EDICA: A Hybrid Ensemble Architecture Using Deep Learning Models for Fine-Grained Image Classification
Abstract
1. Introduction
2. Related Work
2.1. Hybrid Models for Image Classification
2.2. Fine-Grained Image Classification
3. Materials and Methods
3.1. Ensemble Deep Image Classification Architecture
3.2. Evaluation Metrics
3.2.1. Object Detection Metrics
3.2.2. Object Classification Metrics
4. Results
4.1. Object Detection Results
4.2. Object Classification Results
4.2.1. Classification Results for a Single Class
4.2.2. Classification Results for Multi-Class
- CAC (Correct Average Confidence): average confidence in correct predictions.
- IAC (Incorrect Average Confidence): average confidence in incorrect predictions.
- ICI (Image Classification Index): measures how many predictions were correct per image.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EDICA | Ensemble Deep Image Classification |
| YOLO | You Only Look Once |
| SSD | Single Shot MultiBox Detector |
| R-CNN | Region-based Convolutional Neural Network |
| CNN | Convolutional Neural Network |
| LSTM | Long Short-Term Memory |
| DNN | Deep Neural Network |
| DBN | Deep Belief Network |
| DBF | Dynamic Belief Fusion |
| ViT | Vision Transformer |
| VGG | Visual Geometry Group |
| RT DETR | Real-Time DEtection Transformer |
| mAP | mean Average Precision |
| IoU | Intersection over Union |
| COCO | Common Objects in Context |
| ACP | Average Confidence Probability |
| ICI | Image Classification Index |
| CAC | Correct Average Confidence |
| IAC | Incorrect Average Confidence |
| TP | True Positives |
| FP | False Positives |
References
- Divya, N.; Al-Omari, O.; Pradhan, R.; Ulmas, Z.; Krishna, R.V.V.; El-Ebiary, T.Y.A.B.; Rao, V.S. Object detection in real-time video surveillance using attention based transformer-YOLOv8 model. Alex. Eng. J. 2025, 118, 482–495. [Google Scholar] [CrossRef]
- Alamri, F. Comprehensive study on object detection for security and surveillance: A concise review. Multimed. Tools Appl. 2025, 84, 42321–42352. [Google Scholar] [CrossRef]
- Ragab, M.G.; Abdulkadir, S.J.; Muneer, A.; Alqushaibi, A.; Sumiea, E.H.; Qureshi, R. A Comprehensive Systematic Review of YOLO for Medical Object Detection (2018 to 2023). IEEE Access 2024, 12, 57815–57836. [Google Scholar] [CrossRef]
- Saraei, M.; Lalinia, M.; Lee, E.-J. Deep Learning-Based Medical Object Detection: A Survey. IEEE Access 2025, 13, 53019–53038. [Google Scholar] [CrossRef]
- Alanazi, H. Optimizing Medical Image Analysis: A Performance Evaluation of YOLO-Based Segmentation Models. Int. J. Adv. Comput. Sci. Appl. 2025, 16, 1167. [Google Scholar] [CrossRef]
- Kanna, S.K.; Ramalingam, K.; Pazhanivelan, P.; Jagadeeswaran, R.; Prabu, P.C. YOLO deep learning algorithm for object detection in agriculture: A review. J. Agric. Eng. 2024, 55, 1. [Google Scholar] [CrossRef]
- Das, A.; Pathan, F.; Jim, J.R.; Kabir, M.M.; Mridha, M.F. Deep learning-based classification, detection, and segmentation of tomato leaf diseases: A state-of-the-art review. Artif. Intell. Agric. 2025, 15, 192–220. [Google Scholar] [CrossRef]
- Gheorghe, C.; Duguleana, M.; Boboc, R.G.; Postelnicu, C.C. Analyzing Real-Time Object Detection with YOLO Algorithm in Automotive Applications: A Review. Comput. Model. Eng. Sci. 2024, 141, 1939–1981. [Google Scholar] [CrossRef]
- Kang, S.; Hu, Z.; Liu, L.; Zhang, K.; Cao, Z. Object Detection YOLO Algorithms and Their Industrial Applications: Overview and Comparative Analysis. Electronics 2025, 14, 1104. [Google Scholar] [CrossRef]
- El Kalach, F.; Farahani, M.; Wuest, T.; Harik, R. Real-time defect detection and classification in robotic assembly lines: A machine learning framework. Robot. Comput.-Integr. Manuf. 2025, 95, 103011. [Google Scholar] [CrossRef]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- Tian, Y.; Ye, Q.; Doermann, D. YOLOv12: Attention-Centric Real-Time Object Detectors. arXiv 2025, arXiv:2502.12524. [Google Scholar] [CrossRef]
- Ajayi, O.G.; Ashi, J.; Guda, B. Performance evaluation of YOLO v5 model for automatic crop and weed classification on UAV images. Smart Agric. Technol. 2023, 5, 100231. [Google Scholar] [CrossRef]
- Saranya, M.; Praveena, R. Accurate and real-time brain tumour detection and classification using optimized YOLOv5 architecture. Sci. Rep. 2025, 15, 25286. [Google Scholar] [CrossRef]
- Jocher, G. YOLOv5; Ultralytics: Frederick, MD, USA, 2020; Available online: https://github.com/ultralytics/yolov5 (accessed on 23 April 2025).
