An Optimization Problem of Distributed Permutation Flowshop Scheduling with an Order Acceptance Strategy in Heterogeneous Factories
Abstract
:1. Introduction
2. Related Work
3. Mathematical Model
3.1. Assumptions of a Mathematical Model
- (1)
- There are several distributed factories.
- (2)
- Each factory has one set of flowshop machines.
- (3)
- Each factory has different processing times for orders and statuses.
- (4)
- Pre-emption of orders is not allowed.
- (5)
- The lead time from when an order is completed on the machines of the factories to when it is delivered to the customer is not considered.
3.2. MILP Model
Parameters & Sets | |
Set of distributed factories, | |
Set of operation stage, | |
Set of orders, | |
Set of orders and dummy order, | |
Revenue related to order | |
Due date related to order | |
Processing times of production order at stage in distributed factory | |
Sequence-dependent setup times between orders at stage in factory | |
Scaling parameter of tardiness costs | |
Large number |
Decision Variables | |
If order is selected, 1; Otherwise, 0 | |
If order is produced in factory , 1; Otherwise, 0 | |
If order is produced immediately after order in factory , 1; Otherwise, 0 | |
Start time of order at operation stage in factory | |
Completion time of order at operation stage in factory | |
Manufacturing completion time of production order | |
Manufacturing sequence of production order in factory | |
Tardiness of production order |
4. Meta-Heuristic Algorithms
4.1. Solution Structure and Decoding Process
4.2. Genetic Algorithm (GA)
Algorithm 1: Genetic Algorithm |
While |
While |
//Calculate the objective function |
End While |
//Conduct the selection procedure |
While |
If |
Randomly select chromosome from |
//Conduct the crossover operator |
End If |
If |
//Conduct the mutation operator |
End If |
End While |
End While |
4.3. Particle Swarm Optimization (PSO)
Algorithm 2: The procedure of PSO |
For |
For |
//Calculate the objective function |
//Update the particle best |
End For |
//Update the global best |
For |
the position vector of List 1 by following Equation (25) |
the velocity vector of List 2 by following Equation (29) |
the position vector of List 1 by following Equation (30) |
End For |
End For |
5. Computational Experiments
5.1. Design of Experiments
5.2. Results of Experiments
5.3. Results of Sensitivity Analysis
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Base Heuristic
Algorithm A1: Base Heuristic |
Sort in increasing order based on |
For |
For |
Let as tardiness of order at factory |
Virtually assign order to factory |
Calculate |
End For |
If |
Reject order |
Else |
Assign order to factory |
Update factory |
End If |
End For |
References
- Zhou, L.; Zhang, L.; Laili, Y.; Zhao, C.; Xiao, Y. Multi-task Scheduling of Distributed 3D Printing Services in Cloud Manufacturing. Int. J. Adv. Manuf. Technol. 2018, 96, 3003–3017. [Google Scholar] [CrossRef]
- Leng, J.; Zhong, Y.; Lin, Z.; Xu, K.; Mourtzis, D.; Zhou, X.; Zheng, P.; Liu, Q.; Zhao, J.L.; Shen, W. Towards Resilience in Industry 5.0: A Decentralized Autonomous Manufacturing Paradigm. J. Manuf. Syst. 2023, 71, 95–114. [Google Scholar] [CrossRef]
- Chang, H.C.; Liu, T.K. Optimisation of Distributed Manufacturing Flexible Job Shop Scheduling by Using Hybrid Genetic Algorithms. J. Intell. Manuf. 2017, 28, 1973–1986. [Google Scholar] [CrossRef]
