Strong Solution for a Nonlinear Non-Newtonian Shear Thickening Fluid
Abstract
:1. Introduction
Main Result
2. A Priori Estimates
Preliminaries
3. Convergence of Approximate Solution
4. Proof of the Main Theorem
4.1. Existence
4.2. Uniqueness
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, J.U. Weak Solutions of an Initial Boundary Value Problem for an Incompressible Viscous Fluid with Nonnegative Density. SIAM J. Math. Anal. 1987, 18, 89–96. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y. Global Strong Solution with Vacuum to the Two Dimensional Density-dependent Navier–Stokes System. SIAM J. Math. Anal. 2014, 46, 1771–1788. [Google Scholar] [CrossRef]
- Choe, H.; Kim, H. Strong solutions of the Navier CStokes equations for isentropic compressible fluids. J. Differ. Equ. 2003, 190, 504–523. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, H. On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities. Manuscripta Math. 2006, 120, 91–129. [Google Scholar] [CrossRef]
- Feireisl, E.; Novotny, A.; Petzeltov, H. On the Existence of Globally Defined Weak Solutions to the Navier—Stokes Equations. J. Math. Fluid Mech. 2001, 3, 358–392. [Google Scholar] [CrossRef]
- Lions, P.L. Mathematical Topics in Fluid Mechanics: Compressible Models; Oxford University Press: Oxford, UK, 1996; Volume 2. [Google Scholar]
- Málek, J.; Nečas, J.; Rokyta, M.; Ružička, M. Weak and Measure-Valued Solutions to Evolutionary PDEs; Chapman and Hall: New York, NY, USA, 1996. [Google Scholar]
- Yuan, H.; Xu, X. Existence and uniqueness of solutions for a class of non-Newtonian fluids with singularity and vacuum. J. Differ. Equ. 2008, 245, 2871–2916. [Google Scholar] [CrossRef]
- Song, Y.; Yuan, H.; Chen, Y.; Guo, Z. Strong solutions for a 1D fluid-particle interaction non-newtonian model: The bubbling regime. J. Math. Phys. 2013, 54, 41–80. [Google Scholar] [CrossRef]
- Ladyzhenskaya, O.A. New equations for the description of the motions of viscous incompressible fluids, and global solvability for their boundary value problems. Tr. Mat. Inst. Im. VA Steklova 1967, 102, 85–104. [Google Scholar]
- Yin, L.; Xu, X.; Yuan, H. Global existence and uniqueness of solution of the initial boundary value problem for a class of non-Newtonian fluids with vacuum. Z. Angew. Math. Phys. 2008, 59, 457–474. [Google Scholar] [CrossRef]
- Wang, C.; Yuan, H. Global strong solutions for a class of heat-conducting non-Newtonian fluids with vacuum. Nonlinear Anal. Real World Appl. 2010, 11, 3680–3703. [Google Scholar] [CrossRef]
- Song, Y.; Chen, S.; Liu, F. The well-posedness of solution to a compressible non-Newtonian fluid with self-gravitational potential. Open Math. 2018, 16, 1466–1477. [Google Scholar] [CrossRef]
- Fang, L.; Zhu, H.; Guo, Z. Global classical solution to a one-dimensional compressible non-Newtonian fluid with large initial data and vacuum. Nonlinear Anal. 2018, 174, 189–208. [Google Scholar] [CrossRef]
- Pokorny, M.; Szlenk, M. Weak solutions for the Stokes system for compressible non?Newtonian fluids with unbounded divergence. Math. Methods Appl. Sci. 2023, 46, 9736–9750. [Google Scholar] [CrossRef]
- Nakasato, J.C.; Pazanin, I. Homogenization of the non-isothermal, non-Newtonian fluid flow in a thin domain with oscillating boundary. Z. Angew. Math. Phys. 2023, 74, 211. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Jin, L.; Chen, Y. Strong Solution for a Nonlinear Non-Newtonian Shear Thickening Fluid. Mathematics 2025, 13, 878. https://doi.org/10.3390/math13050878
Song Y, Jin L, Chen Y. Strong Solution for a Nonlinear Non-Newtonian Shear Thickening Fluid. Mathematics. 2025; 13(5):878. https://doi.org/10.3390/math13050878
Chicago/Turabian StyleSong, Yukun, Lin Jin, and Yang Chen. 2025. "Strong Solution for a Nonlinear Non-Newtonian Shear Thickening Fluid" Mathematics 13, no. 5: 878. https://doi.org/10.3390/math13050878
APA StyleSong, Y., Jin, L., & Chen, Y. (2025). Strong Solution for a Nonlinear Non-Newtonian Shear Thickening Fluid. Mathematics, 13(5), 878. https://doi.org/10.3390/math13050878