Results of Certain Subclasses of Univalent Function Related to Bessel Functions
Abstract
:1. Introduction and Preliminaries
1.1. Definition
1.2. Bessel Function
2. Main Result
3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Goodman, A.W. On uniformly convex functions. Ann. Polon. Math. 1991, 56, 87–92. [Google Scholar] [CrossRef]
- Rønning, F. Uniformly convex functions and a corresponding class of starlike functions. Proc. Amer. Math. Soc. 1993, 118, 189–196. [Google Scholar] [CrossRef]
- Kanas, S.R.; Wiśniowska-Wajnryb, A. Conic domains and starlike functions. Rev. Roum. Math. Pures Appl. 2000, 45, 647–657. [Google Scholar]
- Kanas, S.R.; Wiśniowska-Wajnryb, A. Conic regions and k-uniform convexity. J. Comput. Appl. Math. 1999, 105, 327–336. [Google Scholar] [CrossRef]
- Kanas, S.R.; Srivastava, H.M. Linear operators associated with k-uniformly convex functions. Integral Transform. Spec. Funct. 2000, 9, 121–132. [Google Scholar] [CrossRef]
- Goodman, A.W. Univalent Functions; Mariner Publishing Co., Inc.: Tampa, FL, USA, 1983; Volume II. [Google Scholar]
- Sarkar, S.; Das, S.; Mondal, S.R. Geometric Properties of Normalized Galué Type Struve Function. Symmetry 2024, 16, 211. [Google Scholar] [CrossRef]
- Silverman, H.; Rosy, T.; Kavitha, S. On certain Sufficient condition involving Gaussian hypergeometric functions. Int. J. Math. Math. Sci. 2009, 14, 989603. [Google Scholar] [CrossRef]
- Sivasubramanian, S.; Sokół, J. Hypergeometric transforms in certain classes of analytic functions. Math. Comput. Model. 2011, 54, 3076–3082. [Google Scholar] [CrossRef]
- Sivasubramanian, S.; Rosy, T.; Muthunagai, K. Certain sufficient conditions for a subclass of analytic functions involving Hohlov operator. Comput. Math. Appl. 2011, 62, 4479–4485. [Google Scholar] [CrossRef]
- Soni, A.; Bansal, D. Certain geometric properties of generalized Bessel-Maitland function. Stud. Univ. Babeş-Bolyai Math. 2023, 68, 789–798. [Google Scholar] [CrossRef]
- Alarifi, N.M.; Mondal, S.R. On Geometric Properties of Bessel–Struve Kernel Functions in Unit Disc. Mathematics 2022, 10, 2516. [Google Scholar] [CrossRef]
- Orhan, H.; Yagmur, N. Geometric properties of generalized Struve functions. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. 2017, 63, 229–244. [Google Scholar] [CrossRef]
- Aktaş, İ.; Cotîrlă, L.-I. Certain Geometrical Properties and Hardy Space of Generalized k-Bessel Functions. Symmetry 2024, 16, 1597. [Google Scholar] [CrossRef]
- Nawaz, M.U.; Breaz, D.; Raza, M.; Cotîrlă, L.-I. Starlikeness and Convexity of Generalized Bessel-Maitland Function. Axioms 2024, 13, 691. [Google Scholar] [CrossRef]
- Bulboacă, T.; Zayed, H.M. Analytical and geometrical approach to the generalized Bessel function. J. Inequal. Appl. 2024, 51. [Google Scholar] [CrossRef]
- Kazımoğlu, S. Radii of γ-Spirallike of q-Special Functions. Mathematics 2014, 12, 2261. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Mishra, A.K. Applications of fractional calculus to parabolic starlike and uniformly convex functions. Comput. Math. Appl. 2000, 39, 57–69. [Google Scholar] [CrossRef]
- Silverman, H. Univalent functions with negative coefficients. Proc. Amer. Math. Soc. 1975, 51, 109–116. [Google Scholar] [CrossRef]
- Dixit, K.K.; Pal, S.K. On a class of univalent functions related to complex order. Indian J. Pure Appl. Math. 1995, 26, 889–896. [Google Scholar]
- Baricz, Á. Generalized Bessel Functions of the First Kind; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Baricz, Á.; Frasin, B.A. Univalence of integral operators involving Bessel functions. Appl. Math. Lett. 2010, 23, 371–376. [Google Scholar] [CrossRef]
- Baricz, Á.; Ponnusamy, S. Starlikeness and convexity of generalized Bessel functions. Integral Transform. Spec. Funct. 2010, 21, 641–653. [Google Scholar] [CrossRef]
- Mondal, S.R.; Giri, M.K.; Kondooru, R. Sufficient Conditions for Linear Operators Related to Confluent Hypergeometric Function and Generalized Bessel Function of the First Kind to Belong to a Certain Class of Analytic Functions. Symmetry 2024, 16, 662. [Google Scholar] [CrossRef]
- Baricz, Á. Geometric properties of generalized Bessel functions. Publ. Math. Debrecen 2008, 73, 155–178. [Google Scholar] [CrossRef]
- Silverman, H. Univalent functions having univalent derivatives. Rocky Mt. J. Math. 1986, 16, 55–61. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prakash, V.; Breaz, D.; Sivasubramanian, S.; El-Deeb, S.M. Results of Certain Subclasses of Univalent Function Related to Bessel Functions. Mathematics 2025, 13, 569. https://doi.org/10.3390/math13040569
Prakash V, Breaz D, Sivasubramanian S, El-Deeb SM. Results of Certain Subclasses of Univalent Function Related to Bessel Functions. Mathematics. 2025; 13(4):569. https://doi.org/10.3390/math13040569
Chicago/Turabian StylePrakash, Venkatesan, Daniel Breaz, Srikandan Sivasubramanian, and Sheza M. El-Deeb. 2025. "Results of Certain Subclasses of Univalent Function Related to Bessel Functions" Mathematics 13, no. 4: 569. https://doi.org/10.3390/math13040569
APA StylePrakash, V., Breaz, D., Sivasubramanian, S., & El-Deeb, S. M. (2025). Results of Certain Subclasses of Univalent Function Related to Bessel Functions. Mathematics, 13(4), 569. https://doi.org/10.3390/math13040569