- De Giovanni, L.; Pezzella, F. An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling Problem. Eur. J. Oper. Res. 2010, 200, 395–408. [Google Scholar] [CrossRef]
- Shao, W.; Pi, D.; Shao, Z. Optimization of Makespan for the Distributed No-Wait Flow Shop Scheduling Problem with Iterated Greedy Algorithms. Knowl. Based Syst. 2017, 137, 163–181. [Google Scholar] [CrossRef]
- Wang, S.Y.; Wang, L.; Liu, M.; Xu, Y. An Effective Estimation of Distribution Algorithm for Solving the Distributed Permutation Flow-Shop Scheduling Problem. Int. J. Prod. Econ. 2013, 145, 387–396. [Google Scholar] [CrossRef]
- Mönch, L.; Shen, L. Parallel Machine Scheduling with the Total Weighted Delivery Time Performance Measure in Distributed Manufacturing. Comput. Oper. Res. 2021, 127, 105126. [Google Scholar] [CrossRef]
- Lei, D.; Yuan, Y.; Cai, J.; Bai, D. An Imperialist Competitive Algorithm with Memory for Distributed Unrelated Parallel Machines Scheduling. Int. J. Prod. Res. 2020, 58, 597–614. [Google Scholar] [CrossRef]
- Behnamian, J.; Fatemi Ghomi, S.M.T. A Survey of Multi-Factory Scheduling. J. Intell. Manuf. 2016, 27, 231–249. [Google Scholar] [CrossRef]
- Bagheri Rad, N.; Behnamian, J. Recent Trends in Distributed Production Network Scheduling Problem; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Marin-Garcia, J.A.; Garcia-Sabater, J.P.; Miralles, C.; Villalobos, A.R. Profile and Competences of Spanish Industrial Engineers in the European Higher Education Area (EHEA). J. Ind. Eng. Manag. 2008, 1, 269–284. [Google Scholar] [CrossRef]
- Renna, P. Coordination Strategies to Support Distributed Production Planning in Production Networks. Eur. J. Ind. Eng. 2015, 9, 366–394. [Google Scholar] [CrossRef]
- Naderi, B.; Ruiz, R. The Distributed Permutation Flowshop Scheduling Problem. Comput. Oper. Res. 2010, 37, 754–768. [Google Scholar] [CrossRef]
- Slotnick, S.A. Order Acceptance and Scheduling: A Taxonomy and Review. Eur. J. Oper. Res. 2011, 212, 1–11. [Google Scholar] [CrossRef]
- Karabulut, K.; Öztop, H.; Kizilay, D.; Tasgetiren, M.F.; Kandiller, L. An Evolution Strategy Approach for the Distributed Permutation Flowshop Scheduling Problem with Sequence-Dependent Setup Times. Comput. Oper. Res. 2022, 142, 105733. [Google Scholar] [CrossRef]
- Huang, J.P.; Pan, Q.K.; Gao, L. An Effective Iterated Greedy Method for the Distributed Permutation Flowshop Scheduling Problem with Sequence-Dependent Setup Times. Swarm Evol. Comput. 2020, 59, 100742. [Google Scholar] [CrossRef]
- Zhao, F.; Hu, X.; Wang, L.; Li, Z. A Memetic Discrete Differential Evolution Algorithm for the Distributed Permutation Flow Shop Scheduling Problem. Complex Intell. Syst. 2022, 8, 141–161. [Google Scholar] [CrossRef]
- Gogos, C. Solving the Distributed Permutation Flow-Shop Scheduling Problem Using Constrained Programming. Appl. Sci. 2023, 13, 12562. [Google Scholar] [CrossRef]
- Yang, S.; Xu, Z. The Distributed Assembly Permutation Flowshop Scheduling Problem with Flexible Assembly and Batch Delivery. Int. J. Prod. Res. 2021, 59, 4053–4071. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Pan, Q.K.; Gao, L.; Miao, Z.H.; Peng, C. A Two-Phase Evolutionary Algorithm for Multi-Objective Distributed Assembly Permutation Flowshop Scheduling Problem. Swarm Evol. Comput. 2022, 74, 101128. [Google Scholar] [CrossRef]
