The Impact of Heat Transfer and a Magnetic Field on Peristaltic Transport with Slipping through an Asymmetrically Inclined Channel
Abstract
1. Introduction
2. Mathematical Modeling of the Problem
2.1. Fundamental Computation of Lorentz Force
2.2. The Governing Equations
2.3. Overcome Heat
3. Method of Solution
4. Discussion
4.1. Model Validation
4.2. Graphical Results and Discussions
5. Conclusions
- As the heat source (S) increases, the temperature distribution increases.
- An increase in thermal radiation (Nr) reduces the temperature.
- Increasing thermal radiation (Nr) lowers the temperature of the fluid.
- The axial velocity in the middle of the pipe decreases as the magnetic field is increased, while it increases close to the walls.
- As the flow rate increases, the axial velocity increases.
- The presence of slipping leads to smoothing the flow by reducing the existing vortex.
- An increase in slipping (Kn) leads to an increase in axial velocity.
- The Prandtl number (Pr) and Reynolds number (Re) have a small influence on the peristaltic flow.
- The pressure difference is reduced by increasing gravity (Gr).
- An increase in magnetic field (M), heat source (S), thermal radiation (Nr), flow rate (Q), and flow rate leads to an increasing pressure difference (Δp).
- Study of the effects of nanoparticles on flow characteristics and the impact of peristaltic motion and fluid rotation within circular channels.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Latham, T.W. Fluid Motions in a Peristaltic Pump. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1966. [Google Scholar]
- Fung, Y.C.; Yih, C.S. Peristaltic transport. J. Appl. Mech. 1968, 35, 669–688. [Google Scholar] [CrossRef]
- Yin, F.; Fung, Y.C. Peristaltic Waves in Circular Cylindrical Tubes. J. Appl. Mech. 1969, 36, 579–587, Erratum in J. Appl. Mech. 1970, 37, 568–568. [Google Scholar] [CrossRef]
- Jaffrin, M.Y.; Shapiro, A.H. Peristaltic pumping. Annu. Rev. Fluid Mech. 1971, 3, 13–37. [Google Scholar] [CrossRef]
- Raju, K.K.; Devanathan, R. Peristaltic motion of a non-Newtonian fluid. Rheol. Acta 1972, 11, 170–178. [Google Scholar] [CrossRef]
- Siddiqui, A.M.; Schwarz, W.H. Peristaltic flow of a second-order fluid in tubes. J. Non-Newton. Fluid Mech. 1994, 53, 257–284. [Google Scholar] [CrossRef]
- Murthy, S.K. Nanoparticles in modern medicine: State of the art and future challenges. Int. J. Nanomed. 2007, 2, 129–141. [Google Scholar]
- Vishnyakov, V.I.; Pavlov, K.B. Peristaltic flow of a conductive liquid in a transverse magnetic field. Magnetohydrodynamics 1972, 8, 174–178. [Google Scholar]
- Mekheimer, K.S. Effect of the induced magnetic field on peristaltic flow of a couple stress fluid. Phys. Lett. A 2008, 372, 4271–4278. [Google Scholar] [CrossRef]
- Nadeem, S.; Akbar, N.S. Effects of induced magnetic field on peristaltic flow of Johnson-Segalman fluid in a vertical symmetric channel. Appl. Math. Mech. 2010, 31, 969–978. [Google Scholar] [CrossRef]
- Akbar, N.S.; Hayat, T.; Nadeem, S.; Obaidat, S. Peristaltic flow of a Williamson fluid in an inclined asymmetric channel with partial slip and heat transfer. Int. J. Heat Mass Transf. 2012, 55, 1855–1862. [Google Scholar] [CrossRef]
- Rashid, M.; Ansar, K.; Nadeem, S. Effects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channel. Phys. A Stat. Mech. Its Appl. 2020, 553, 123979. [Google Scholar] [CrossRef]
- Hayat, T.; Saleem, N.; Elmaboud, Y.A.; Asghar, S. Peristaltic flow of a second-order fluid in the presence of an induced magnetic field. Int. J. Numer. Methods Fluids 2011, 67, 537–558. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Abbas, M.A. Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffrey fluid model through a porous medium. Alex. Eng. J. 2016, 55, 1017–1023. [Google Scholar] [CrossRef]
- Sud, V.K.; Sekhon, G.S.; Mishra, R.K. Pumping action on blood by a magnetic field. Bull. Math. Biol. 1977, 39, 385–390. [Google Scholar] [CrossRef]