- Li, C.; Li, L.; Jiang, H.; Weng, K.; Geng, Y.; Li, L.; Ke, Z.; Li, Q.; Cheng, M.; Nie, W.; et al. YOLOv6: A Single-Stage Object Detection Framework for Industrial Applications. arXiv 2022. [Google Scholar] [CrossRef]
- Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors. arXiv 2022, arXiv:2207.02696. [Google Scholar] [CrossRef]
- Jocher, G.; Chaurasia, A.; Qiu, J. YOLOv8, version 8.0.0; [Software]; Ultralytics: Frederick, MD, USA, 2023; Available online: https://github.com/autogyro/yolo-V8 (accessed on 28 April 2025).
- Wang, C.-Y.; Yeh, I.-H.; Liao, H.-Y.M. YOLOv9: Learning What You Want to Learn Using Programmable Gradient Information. arXiv 2024, arXiv:2402.13616. [Google Scholar] [CrossRef]
- Wang, A.; Chen, H.; Liu, L.; Chen, K.; Lin, Z.; Han, J. YOLOv10: Real-Time End-to-End Object Detection. arXiv 2024, arXiv:2405.14458. [Google Scholar] [CrossRef]
- Jocher, G.; Qiu, J. YOLO11, version 11.0.0; [Software]; Ultralytics: Frederick, MD, USA, 2024; Available online: https://github.com/ultralytics/ultralytics (accessed on 12 May 2025).
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. In Computer Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Springer: Cham, Switzerland, 2016; pp. 21–37. [Google Scholar] [CrossRef]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef]
- Zhao, Z.Q.; Zheng, P.; Xu, S.T.; Wu, X. Object detection with deep learning: A review. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3212–3232. [Google Scholar] [CrossRef]
- YOLO, version 8. Ultralytics Official Documentation. Ultralytics: Frederick, MD, USA, 2023. Available online: https://docs.ultralytics.com (accessed on 13 May 2025).
- Terven, J.; Córdova Esparza, D.M.; Romero González, J.A. A comprehensive review of YOLO architectures in computer vision: From YOLOv1 to YOLOv8 and YOLO NAS. Mach. Learn. Knowl. Extr. 2023, 5, 1680–1716. [Google Scholar] [CrossRef]
- Sapkota, R.; Meng, Z.; Churuvija, M.; Du, X.; Ma, Z.; Karkee, M. Comprehensive performance evaluation of YOLOv12, YOLOv11, YOLOv10, YOLOv9 and YOLOv8 on detecting and counting fruitlet in complex orchard environments. Comput. Electron. Agric. 2024, 215, 108622. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q.V. EfficientNet: Rethinking model scaling for convolutional neural networks. In Proceedings of the 36th International Conference on Machine Learning (ICML 2019), Long Beach, CA, USA, 9–15 June 2019; PMLR: New York, NY, USA, 2019; pp. 6105–6114. [Google Scholar] [CrossRef]
- Mustapha, A.A.; Saruchi, S.A.; Supriyono, H.; Solihin, M.I. A Hybrid Deep Learning Model for Waste Detection and Classification Utilizing YOLOv8 and CNN. Eng. Proc. 2025, 84, 82. [Google Scholar] [CrossRef]
- Alashjaee, A.; AlEisa, H.; Darem, A.; Marzouk, R. A Hybrid Object Detection Approach for Visually Impaired Persons Using Pigeon-Inspired Optimization and Deep Learning Models. Sci. Rep. 2025, 15, 9688. [Google Scholar] [CrossRef]
- Cani, J.; Diou, C.; Evangelatos, S.; Radoglou-Grammatikis, P.; Argyriou, V.; Sarigiannidis, P.; Varlamis, I.; Papadopoulos, G.T. X-ray Illicit Object Detection Using Hybrid CNN-Transformer Neural Network Architectures. arXiv 2025. [Google Scholar] [CrossRef]
