A General Stability for a Modified Type III Thermoelastic Bresse System via the Longitudinal Displacement
Abstract
1. Introduction
2. Preliminaries
3. General Stability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bresse, J.A.C. Cours de Mecanique Appliquee; Mallet-Bachelier: Paris, France, 1859. [Google Scholar]
- Boussouira, F.A.; Muñoz Rivera, J.E.; Almeida Júnior, D.S. Stability to weak dissipative Bresse system. J. Math. Anal. Appl. 2011, 374, 481–498. [Google Scholar] [CrossRef]
- Soriano, J.A.; Charles, W.; Schulz, R. Asymptotic stability for Bresse systems. J. Math. Anal. Appl. 2014, 412, 369–380. [Google Scholar] [CrossRef]
- Santos, M.L.; Soufyane, A.; Almeida Junior, D.S. Asymptotic behavior to Bresse system with past history. Q. Appl. Math. 2015, 73, 23–54. [Google Scholar] [CrossRef]
- Guesmia, A.; Kirane, M. Uniform and weak stability of Bresse system with two infinite memories. Z. Angew. Math. Phys. 2016, 67, 1–39. [Google Scholar] [CrossRef]
- Messaoudi, S.A.; Hassan, J.H. New general decay results in a finite-memory Bresse system. Commun. Pure Appl. Anal. 2019, 18, 1637–1662. [Google Scholar] [CrossRef]
- Copetti, M.I.M.; El Arwadi, T.; Fernández, J.R.; Naso, M.G.; Youssef, W. Analysis of a contact problem for a viscoelastic Bresse system. ESAIM Math. Modell. Numer. Anal. 2021, 55, 887–911. [Google Scholar] [CrossRef]
- El Arwadi, T.; Youssef, W. On the stabilization of the Bresse beam with Kelvin–Voigt damping. Appl. Math. Optim. 2021, 83, 1831–1857. [Google Scholar] [CrossRef]
- Liu, Z.; Rao, B. Energy decay rate of the thermoelastic Bresse system. Z. Angew. Math. Phys. 2008, 60, 54–69. [Google Scholar] [CrossRef]
- Fatori, L.H.; Rivera, J.E.M. Rates of decay to weak thermoelastic Bresse system. IMA J. Appl. Math. 2010, 75, 881–904. [Google Scholar] [CrossRef]
- Dell’Oro, F. Asymptotic stability of thermoelastic systems of Bresse type. J. Differ. Equ. 2015, 258, 3902–3927. [Google Scholar] [CrossRef]
- Santos, M.L. Bresse System in Thermoelasticity of Type III Acting on Shear Force. J. Elast. 2016, 125, 185–216. [Google Scholar] [CrossRef]
- Keddi, A.; Apalara, T.A.; Messaoudi, S.A. Exponential and polynomial decay in a thermoelastic-Bresse system with second sound. Appl. Math. Optim. 2018, 77, 315–341. [Google Scholar] [CrossRef]
- Djellali, F.; Labidi, S.; Taallah, F. Existence and energy decay of a Bresse system with thermoelasticity of type III. Z. Angew. Math. Phys. 2022, 73, 1–25. [Google Scholar] [CrossRef]
- Guesmia, A. The effect of the heat conduction of types I and III on the decay rate of the Bresse system via the longitudinal displacement. Arab. J. Math. 2019, 8, 15–41. [Google Scholar] [CrossRef]
- Afilal, M.; Guesmia, A.; Soufyane, A. New Stability Results for a Linear Thermoelastic Bresse System with Second Sound. Appl. Math. Optim. 2021, 83, 699–738. [Google Scholar] [CrossRef]
- de Lima, P.R.; Sare, H.D.F. General condition for exponential stability of thermoelastic Bresse systems with Cattaneo’s law. Commun. Pure Appl. Anal. 2020, 19, 3575–3596. [Google Scholar] [CrossRef]
- de Lima, P.R.; Fernández Sare, H.D. Stability of thermoelastic Bresse systems. Z. Angew. Math. Phys. 2018, 70, 1–33. [Google Scholar] [CrossRef]