- Tzirtzilakis, E.E. A mathematical model for blood flow in magnetic field. Phys. Fluids 2005, 17, 077103. [Google Scholar] [CrossRef]
- Mekheimer, K.S.; Al-Arabi, T.H. Nonlinear peristaltic transport of MHD flow through a porous medium. Int. J. Math. Math. Sci. 2003, 2003, 1663–1682. [Google Scholar] [CrossRef]
- Mekheimer, K.S. Peristaltic flow of blood under effect of a magnetic field in a non-uniform channels. Appl. Math. Comput. 2004, 153, 763–777. [Google Scholar] [CrossRef]
- Misra, J.C.; Sinha, A.; Shit, G.C. Mathematical modeling of blood flow in a porous vessel having double stenoses in the presence of an external magnetic field. Int. J. Biomath. 2011, 4, 207–225. [Google Scholar] [CrossRef]
- Akbar, N.S.; Nadeem, S. Carreau fluid model for blood flow through a tapered artery with a stenosis. Ain Shams Eng. J. 2014, 5, 1307–1316. [Google Scholar] [CrossRef]
- Akbar, N.S.; Nadeem, S. Exact solution of peristaltic flow of biviscosity fluid in an endoscope: A note. Alex. Eng. J. 2014, 53, 449–454. [Google Scholar] [CrossRef]
- Sinha, A.; Shit, G.C. Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation. J. Magn. Magn. Mater. 2015, 378, 143–151. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Zeeshan, A.; Ellahi, R. Endoscope analysis on peristaltic blood flow of Sisko fluid with Titanium magneto-nanoparticles. Comput. Biol. Med. 2016, 78, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Sheikh, N.A.; Khan, I.; Saqib, M. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model. J. Magn. Magn. Mater. 2017, 423, 327–336. [Google Scholar] [CrossRef]
- Franconi, C. Hyperthermia heating technology and devices. In Physics and Technology of Hyperthermia; Springer: Berlin/Heidelberg, Germany, 1987; pp. 80–122. [Google Scholar]
- Charm, S.; Kurland, G. Viscometry of human blood for shear rates of 0–100,000 sec−1. Nature 1965, 206, 617–618. [Google Scholar] [CrossRef]
- Victor, S.A.; Shah, V.L. Heat transfer to blood flowing in a tube. Biorheology 1975, 12, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Ogulu, A.; Abbey, T. Simulation of heat transfer on an oscillatory blood flow in an indented porous artery. Int. Commun. Heat Mass Transf. 2005, 32, 983–989. [Google Scholar] [CrossRef]
- Misra, J.C.; Shit, G.C.; Rath, H.J. Flow and heat transfer of a MHD viscoelastic fluid in a channel with stretching walls: Some applications to haemodynamics. Comput. Fluids 2008, 37, 1–11. [Google Scholar] [CrossRef]
- Zaman, A.; Ali, N.; Bég, O.A.; Sajid, M. Heat and mass transfer to blood flowing through a tapered overlapping stenosed artery. Int. J. Heat Mass Transf. 2016, 95, 1084–1095. [Google Scholar] [CrossRef]
- Vajravelu, K.; Radhakrishnamacharya, G.; Radhakrishnamurty, V. Peristaltic flow and heat transfer in a vertical porous annulus, with long wave approximation. Int. J. Non-Linear Mech. 2007, 42, 754–759. [Google Scholar] [CrossRef]
- Mekheimer, K.S. The influence of heat transfer and magnetic field on peristaltic transport of a Newtonian fluid in a vertical annulus: Application of an endoscope. Phys. Lett. A 2008, 372, 1657–1665. [Google Scholar] [CrossRef]
- El-Masry, Y.A.S.; Elmaboud, Y.A.; Abdel-Sattar, M.A. The impacts of varying magnetic field and free convection heat transfer on an Eyring–Powell fluid flow with peristalsis: VIM solution. J. Taibah Univ. Sci. 2020, 14, 19–30. [Google Scholar] [CrossRef]
- Navier, C.L.M.H. Mémoire sur les lois du Mouvement des Fluides. Mémoires L’académie R. Sci. L’institut Fr. 1823, 389–440. [Google Scholar]
- Saravana, R.; Sreenadh, S.; Venkataramana, S.; Reddy, R.H.; Kavitha, A. Influence of slip conditions, wall properties and heat transfer on MHD peristaltic transport of a Jeffrey fluid in a nonuniform porous channel. Int. J. Innov. Technol. Create. Eng. 2011, 1, 10–24. [Google Scholar]
- Yıldırım, A.; Sezer, S.A. Effects of partial slip on the peristaltic flow of a MHD Newtonian fluid in an asymmetric channel. Math. Comput. Model. 2010, 52, 618–625. [Google Scholar] [CrossRef]
