Results of Certain Subclasses of Univalent Function Related to Bessel Functions
Abstract
1. Introduction and Preliminaries
1.1. Definition
1.2. Bessel Function
2. Main Result
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goodman, A.W. On uniformly convex functions. Ann. Polon. Math. 1991, 56, 87–92. [Google Scholar] [CrossRef]
- Rønning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Amer. Math. Soc. 1993, 118, 189–196. [Google Scholar] [CrossRef]
- Kanas, S.R.; Wiśniowska-Wajnryb, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Kanas, S.R.; Wiśniowska-Wajnryb, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.R.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions. Integral Transform. Spec. Funct. 2000, 9, 121–132. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent Functions; Mariner Publishing Co., Inc.: Tampa, FL, USA, 1983; Volume II. [Google Scholar]
- Sarkar, S.; Das, S.; Mondal, S.R. Geometric Properties of Normalized Galué Type Struve Function. Symmetry 2024, 16, 211. [Google Scholar] [CrossRef]
- Silverman, H.; Rosy, T.; Kavitha, S. On certain Sufficient condition involving Gaussian hypergeometric functions. Int. J. Math. Math. Sci. 2009, 14, 989603. [Google Scholar] [CrossRef]
- Sivasubramanian, S.; Sokół, J. Hypergeometric transforms in certain classes of analytic functions. Math. Comput. Model. 2011, 54, 3076–3082. [Google Scholar] [CrossRef]
- Sivasubramanian, S.; Rosy, T.; Muthunagai, K. Certain sufficient conditions for a subclass of analytic functions involving Hohlov operator. Comput. Math. Appl. 2011, 62, 4479–4485. [Google Scholar] [CrossRef]
- Soni, A.; Bansal, D. Certain geometric properties of generalized Bessel-Maitland function. Stud. Univ. Babeş-Bolyai Math. 2023, 68, 789–798. [Google Scholar] [CrossRef]
- Alarifi, N.M.; Mondal, S.R. On Geometric Properties of Bessel–Struve Kernel Functions in Unit Disc. Mathematics 2022, 10, 2516. [Google Scholar] [CrossRef]
- Orhan, H.; Yagmur, N. Geometric properties of generalized Struve functions. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. 2017, 63, 229–244. [Google Scholar] [CrossRef]
- Aktaş, İ.; Cotîrlă, L.-I. Certain Geometrical Properties and Hardy Space of Generalized k-Bessel Functions. Symmetry 2024, 16, 1597. [Google Scholar] [CrossRef]
- Nawaz, M.U.; Breaz, D.; Raza, M.; Cotîrlă, L.-I. Starlikeness and Convexity of Generalized Bessel-Maitland Function. Axioms 2024, 13, 691. [Google Scholar] [CrossRef]
- Bulboacă, T.; Zayed, H.M. Analytical and geometrical approach to the generalized Bessel function. J. Inequal. Appl. 2024, 51. [Google Scholar] [CrossRef]
- Kazımoğlu, S. Radii of γ-Spirallike of q-Special Functions. Mathematics 2014, 12, 2261. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K. Applications of fractional calculus to parabolic starlike and uniformly convex functions. Comput. Math. Appl. 2000, 39, 57–69. [Google Scholar] [CrossRef]
- Silverman, H. Univalent functions with negative coefficients. Proc. Amer. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Dixit, K.K.; Pal, S.K. On a class of univalent functions related to complex order. Indian J. Pure Appl. Math. 1995, 26, 889–896. [Google Scholar]
- Baricz, Á. Generalized Bessel Functions of the First Kind; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Baricz, Á.; Frasin, B.A. Univalence of integral operators involving Bessel functions. Appl. Math. Lett. 2010, 23, 371–376. [Google Scholar] [CrossRef]
- Baricz, Á.; Ponnusamy, S. Starlikeness and convexity of generalized Bessel functions. Integral Transform. Spec. Funct. 2010, 21, 641–653. [Google Scholar] [CrossRef]
- Mondal, S.R.; Giri, M.K.; Kondooru, R. Sufficient Conditions for Linear Operators Related to Confluent Hypergeometric Function and Generalized Bessel Function of the First Kind to Belong to a Certain Class of Analytic Functions. Symmetry 2024, 16, 662. [Google Scholar] [CrossRef]
- Baricz, Á. Geometric properties of generalized Bessel functions. Publ. Math. Debrecen 2008, 73, 155–178. [Google Scholar] [CrossRef]
- Silverman, H. Univalent functions having univalent derivatives. Rocky Mt. J. Math. 1986, 16, 55–61. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prakash, V.; Breaz, D.; Sivasubramanian, S.; El-Deeb, S.M. Results of Certain Subclasses of Univalent Function Related to Bessel Functions. Mathematics 2025, 13, 569. https://doi.org/10.3390/math13040569
Prakash V, Breaz D, Sivasubramanian S, El-Deeb SM. Results of Certain Subclasses of Univalent Function Related to Bessel Functions. Mathematics. 2025; 13(4):569. https://doi.org/10.3390/math13040569
Chicago/Turabian StylePrakash, Venkatesan, Daniel Breaz, Srikandan Sivasubramanian, and Sheza M. El-Deeb. 2025. "Results of Certain Subclasses of Univalent Function Related to Bessel Functions" Mathematics 13, no. 4: 569. https://doi.org/10.3390/math13040569
APA StylePrakash, V., Breaz, D., Sivasubramanian, S., & El-Deeb, S. M. (2025). Results of Certain Subclasses of Univalent Function Related to Bessel Functions. Mathematics, 13(4), 569. https://doi.org/10.3390/math13040569