- Ali, M.A.M.; Aly, T.; Raslan, A.T.; Gheith, M.; Amin, E.A. Advancing crowd object detection: A review of YOLO, CNN and ViTs hybrid approach. J. Intell. Learn. Syst. Appl. 2024, 16, 175–221. [Google Scholar] [CrossRef]
- Abirami, G.; Nagadevi, S.; Jayaseeli, J.; Rao, T.; Patibandla, R.S.M.L.; Aluvalu, R.; Srihari, K. An Integration of Ensemble Deep Learning with Hybrid Optimization Approaches for Effective Underwater Object Detection and Classification Model. Sci. Rep. 2025, 15, 10902. [Google Scholar] [CrossRef]
- Ganaie, M.A.; Hu, M.; Malik, A.K.; Tanveer, M.; Suganthan, P.N. Ensemble deep learning: A review. arXiv 2021. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, S.; Wang, X.; Li, Y. A fragmented neural network ensemble method and its application to image classification. Sci. Rep. 2024, 14, 2291. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, H. DBF: Dynamic belief fusion for combining multiple object detectors. arXiv 2022. [Google Scholar] [CrossRef]
- Jia, N.; Guo, J.; Li, Y.; Tang, S.; Xu, L.; Liu, L.; Xing, J. A fine-grained image classification algorithm based on self-supervised learning and multi-feature fusion of blood cells. Sci. Rep. 2024, 14, 22964. [Google Scholar] [CrossRef]
- Shi, Y.; Hong, Q.; Yan, Y.; Li, J. LDH-ViT: Fine-grained visual classification through local concealment and feature selection. Pattern Recognit. 2025, 161, 111224. [Google Scholar] [CrossRef]
- Chen, C.-S.; Chen, G.-Y.; Zhou, D.; Jiang, D.; Chen, D.; Chang, S.-H. Improving fine-grained food classification using deep residual learning and selective state space models. PLoS ONE 2025, 20, e0322695. [Google Scholar] [CrossRef]
- Zhu, S.; Zhang, X.; Wang, Y.; Wang, Z.; Sun, J. A fine-grained image classification method based on information interaction. IET Image Process 2024, 18, 4852–4861. [Google Scholar] [CrossRef]
- Lim, J.M.; Lim, K.M.; Lee, C.P.; Lim, J.Y. A review of few-shot fine-grained image classification. Expert Syst. Appl. 2025, 275, 127054. [Google Scholar] [CrossRef]
- Padilla, R.; Netto, S.L.; da Silva, E.A.B. A survey on performance metrics for object-detection algorithms. In Proceedings of the 2020 International Conference on Systems, Signals and Image Processing (IWSSIP), IEEE, Niteroi, Brazil, 1–3 July 2020; pp. 237–242. [Google Scholar] [CrossRef]
- Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Dollár, P.; Zitnick, C.L. Microsoft COCO: Common Objects in Context. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2014; pp. 740–755. [Google Scholar] [CrossRef]
- Guo, C.; Pleiss, G.; Sun, Y.; Weinberger, K.Q. On calibration of modern neural networks. In Proceedings of the 34th International Conference on Machine Learning (ICML 2017), Sydney, Australia, 6–11 August 2017; PMLR: New York, NY, USA; Volume 70, pp. 1321–1330. [Google Scholar] [CrossRef]
- Ultralytics. African Wildlife Dataset [Dataset]; Ultralytics: Frederick, MD, USA. Available online: https://docs.ultralytics.com/datasets/detect/african-wildlife/ (accessed on 15 February 2025).