- Djellali, F.; Labidi, S. On the stability of a thermodiffusion Bresse system. J. Math. Phys. 2022, 63, 1–16. [Google Scholar] [CrossRef]
- Guesmia, A. The effect of the heat conduction of types I and III on the decay rate of the Bresse system via the vertical displacement. Appl. Anal. 2022, 101, 2446–2471. [Google Scholar] [CrossRef]
- Khochemane, H.E.; Djebabla, A. New stability result for a thermoelastic Bresse system with two infinite memories. SeMA 2023, 80, 175–200. [Google Scholar] [CrossRef]
- Foughali, F.; Djellali, F. On the stabilization of a thermoelastic laminated beam system with microtemperature effects. Stud. Univ. Babeş-Bolyai Math. 2025, 70, 251–266. [Google Scholar] [CrossRef]
- Khochemane, H.E. Exponential stability for a Thermoelastic Porous system with microtemperatures effects. Acta Appl. Math. 2021, 173, 8. [Google Scholar] [CrossRef]
- Meradji, S.; Boudeliou, M.; Djebabla, A. New stability number of the Timoshenko system with only microtemperature effects and without thermal conductivity. Eurasian J. Math. Comput. Appl. 2024, 12, 94–109. [Google Scholar]
- Saci, M.; Djebabla, A. On the stability of linear porous elastic materials with microtemperatures effects. J. Therm. Stress. 2020, 43, 1300–1315. [Google Scholar] [CrossRef]
- Hajjej, Z. General decay of solutions for a viscoelastic suspension bridge with nonlinear damping and a source term. Z. Angew. Math. Phys. 2021, 72, 90. [Google Scholar] [CrossRef]
- Messaoudi, S.A. General decay of solutions of a viscoelastic equation. J. Math. Anal. Appl. 2008, 341, 1457–1467. [Google Scholar] [CrossRef]
- Messaoudi, S.A. General decay of the solution energy in a viscoelastic equation with a nonlinear source. Nonlinear Anal. 2008, 69, 2589–2598. [Google Scholar] [CrossRef]
- Rivera, J.E.M.; Lapa, E.C.; Barreto, R. Decay rates for viscoelastic plates with memory. J. Elast. 1996, 44, 61–87. [Google Scholar] [CrossRef]
- Park, S.-H.; Kang, J.-R. General decay for weak viscoelastic Kirchhoff plate equations with delay boundary conditions. Bound. Value Probl. 2017, 2017, 96. [Google Scholar] [CrossRef]
- Messaoudi, S.A.; Fareh, A. General decay for a porous thermoelastic system with memory: The case of equal speeds. Nonlinear Anal. Theory Methods Appl. 2011, 74, 6895–6906. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Djellali, F.; Hajjej, Z.; Zhang, H.; Mesloub, S. A General Stability for a Modified Type III Thermoelastic Bresse System via the Longitudinal Displacement. Mathematics 2025, 13, 3500. https://doi.org/10.3390/math13213500
Djellali F, Hajjej Z, Zhang H, Mesloub S. A General Stability for a Modified Type III Thermoelastic Bresse System via the Longitudinal Displacement. Mathematics. 2025; 13(21):3500. https://doi.org/10.3390/math13213500
Chicago/Turabian StyleDjellali, Fayssal, Zayd Hajjej, Hongwei Zhang, and Said Mesloub. 2025. "A General Stability for a Modified Type III Thermoelastic Bresse System via the Longitudinal Displacement" Mathematics 13, no. 21: 3500. https://doi.org/10.3390/math13213500
APA StyleDjellali, F., Hajjej, Z., Zhang, H., & Mesloub, S. (2025). A General Stability for a Modified Type III Thermoelastic Bresse System via the Longitudinal Displacement. Mathematics, 13(21), 3500. https://doi.org/10.3390/math13213500

