harmonic maps. arXiv 2020, arXiv:2004.08224. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Cherif, A.M.; Xie, Y. Characterization of Ricci Solitons and Harmonic Vector Fields on the Lie Group Nil4. Mathematics 2025, 13, 1155. https://doi.org/10.3390/math13071155
Li Y, Cherif AM, Xie Y. Characterization of Ricci Solitons and Harmonic Vector Fields on the Lie Group Nil4. Mathematics. 2025; 13(7):1155. https://doi.org/10.3390/math13071155
Chicago/Turabian StyleLi, Yanlin, Ahmed Mohammed Cherif, and Yuquan Xie. 2025. "Characterization of Ricci Solitons and Harmonic Vector Fields on the Lie Group Nil4" Mathematics 13, no. 7: 1155. https://doi.org/10.3390/math13071155
APA StyleLi, Y., Cherif, A. M., & Xie, Y. (2025). Characterization of Ricci Solitons and Harmonic Vector Fields on the Lie Group Nil4. Mathematics, 13(7), 1155. https://doi.org/10.3390/math13071155