- Gpiosenka, S.F. Explore 510 Bird Species [Dataset]; Kaggle: San Francisco, CA, USA. Available online: https://www.kaggle.com/code/gpiosenka/explore-510-bird-species-dataset (accessed on 15 February 2025).
- Yudha, I.S. Plants Type Datasets [Dataset]; Kaggle: San Francisco, CA, USA, 2023. [Google Scholar] [CrossRef]
- Hughes, D.P.; Salathé, M. An open access repository of images on plant health to enable the development of mobile disease diagnostics through machine learning and crowdsourcing. arXiv 2015. [Google Scholar] [CrossRef]
- Parkhi, O.M.; Vedaldi, A.; Zisserman, A.; Jawahar, C.V. The Oxford-IIIT Pet Dataset [Data set]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012; University of Oxford: Oxford, UK, 2012. Available online: https://www.robots.ox.ac.uk/~vgg/data/pets/ (accessed on 15 February 2025).
- Roboflow. (2024, Marzo). Frog Dataset [Dataset]. Roboflow Universe. Available online: https://universe.roboflow.com/frog-y6qeg/frog-ukiu5 (accessed on 15 February 2025).
- Zhang, X.; Zhou, X.; Lin, M.; Sun, J. ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 6848–6856. [Google Scholar] [CrossRef]







| Name | Metric | Definition |
|---|---|---|
| mAP | C = number of classes = precision curve as a function of recall for class c | The mAP metric defines the average accuracy for all classes, calculated as the area under the accuracy vs. recall curve. |
| mAP@50 | (IoU ) C = number of classes = area under the precision–recall curve of class c using IoU ≥ 0.50 | The mAP@50 measures the average accuracy, where a correct detection is considered if IoU ≥ 0.50. |
| mAP@75 | (IoU ) C = number of classes = area under the precision–recall curve of class c using IoU ≥ 0.75 | The mAP@75 uses a stricter threshold that penalizes minor errors in box placement. |
| mAP@[0.50:0.95] | The mAP@[0.50:0.95] adopted by the COCO benchmark [43] determines the mean mAP evaluated at 10 IoU thresholds, from 0.50 to 0.95, in 0.05 steps. | |
| Precision | TP and FP are the true and false positive measures, respectively. | The precision metric measures the proportion of true positives out of the total positive predictions. |
| Recall | FN and TP are the false negatives and true positives, respectively. | The metric recall calculates the proportion of true positives over the total number of real objects. |
| Latency | The latency measures the average time required to process an image, expressed in milliseconds. |
| Name | Metric | Definition |
|---|---|---|
| Accuracy | TP and FP are the true and false positives. TN and FN are the true and false negatives. | The accuracy obtains the index of correctly classified images relative to the total. |
| Consistency | TPc = number of true positive cases of the classifier c. N = number of classifiers. | The metric measures the consistency of classifiers operating together to classify the same subclass. As a result, the most appropriate ensemble of classifiers is defined. |
| ACP | NI = number of images evaluated. = highest confidence of each i-image. | This metric evaluates the level of confidence in the predictions made for each processed image. For each image, the classification with the highest probability is selected, regardless of whether the classifiers agree. |