- Gudekote, M.; Choudhari, R. Slip effects on peristaltic transport of Casson fluid in an inclined elastic tube with porous walls. J. Adv. Res. Fluid Mech. Therm. Sci. 2018, 43, 67–80. [Google Scholar]
- Hayat, T.; Hussain, Q.; Ali, N. Influence of partial slip on the peristaltic flow in a porous medium. Phys. A Stat. Mech. Its Appl. 2008, 387, 3399–3409. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Zeeshan, A.; Ijaz, N. Slip effects and endoscopy analysis on blood flow of particle-fluid suspension induced by peristaltic wave. J. Mol. Liq. 2016, 218, 240–245. [Google Scholar] [CrossRef]
- Bhatti, M.M.; Abbas, M.A.; Rashidi, M.M. Combine effects of magnetohydrodynamics (MHD) and partial slip on peristaltic blood flow of Ree–Eyring fluid with wall properties. Eng. Sci. Technol. An Int. J. 2016, 19, 1497–1502. [Google Scholar] [CrossRef]
- Alsabery, A.I.; Ismael, M.A.; Al-Hadraawy, S.K.; Ghalambaz, M.; Hashim, I.; Chamkha, A.J. Fluid-structure interaction model of blood flow in abdominal aortic aneurysms with thermic treatment. Alex. Eng. J. 2023, 64, 81–95. [Google Scholar] [CrossRef]
- Aghakhani, S.; Pordanjani, A.H. Effect of magnetic nanofluid on cooling of hot obstacles in a minichannel: Optimization of obstacle size and spacing. J. Magn. Magn. Mater. 2023, 587, 171238. [Google Scholar] [CrossRef]
- Eldesoky, I.M.; Abumandour, R.M.; Kamel, M.H.; Abdelwahab, E.T. The combined effects of wall properties and space porosity on MHD two-phase peristaltic slip transport through planar channels. Int. J. Appl. Comput. Math. 2021, 7, 37. [Google Scholar] [CrossRef]
- Kamel, M.H.; Eldesoky, I.M.; Maher, B.M.; Abumandour, R.M. Slip effects on peristaltic transport of a particle-fluid suspension in a planar channel. Appl. Bionics Biomech. 2015, 2015, 703574. [Google Scholar] [CrossRef]
- Eldesoky, I.M.; Abdelsalam, S.I.; El-Askary, W.A.; El-Refaey, A.M.; Ahmed, M.M. Joint effect of magnetic field and heat transfer on particulate fluid suspension in a catheterized wavy tube. BioNanoScience 2019, 9, 723–739. [Google Scholar] [CrossRef]
- Ahmed, M.M.; Eldesoky, I.M.; Nasr, A.G.; Abumandour, R.M.; Abdelsalam, S.I. The profound effect of heat transfer on magnetic peristaltic flow of a couple stress fluid in an inclined annular tube. Mod. Phys. Lett. B 2024, 38, 2450233. [Google Scholar] [CrossRef]
- Magdy, M.M.; Nasr, A.G.; Abumandour, R.M. Effect of Heat Transfer and Slipping on MHD Peristaltic Flow with Suspended Particles. ERJ. Eng. Res. J. 2024, 47, 281–305. [Google Scholar] [CrossRef]
- Kothandapani, M.; Srinivas, S. Non-linear peristaltic transport of a Newtonian fluid in an inclined asymmetric channel through a porous medium. Phys. Lett. A 2008, 372, 1265–1276. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magdy, M.; Nasr, A.G.; Abumandour, R.M.; El-Shorbagy, M.A. The Impact of Heat Transfer and a Magnetic Field on Peristaltic Transport with Slipping through an Asymmetrically Inclined Channel. Mathematics 2024, 12, 1827. https://doi.org/10.3390/math12121827
Magdy M, Nasr AG, Abumandour RM, El-Shorbagy MA. The Impact of Heat Transfer and a Magnetic Field on Peristaltic Transport with Slipping through an Asymmetrically Inclined Channel. Mathematics. 2024; 12(12):1827. https://doi.org/10.3390/math12121827
Chicago/Turabian StyleMagdy, Muhammad, Ahmed G. Nasr, Ramzy M. Abumandour, and Mohammed A. El-Shorbagy. 2024. "The Impact of Heat Transfer and a Magnetic Field on Peristaltic Transport with Slipping through an Asymmetrically Inclined Channel" Mathematics 12, no. 12: 1827. https://doi.org/10.3390/math12121827
APA StyleMagdy, M., Nasr, A. G., Abumandour, R. M., & El-Shorbagy, M. A. (2024). The Impact of Heat Transfer and a Magnetic Field on Peristaltic Transport with Slipping through an Asymmetrically Inclined Channel. Mathematics, 12(12), 1827. https://doi.org/10.3390/math12121827