- Pan, Y.; Gao, K.; Li, Z.; Wu, N. Improved Meta-Heuristics for Solving Distributed Lot-Streaming Permutation Flow Shop Scheduling Problems. IEEE Trans. Autom. Sci. Eng. 2023, 20, 361–371. [Google Scholar] [CrossRef]
- Luo, C.; Gong, W.; Li, R.; Lu, C. Problem-Specific Knowledge MOEA/D for Energy-Efficient Scheduling of Distributed Permutation Flow Shop in Heterogeneous Factories. Eng. Appl. Artif. Intell. 2023, 123, 106454. [Google Scholar] [CrossRef]
- Meng, T.; Pan, Q.K. A Distributed Heterogeneous Permutation Flowshop Scheduling Problem with Lot-Streaming and Carryover Sequence-Dependent Setup Time. Swarm Evol. Comput. 2021, 60, 100804. [Google Scholar] [CrossRef]
- Khare, A.; Agrawal, S. Effective Heuristics and Metaheuristics to Minimise Total Tardiness for the Distributed Permutation Flowshop Scheduling Problem. Int. J. Prod. Res. 2021, 59, 7266–7282. [Google Scholar] [CrossRef]
- Lin, Z.; Jing, X.L.; Jia, B.X. An Iterated Greedy Algorithm for Distributed Flowshops with Tardiness and Rejection Costs to Maximize Total Profit. Expert Syst. Appl. 2023, 233, 120830. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhen, T. Improved Jaya Algorithm for Energy-Efficient Distributed Heterogeneous Permutation Flow Shop Scheduling. J. Supercomput. 2025, 81, 434. [Google Scholar] [CrossRef]
- Song, H.; Li, J.; Du, Z.; Yu, X.; Xu, Y.; Zheng, Z.; Li, J. A Q-learning Driven Multi-Objective Evolutionary Algorithm for Worker Fatigue Dual-Resource-Constrained Distributed Hybrid Flow Shop. Comput. Oper. Res. 2025, 175, 106919. [Google Scholar] [CrossRef]
- Zhu, N.; Zhao, F.; Yu, Y.; Wang, L. A Cooperative Learning-Aware Dynamic Hierarchical Hyper-Heuristic for Distributed Heterogeneous Mixed No-Wait Flow-Shop Scheduling. Swarm Evol. Comput. 2024, 90, 101668. [Google Scholar] [CrossRef]
- Perez-Gonzalez, P.; Framinan, J.M. A Review and Classification on Distributed Permutation Flowshop Scheduling Problems. Eur. J. Oper. Res. 2023, 312, 1–21. [Google Scholar] [CrossRef]
- Mraihi, T.; Driss, O.B.; El-Haouzi, H.B. Distributed Permutation Flow Shop Scheduling Problem with Worker Flexibility: Review, Trends and Model Proposition. Expert Syst. Appl. 2023, 238, 121947. [Google Scholar] [CrossRef]
- Kapadia, M.S.; Uzsoy, R.; Starly, B.; Warsing, D.P. A Genetic Algorithm for Order Acceptance and Scheduling in Additive Manufacturing. Int. J. Prod. Res. 2021, 60, 1–18. [Google Scholar] [CrossRef]
- Kan, A.R. General Flow-Shop and Job-Shop Problems. In Machine Scheduling Problems; Springer: Boston, MA, USA, 1976; pp. 106–130. [Google Scholar]
- Pan, Q.K.; Tasgetiren, M.F.; Liang, Y.C. A Discrete Particle Swarm Optimization Algorithm for the No-Wait Flowshop Scheduling Problem. Comput. Oper. Res. 2008, 35, 2807–2839. [Google Scholar] [CrossRef]
- Marini, F.; Walczak, B. Particle Swarm Optimization (PSO). A Tutorial. Chemom. Intell. Lab. Syst. 2015, 149, 153–165. [Google Scholar] [CrossRef]
- Cerveira, M.I.F. Heuristics for the Distributed Permutation Flowshop Scheduling Problem with the Weighted Tardiness Objective. 2019. Available online: https://www.proquest.com/openview/109fa27057466f781cfeac17a0b99ee1/1?pq-origsite=gscholar&cbl=2026366&diss=y (accessed on 3 March 2025).