| Name | Metric | Definition |
|---|---|---|
| ICI | i = image index number of subclasses correctly classified = number of subclasses misclassified NI = number of images evaluated | The ICI evaluates the correctly classified subclasses. |
| . | ||
| CAC | i = image index TP = true positives | This metric evaluates the average confidence that the model assigned to the correct predictions. |
| IAC | i = image index FP = false positives | This metric evaluates the average confidence of the model assigned to the incorrect predictions. |
| Class | Train | Val | Total |
|---|---|---|---|
| Dog | 280 | 60 | 340 |
| Cat | 258 | 53 | 581 |
| Bird | 242 | 50 | 292 |
| Fruit | 294 | 54 | 348 |
| Frog | 590 | 103 | 693 |
| African_fauna | 1052 | 225 | 1277 |
| Leaf | 386 | 53 | 439 |
| Total | 3102 | 598 | 3700 |
| Subclass | Train | Val | Total |
|---|---|---|---|
| Abyssinian | 118 | 23 | 141 |
| Beagle | 140 | 30 | 170 |
| Birman | 140 | 30 | 170 |
| Boxer | 140 | 30 | 170 |
| Frog | 265 | 103 | 368 |
| Goose | 268 | 27 | 295 |
| Papaya | 66 | 15 | 81 |
| Leaf | 306 | 83 | 389 |
| Pineapple | 118 | 14 | 132 |
| Rhino | 265 | 56 | 321 |
| Watermelon | 109 | 25 | 134 |
| Elephant | 268 | 51 | 319 |
| Zebra | 254 | 56 | 310 |
| Buffalo | 265 | 62 | 327 |
| Tordino | 117 | 23 | 140 |
| Total | 2839 | 628 | 3467 |
| Models | Precision | Recall | mAP50 | mAP75 | mAP (50–95) | Inference Time (ms) | Training Time (h) |
|---|---|---|---|---|---|---|---|
| YOLOv8m | 0.918 | 0.86 | 0.908 | 0.775 | 0.699 | 7.7 | 3.942 |
| YOLOv9m | 0.891 | 0.836 | 0.894 | 0.752 | 0.685 | 8.8 | 4.958 |
| YOLOv10m | 0.876 | 0.785 | 0.865 | 0.714 | 0.628 | 8.5 | 4.572 |
| YOLO11 | 0.89 | 0.842 | 0.895 | 0.723 | 0.664 | 8.1 | 4.191 |
| YOLO12 | 0.889 | 0.855 | 0.901 | 0.715 | 0.666 | 9.9 | 5.285 |
| RT DETR-L | 0.875 | 0.806 | 0.85 | 0.698 | 0.619 | 15.4 | 9.294 |
| Class | YOLOv8m | YOLOv9m | YOLOv10m | YOLO11 | YOLO12 | RT DETR-L |
|---|---|---|---|---|---|---|
| Bird | 0.972 | 0.965 | 0.922 | 0.946 | 0.891 | 0.938 |
| Cat | 0.956 | 0.9 | 0.909 | 0.827 | 0.878 | 0.868 |
| Dog | 0.913 | 0.868 | 0.893 | 0.864 | 0.861 | 0.911 |
| Frog | 0.793 | 0.739 | 0.707 | 0.774 | 0.794 | 0.673 |
| Fruit | 0.887 | 0.862 | 0.854 | 0.926 | 0.911 | 0.891 |
| Leaf | 0.988 | 0.988 | 0.97 | 0.989 | 0.988 | 0.987 |
| african_fauna | 0.919 | 0.916 | 0.876 | 0.904 | 0.899 | 0.857 |
| Avg. precision | 0.918 | 0.891 | 0.875 | 0.890 | 0.889 | 0.875 |
| Classifiers | Models | Accuracy | Consistency | ACP | Avg. Inference |
|---|---|---|---|---|---|
| 1 | Model 1: Yolov8m | 0.723 | - | - | 0.072 |
| Model 2: Yolo11m | 0.704 | - | - | 0.107 | |
| Model 3: Yolov8m − Resnet50 | 0.739 | - | - | 0.112 | |
| Model 4: ShuffleNet | 0.738 | - | - | 0.066 | |
| 2 | Model 2 + Model 1 | 0.738 | 0.808 | 0.84 | 0.167 |
| Model 1 + Model 3 | 0.745 | 0.824 | 0.86 | 0.199 | |
| Model 2 + Model 3 | 0.739 | 0.815 | 0.85 | 0.182 | |
| Model 4 + Model 2 | 0.77 | 0.706 | 0.906 | 0.096 | |
| Model 4 + Model 1 | 0.76 | 0.72 | 0.92 | 0.09 | |
| Model 4 + Model 3 | 0.762 | 0.726 | 0.923 | 0.105 | |
| 3 | Model 1 + Model 2 + Model 3 | 0.749 | 0.9 | 0.92 | 0.22 |
| Model 4 + Model 2 + Model 3 | 0.77 | 0.86 | 0.93 | 0.13 | |
| Model 4 + Model 1 + Model 3 | 0.766 | 0.87 | 0.93 | 0.11 | |
| Model 4 + Model 2 + Model 1 | 0.755 | 0.86 | 0.92 | 0.14 |
| Model A | Model B | χ2 Statistic | P_uncorrected | p-Holm |
|---|---|---|---|---|
| Model 2 | Model 1 + Model 3 + Model 2 | 14.7540984 | 0.000122481 | 0.01028841 |
| Model 2 | Model 4 + Model 3 | 19.0630631 | 1.26 × 10−5 | 0.00110028 |
| Model 2 | Model 4 + Model 1 | 16 | 6.33 × 10−5 | 0.00538411 |
| Model 2 | Model 4 + Model 2 | 31.0804598 | 2.48 × 10−8 | 2.23 × 10−6 |
| Model 2 | Model 4 + Model 1 + Model 3 | 21.8272727 | 2.98 × 10−6 | 0.00026253 |
| Model 2 | Model 4 + Model 2 + Model 4 | 31.5616438 | 1.93 × 10−8 | 1.76 × 10−6 |
| Model 2 | Model 4 + Model 2 + Model 1 | 21.9178082 | 2.85 × 10−6 | 0.00025328 |
| Model 1 | Model 4 + Model 2 | 12.4454546 | 0.00041901 | 0.03477786 |
| Model 1 | Model 4 + Model 1 + Model 3 | 18.3492064 | 1.84 × 10−5 | 0.0015815 |
| Classifiers | Models | Accuracy | ICI | CAC | IAC | Avg Time Inference |
|---|---|---|---|---|---|---|
| 1 | Model 1 | 0.677 | 0.669 | 0.871 | 0.77 | 0.292 |
| Model 2 | 0.612 | 0.639 | 0.87 | 0.594 | 0.299 | |
| Model 3 | 0.645 | 0.645 | 0.936 | 0.763 | 0.306 | |
| Model 4 | 0.613 | 0.583 | 0.86 | 0.625 | 0.15 | |
| 2 | Model 2 + Model 1 | 0.661 | 0.669 | 0.926 | 0.785 | 0.344 |
| Model 1 + Model 3 | 0.677 | 0.669 | 0.952 | 0.856 | 0.364 | |
| Model 2 + Model 3 | 0.677 | 0.669 | 0.953 | 0.816 | 0.371 | |
| Model 4 + Model 2 | 0.726 | 0.7 | 0.904 | 0.778 | 0.172 | |
| Model 4 + Model 1 | 0.693 | 0.669 | 0.933 | 0.825 | 0.162 | |
| Model 4 + Model 3 | 0.693 | 0.675 | 0.947 | 0.848 | 0.162 | |
| 3 | Model 1 + Model 2 + Model 3 | 0.693 | 0.706 | 0.954 | 0.89 | 0.45 |
| Model 4 + Model 2 + Model 3 | 0.726 | 0.7 | 0.958 | 0.86 | 0.22 | |
| Model 4 + Model 1 + Model 3 | 0.71 | 0.694 | 0.965 | 0.853 | 0.2 | |
| Model 4 + Model 2 + Model 1 | 0.726 | 0.731 | 0.932 | 0.841 | 0.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez Hernández, J.P.; González Hernández, A.J.; Solis, J.F.; Hernández Rabadán, D.L.; González-Barbosa, J.; Castilla Valdez, G. EDICA: A Hybrid Ensemble Architecture Using Deep Learning Models for Fine-Grained Image Classification. Mathematics 2025, 13, 3729. https://doi.org/10.3390/math13223729
Sánchez Hernández JP, González Hernández AJ, Solis JF, Hernández Rabadán DL, González-Barbosa J, Castilla Valdez G. EDICA: A Hybrid Ensemble Architecture Using Deep Learning Models for Fine-Grained Image Classification. Mathematics. 2025; 13(22):3729. https://doi.org/10.3390/math13223729
Chicago/Turabian StyleSánchez Hernández, Juan Paulo, Alan J. González Hernández, Juan Frausto Solis, Deny Lizbeth Hernández Rabadán, Javier González-Barbosa, and Guadalupe Castilla Valdez. 2025. "EDICA: A Hybrid Ensemble Architecture Using Deep Learning Models for Fine-Grained Image Classification" Mathematics 13, no. 22: 3729. https://doi.org/10.3390/math13223729
APA StyleSánchez Hernández, J. P., González Hernández, A. J., Solis, J. F., Hernández Rabadán, D. L., González-Barbosa, J., & Castilla Valdez, G. (2025). EDICA: A Hybrid Ensemble Architecture Using Deep Learning Models for Fine-Grained Image Classification. Mathematics, 13(22), 3729. https://doi.org/10.3390/math13223729