- Ruiz, R.; Stützle, T. An Iterated Greedy Heuristic for the Sequence Dependent Setup Times Flowshop Problem with Makespan and Weighted Tardiness Objectives. Eur. J. Oper. Res. 2008, 187, 1143–1159. [Google Scholar] [CrossRef]
- Molina-Sánchez, L.P.; González-Neira, E.M. GRASP to Minimize Total Weighted Tardiness in a Permutation Flow Shop Environment. Int. J. Ind. Eng. Comput. 2016, 7, 161–176. [Google Scholar] [CrossRef]
OA | Framework | Setup | Etc. | Method | Objective | ||||
---|---|---|---|---|---|---|---|---|---|
Homo | Hetero | Etc. | SD | SI | |||||
[16] | √ | √ | Mathematical model, IGR | Min. | |||||
[15] | √ | √ | MILP, CP, ES_en | Min. | |||||
[17] | √ | MMDE | Min. | ||||||
[18] | √ | Heuristic, CP | Min. | ||||||
[19] | √ | Assembly factories | Batch Delivery | Heuristic, VND, IG | Min. DTC | ||||
[20] | √ | Assembly line | TEA | Min. {TF, TT} | |||||
[21] | √ | √ | Lot-Streaming | Mathematical model, GA, PSO, ABC, HS, Jaya | Min. | ||||
[22] | √ | KMOEA/D | Min. {} | ||||||
[23] | √ | √ | Lot-streaming | MILP, Constructive Heuristic, NEABC | Min. | ||||
[24] | √ | MILP, HHO, IG | Min. TD | ||||||
[25] | √ | √ | Deadline | MILP, IG_TR | Max. Total profit | ||||
[26] | √ | Jaya | Min. {, TEC} | ||||||
[27] | √ | Worker fatigue | Q-learning driven multi-objective evolutionary algorithm | Min. | |||||
[28] | √ | √ | No-wait | Hyper-heuristic | Min. | ||||
This | √ | √ | √ | MILP, GA, PSO | Max. Total profit |
Small-Sized Instances | Large-Sized Instances | |
---|---|---|
3, 4 | 5, 6, 7 | |
3, 4 | 5, 10, 15 | |
8, 10, 12 | 100, 150, 200 | |
(1000 $) | ||
(min) | ||
(min) | ||
(min) | ||
0.01 | 0.001 | |
Fitness Measure |
Ins. | MILP | PSO | GA | |||||||
---|---|---|---|---|---|---|---|---|---|---|
RPD | CPU | RPD | CPU | RPD | CPU | |||||
1 | 3 | 3 | 8 | 173.00 | 173.00 | 0.38 | 0.30 | 2.01 | 0.00 | 2.57 |
2 | 10 | 219.40 | 219.40 | 81.89 | 1.99 | 2.26 | 0.54 | 2.97 | ||
3 | 12 | 228.10 | 228.10 | 1800++ | 4.54 | 2.32 | 2.63 | 2.98 | ||
4 | 4 | 8 | 181.00 | 181.00 | 0.19 | 0.00 | 2.30 | 0.00 | 2.92 | |
5 | 10 | 239.00 | 239.00 | 0.38 | 0.00 | 2.68 | 0.00 | 3.35 | ||
6 | 12 | 265.00 | 265.00 | 65.61 | 2.83 | 2.90 | 1.87 | 3.60 | ||
7 | 4 | 3 | 8 | 175.00 | 175.00 | 0.47 | 0.00 | 2.09 | 0.00 | 2.74 |
8 | 10 | 232.00 | 232.00 | 2.95 | 0.00 | 2.41 | 0.00 | 3.11 | ||
9 | 12 | 266.80 | 266.80 | 1800++ | 3.29 | 2.72 | 1.95 | 3.42 | ||
10 | 4 | 8 | 184.00 | 184.00 | 0.23 | 0.00 | 2.45 | 0.00 | 3.13 | |
11 | 10 | 228.00 | 228.00 | 0.45 | 0.00 | 2.85 | 0.00 | 3.57 | ||
12 | 12 | 302.00 | 302.00 | 4.34 | 0.00 | 3.22 | 0.00 | 4.03 | ||
Mean | 224.44 | 313.09 | 1.08 | 2.52 | 0.58 | 3.20 |
Ins. | BH | PSO | GA | |||||||
---|---|---|---|---|---|---|---|---|---|---|
RPD | CPU | RPD | CPU | RPD | CPU | |||||
1 | 5 | 5 | 100 | 2085.28 | 58.54 | <0.01 | 0.43 | 51.16 | 0.18 | 60.14 |
2 | 150 | 3117.11 | 73.51 | <0.01 | 0.50 | 76.09 | 0.24 | 88.90 | ||
3 | 200 | 4089.50 | 79.56 | <0.01 | 0.52 | 100.32 | 0.31 | 117.30 | ||
4 | 10 | 100 | 2141.00 | 52.19 | <0.01 | 0.50 | 88.11 | 0.25 | 99.32 | |
5 | 150 | 3199.08 | 66.30 | <0.01 | 0.52 | 130.91 | 0.22 | 147.78 | ||
6 | 200 | 4057.96 | 75.97 | <0.01 | 0.67 | 173.42 | 0.34 | 195.25 | ||
7 | 15 | 100 | 2110.56 | 41.32 | <0.01 | 0.47 | 124.58 | 0.20 | 138.82 | |
8 | 150 | 3247.79 | 63.01 | <0.01 | 0.56 | 184.35 | 0.25 | 206.29 | ||
9 | 200 | 4158.53 | 71.23 | <0.01 | 0.51 | 246.16 | 0.21 | 273.49 | ||
10 | 6 | 5 | 100 | 2199.86 | 49.42 | <0.01 | 0.33 | 52.12 | 0.19 | 61.29 |
11 | 150 | 3094.24 | 67.66 | <0.01 | 0.45 | 77.01 | 0.24 | 90.54 | ||
12 | 200 | 4158.09 | 76.40 | <0.01 | 0.41 | 101.81 | 0.29 | 119.55 | ||
13 | 10 | 100 | 2134.06 | 38.61 | <0.01 | 0.30 | 88.97 | 0.13 | 100.68 | |
14 | 150 | 3265.71 | 60.56 | <0.01 | 0.34 | 132.08 | 0.20 | 149.32 | ||
15 | 200 | 4132.82 | 70.42 | <0.01 | 0.41 | 175.08 | 0.29 | 197.79 | ||
16 | 15 | 100 | 2285.39 | 30.82 | <0.01 | 0.25 | 124.52 | 0.16 | 140.00 | |
17 | 150 | 3263.94 | 54.20 | <0.01 | 0.27 | 186.84 | 0.10 | 208.31 | ||
18 | 200 | 4289.71 | 65.40 | <0.01 | 0.43 | 247.83 | 0.28 | 276.32 | ||
19 | 7 | 5 | 100 | 2246.76 | 39.55 | <0.01 | 0.19 | 52.83 | 0.10 | 62.43 |
20 | 150 | 3267.91 | 61.30 | <0.01 | 0.32 | 78.12 | 0.27 | 92.08 | ||
21 | 200 | 4233.85 | 72.09 | <0.01 | 0.39 | 103.20 | 0.40 | 122.14 | ||
22 | 10 | 100 | 2301.37 | 28.26 | <0.01 | 0.23 | 89.61 | 0.17 | 101.81 | |
23 | 150 | 3244.54 | 54.28 | <0.01 | 0.18 | 133.15 | 0.17 | 151.24 | ||
24 | 200 | 4229.25 | 67.08 | <0.01 | 0.33 | 176.52 | 0.24 | 200.70 | ||
25 | 15 | 100 | 2230.94 | 22.31 | <0.01 | 0.18 | 126.08 | 0.12 | 141.21 | |
26 | 150 | 3301.48 | 45.13 | <0.01 | 0.24 | 186.80 | 0.17 | 210.39 | ||
27 | 200 | 4261.60 | 60.05 | <0.01 | 0.24 | 252.75 | 0.16 | 279.27 | ||
Mean | 3198.09 | 57.23 | <0.01 | 0.38 | 131.87 | 0.22 | 149.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, S.J.; Kim, B.S. An Optimization Problem of Distributed Permutation Flowshop Scheduling with an Order Acceptance Strategy in Heterogeneous Factories. Mathematics 2025, 13, 877. https://doi.org/10.3390/math13050877
Lee SJ, Kim BS. An Optimization Problem of Distributed Permutation Flowshop Scheduling with an Order Acceptance Strategy in Heterogeneous Factories. Mathematics. 2025; 13(5):877. https://doi.org/10.3390/math13050877
Chicago/Turabian StyleLee, Seung Jae, and Byung Soo Kim. 2025. "An Optimization Problem of Distributed Permutation Flowshop Scheduling with an Order Acceptance Strategy in Heterogeneous Factories" Mathematics 13, no. 5: 877. https://doi.org/10.3390/math13050877
APA StyleLee, S. J., & Kim, B. S. (2025). An Optimization Problem of Distributed Permutation Flowshop Scheduling with an Order Acceptance Strategy in Heterogeneous Factories. Mathematics, 13(5), 877. https://doi.org/10.3390/math13050877